首页 > 学术期刊知识库 > 甲苯水列管式换热器毕业论文

甲苯水列管式换热器毕业论文

发布时间:

甲苯水列管式换热器毕业论文

2、设计方案的选择2.1换热器型式的选择 在乙醇精馏过程中塔顶一般采用的换热器为列管式换热器,故初步选定在此次设计中的换热器为列管式换热器。 列管式换热器的型式主要依据换热器管程与壳程流体的温度差来确定。在乙醇精馏的过程中乙醇是在常压饱和温度下冷凝,进口温度为76℃,出口温度为45。冷却介质为水,入口温度为24℃,出口温度为36℃,两流体的温度差不是很大,再根据概述中各种类型的换热器的叙述,综合以上可以选用固定管板式换热器。2.2流体流速的选择 流体流速的选择涉及到传热系数、流动阻力及换热器结构等方面。增大流速,可加大对流传热系数,减少污垢的形成,使总传热系数增大;但同时使流动阻力加大,动力消耗增多;选择高流速,使管子的数目减小,对一定换热面积,不得不采用较长的管子或增加程数,管子太长不利于清洗,单程变为多程使平均传热温差下降。因此,一般需通过多方面权衡选择适宜的流速。表1至表3列出了常用的流速范围,可供设计时参考。选择流速时,应尽可能避免在层流下流动。 表1 管壳式换热器中常用的流速范围 流体的种类 一般流体 易结垢液体 气体流速,m/s 管程 ~ > ~30 壳程 ~ > ~15表2 管壳式换热器中不同粘度液体的常用流速 液体粘度,mPa·s > 1500 1500 ~500 500 ~100 100 ~35 35 ~ 1 < 1最大流速,m/s 表3 管壳式换热器中易燃、易爆液体的安全允许速度 液体名称 乙醚、二硫化碳、苯 甲醇、乙醇、汽油 丙酮安全允许速度,m/s < 1 < 2 ~3 < 10 由于使用的冷却介质是井水,比较容易结垢,乙醇则不易结垢。水和乙醇的粘度都较小,参考以上三个表格数据可以初步选定管程流速为,壳程流速为7m/s。2.3流体出口温度的确定 冷却介质水的入口温度24℃,出口温度为36℃,故,可以求得水的定性温度为:Tm=30℃ 热流体乙醇在饱和温度下冷凝,故可以确定入口温度和出口温度相同,故乙醇的定性温度Tm=℃。2.4管程数和壳程数的确定 当换热器的换热面积较大而管子又不能很长时,就得排列较多的管子,为了提高流体在管内的流速,需将管束分程。但是程数过多,导致管程流动阻力加大,动力能耗增大,同时多程会使平均温差下降,设计时应权衡考虑。管壳式换热器系列标准中管程数有 1、2、4、6 四种。采用多程时,通常应使每程的管子数相等。管程数N按下式计算: N=u/v式中 u——管程内流体的适宜流速; V——管程内流体的实际流速。第二章 工艺设计计算1确定物性数据 水的定性温度为Tm=(24+36)/2=30℃,乙醇的定性温度为Tm=(76+45)/2=℃ 两流体在定性温度下的物性数据 物性流体 乙醇 757 水 30 996 热负荷及传热面积的确定1、计算热负荷 冷凝量= 热负荷 Q1=r= ××31= 2、计算冷却水用量 换热器损失的热负荷:以总传热量的3%计; 则Q2=q/()= 水的流量可由热量衡算求得,即 ==317460/(36-24)=、计算有效平均温度差: 逆流温差℃。4、选取经验传热系数K值 根据管程走循环水,壳程走乙醇,总传热系数K现暂取: 5、估算换热面积 3换热器概略尺寸的确定管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速 u1=。管程数和传热管数 可依据传热管内径和流速确定单程传热管数 按双程管计算,所需的传热管长度为 按双程管设计,传热管适中,可以用双管程结构。根据本设计实际情况,现取传热管长l=4m,则该换热器的管程数为 传热管总根数 N=38×2=76(根)3、平均传热温差校正及壳程数 平均温差校正系数有 : R= P= 双壳程,双管程结构,查得 ε= 平均传热温差 由于平均传热温差校正系数大于,同时壳程流体流量较大,故取双壳程合适。4、壳体内径 则横过管数中心线管的根数 在计算壳体内径时可用公式: D=t b取传热管外径,则: D=32(10-1)+50=338mm 按卷制壳体的进级档,可取D=350mm 卧式固定管板式换热器的规格如下: 公称直径D…………………………350mm 公称换热面积S…………………… 管程数……………………………2 管数n………………………………76 管长L………………………………4m 管子直径…………………………… 管子排列方式………………………正三角形5、折流板 采用弓形折流板,取弓形折流板圆缺高度为壳体内径的20%,则切去的圆缺高度为h=*250=75mm。 取折流板间距B=,则 B=*250=105mm,可取B=150mm。 折流板数 N=传热管长/折流板间距-1=8000/150-1=26(块)4面积与总传热系数核算1、壳程表面传热系数2、管内表面传热系数 有公式: 管程流体流通截面积 管程流体流速 普朗特数 Pr= 则ai=、污垢热阻和管壁热阻 管外侧污垢热阻 所以管内侧污垢热阻 管壁热阻计算,碳钢在该条件下的热导率为(m·K)。所以 4、传热系数K 依传热系数公式 5、传热面积裕度 可得所计算传热面积Ap为: 该换热器的实际传热面积为 该换热器的面积裕度为 5.压降校核1、计算管程压降 (结垢校正系数,管程数,壳程数) 取碳钢的管壁粗糙度为,则,而Rei=9700,于是对的管子有

列管式换热器的设计计算________________________________________【关键词】列管式换热器【论文摘要】列管式换热器的设计计算列管式换热器的设计计算 � 1. 流体流径的选择� 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)� (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。� 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法� 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。� 管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异。通常,胀管法取t=(~)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。焊接法取t=。 5. 管程和壳程数的确定� 当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。列管式换热器的系列标准中管程数有1、2、4和6程等四种。采用多程时,通常应使每程的管子数大致相等。 管程数m可按下式计算,即: � (4-121)� 式中�u―――管程内流体的适宜速度, m/s; � u′―――管程内流体的实际速度, m/s。�图4-49串联列管换热器 当壳方流体流速太低时,也可以采用壳方多程。如壳体内安装一块与管束平行的隔板,流体在壳体内流经两次,称为两壳程,如前述的图4-47和图4-48所示。但由于纵向隔板在制造、安装和检修等方面都有困难,故一般不采用壳方多程的换热器,而是将几个换热器串联使用,以代替壳方多程。例如当需二壳程时,则将总管数等分为两部分,分别安装在两个内径相等而直径较小的外壳中,然后把这两个换热器串联使用,如图4-49所示。 6. 折流挡板� 安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。 第五节的图4-26已示出各种挡板的形式。最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热。 两相邻挡板的距离(板间距)h为外壳内径D的(~1)倍。系列标准中采用的h值为:固定管板式的有150、300和600mm三种;浮头式的有150、200、300、480和600mm五种。板间距过小,不便于制造和检修,阻力也较大。板间距过大,流体就难于垂直地流过管束,使对流传热系数下降。 �挡板切去的弓形高度及板间距对流体流动的影响如图3-42所示。 �7. 外壳直径的确定� 换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。根据计算出的实际管数、管径、管中心距及管子的排列方法等,可用作图法确定壳体的内径。但是,当管数较多又要反复计算时,作图法太麻烦费时,一般在初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。待全部设计完成后,仍应用作图法画出管子排列图。为了使管子排列均匀,防止流体走"短路",可以适当增减一些管子。� 另外,初步设计中也可用下式计算壳体的内径,即: �� (4-122) 式中 �D――――壳体内径, m; � t――――管中心距, m; � nc―――-横过管束中心线的管数; � b′―――管束中心线上最外层管的中心至壳体内壁的距离, 一般取b′=(1~)do。 nc值可由下面的公式计算。 管子按正三角形排列时: (4-123) 管子按正方形排列时: (4-124) 式中n为换热器的总管数。 �按计算得到的壳径应圆整到标准尺寸,见表4-15。� 8.主要构件� 封头 封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径 的壳体。 缓冲挡板 为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。 �导流筒 壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提 高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间。� 放气孔、排液孔 换热器的壳体上常安有放气孔和排液孔,以排除不凝性气体和冷凝液等。� 接管尺寸 换热器中流体进、出口的接管直径按下式计算,即: ��式中Vs--流体的体积流量, /s; � �u --接管中流体的流速, m/s。 流速u的经验值为:�对液体 u=~2 m/s对蒸汽 u=20~50 m/s�对气体 u=(15~20)p/ρ (p为压强,单位为atm ;ρ为气体密度,单位为kg/)� 9. 材料选用� 列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。在高温下一般材料的机械性能及耐腐蚀性能要下降。同时具有耐热性、高强度及耐腐蚀性的材料是很少的。目前 常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用。 �10. 流体流动阻力(压强降)的计算� (1) 管程流体阻力 管程阻力可按一般摩擦阻力公式求得。对于多程换热器,其总阻力 Δpi等于各程直管阻力、回弯阻力及进、出口阻力之和。一般进、出口阻力可忽略不计,故管程总阻力的计算式为: � � (4-125)�� 式中 �Δp1、Δp2------分别为直管及回弯管中因摩擦阻力引起的压强降,N/;�� Ft-----结垢校正因数,无因次,对于φ25×的管子, 取为,对φ19×2mm的管子,取为; � � Np-----管程数; � � Ns-----串联的壳程数。� 上式中直管压强降Δp1可按第一章中介绍的公式计算;回弯管的压强降Δp2由下面的经验公式估算,即: �� �� (4-126) (2) 壳程流体阻力 现已提出的壳程流体阻力的计算公式虽然较多,但是由于流体的流动状况比较复杂,使所得的结果相差很多。下面介绍埃索法计算壳程压强Δpo的公式,即: � � (4-127)式中 Δp1′-------流体横过管束的压强降,N/; �Δp2′-------流体通过折流板缺口的压强降,N/;� �Fs --------壳程压强降的结垢校正因数,无因次,对液体可取 ,对气体或可凝蒸气 可取而 (4-128) (4-129)式中 F----管子排列方法对压强降的校正因数,对正三角形排列F=,对正方形斜转45°为,正方形排列为;� fo----壳程流体的摩擦系数,当Reo>500时, nC----横过管束中心线的管子数;�� NB----折流板数;� � h ----折流板间距,m;� uo----按壳程流通截面积Ao计算的流速,而。 一般来说,液体流经换热器的压强降为 ~1atm,气体的为~。设计时,换热器的工艺尺寸应在压强降与传热面积之间予以权衡,使既能满足工艺要求,又经济合理。 �三、 列管式换热器的选用和设计计算步骤 � 1. 试算并初选设备规格� (1) 确定流体在换热器中的流动途径。� (2) 根据传热任务计算热负荷Q。�� (3) 确定流体在换热器两端的温度,选择列管式换热器的型式;计算定性温度,并确定在定性 温度下流体的性质。 �(4) 计算平均温度差,并根据温度校正系数不应小于的原则,决定壳程数。� (5) 依据总传热系数的经验值范围,或按生产实际情况,选定总传热系数K选值。� (6) 由总传热速率方程�Q=KSΔtm,初步算出传热面积S,并确定换热器的基本尺寸(如d、L、n及管子在管板上的排列等),或按系列标准选择设备规格。� 2. 计算管、壳程压强降� 根据初定的设备规格,计算管、壳程流体的流速和压强降。检查计算结果是否合理或满足工 艺要求。若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格的设备,重新计算压强降直至满足要求为止。� 3. 核算总传热系数� 计算管、壳程对流传热系数αi 和αo,确定污垢热阻Rsi和Rso,再计算总传热系数K',比较K得初始值和计算值,若K'/K=~,则初选的设备合适。否则需另设K选值,重复以上计算步骤 。� 通常,进行换热器的选择或设计时,应在满足传热要求的前提下,再考虑其他各项的问题。它们之间往往是互相矛盾的。例如,若设计的换热器的总传热系数较大,将导致流体通过换热器的压强降(阻力)增大,相应地增加了动力费用;若增加换热器的表面积,可能使总传热系数和压强降降低,但却又要受到安装换热器所能允许的尺寸的限制,且换热器的造价也提高了。 此外,其它因素(如加热和冷却介质的用量,换热器的检修和操作)也不可忽视。总之,设计者应综合分析考虑上述诸因素,给予细心的判断,以便作出一个适宜的设计。

毕业论文列管式换热器设计

下列转载的文章供你参考:列管式换热器的设计和选用(1) 列管式换热器的设计和选用应考虑的问题◎ 冷、热流体流动通道的选择具体选择冷、热流体流动通道的选择在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。c) 压力高的流体宜在管内,以免壳体承受压力。d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。e) 流量小而粘度大( )的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。g) 需要被冷却物料一般选壳程,便于散热。以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。◎ 流速的选择常用流速范围流速的选择流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。因此选择适宜的流速是十分重要的。根据经验,表及表列出一些工业上常用的流速范围,以供参考。表 列管换热器内常用的流速范围流体种类流速 m/s管程壳程一般液体宜结垢液体气 体~>15~~>~15表 液体在列管换热器中流速(在钢管中)液体粘度 最大流速 m/s>15001000~500500~100100~5335~1>◎ 流动方式的选择流动方式选择流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见节。◎ 换热管规格和排列的选择具体选择 换热管规格和排列的选择换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格,对一般流体是适应的。此外,还有 ,φ57×的无缝钢管和φ25×2, 的耐酸不锈钢管。按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产的钢管长度多为6m、9m,故系列标准中管长有,2,3,,6和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6。 管子的排列方式有等边三角形和正方形两种(图,图)。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。如将正方形排列的管束斜转45°安装(图),可在一定程度上提高表面传热系数。 图 管子在管板上的排列◎ 折流挡板 折流挡板间距的具体选择折流挡板安装折流挡板的目的是为提高管外表面传热系数,为取得良好的效果,挡板的形状和间距必须适当。对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。 a.切除过少b.切除适当 c.切除过多图挡板切除对流动的影响挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的~倍。我国系列标准中采用的挡板间距为:固定管板式有100,150,200,300,450,600,700mm七种 浮头式有100,150,200,250,300,350,450(或480),600mm八种。(2)流体通过换热器时阻力的计算换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格的换热器。按一般经验,对于液体常控制在104~105Pa范围内,对于气体则以103~104Pa为宜。此外,也可依据操作压力不同而有所差别,参考下表。换热器操作允许压降△P换热器操作压力P(Pa)允许压降△P<105 (绝对压力)0~105 (表压)>105 (表压)>5×104 Pa◎ 管程阻力管程阻力可按一般摩擦阻力计算式求得。具体计算公式管程阻力损失管程阻力损失可按一般摩擦阻力计算式求得。但管程总的阻力 应是各程直管摩擦阻力 、每程回弯阻力 以及进出口阻力 三项之和。而 相比之下常可忽略不计。因此可用下式计算管程总阻力损失 : 式中 每程直管阻力 ;每程回弯阻力 ;Ft-结构校正系数,无因次,对于 的管子,Ft=,对于 的管子Ft=;Ns-串联的壳程数,指串联的换热器数;Np-管程数;由此式可以看出,管程的阻力损失(或压降)正比于管程数Np的三次方,即 ∝ 对同一换热器,若由单管程改为两管程,阻力损失剧增为原来的8倍,而强制对流传热、湍流条件下的表面传热系数只增为原来的倍;若由单管程改为四管程,阻力损失增为原来的64倍,而表面传热系数只增为原来的3倍。由此可见,在选择换热器管程数目时,应该兼顾传热与流体压降两方面的得失。◎ 壳程阻力对于壳程阻力的计算,由于流动状态比较复杂,计算公式较多,计算结果相差较大。 埃索法计算公式壳程阻力损失对于壳程阻力损失的计算,由于流动状态比较复杂,提出的计算公式较多,所得计算结果相差不少。下面为埃索法计算壳程阻力损失的公式: 式中 -壳程总阻力损失, ; -流过管束的阻力损失, ; -流过折流板缺口的阻力损失, ;Fs-壳程阻力结垢校正系数,对液体可取Fs=,对气体或可凝蒸汽取Fs=;Ns-壳程数;又管束阻力损失 折流板缺口阻力损失 式中 -折流板数目; -横过管束中心的管子数,对于三角形排列的管束, ;对于正方形排列的管束, , 为每一壳程的管子总数;B-折流板间距,m;D-壳程直径,m; -按壳程流通截面积或按其截面积 计算所得的壳程流速,m/s;F-管子排列形式对压降的校正系数,对三角形排列F=,对正方形排列F=,对正方形斜转45°,F=04; -壳程流体摩擦系数,根据 ,由图求出(图中t为管子中心距),当 亦可由下式求出: 因 , 正比于 ,由式可知,管束阻力损失 ,基本上正比于 ,即 ∝ 若挡板间距减小一半, 剧增8倍,而表面传热系数 只增加倍。因此,在选择挡板间距时,亦应兼顾传热与流体压降两方面的得失。同理,壳程数的选择也应如此。 图 壳程摩擦系数f0与Re0的关系列管式换热器的设计和选用(续)(3)列管式换热器的设计和选用的计算步骤设有流量为去qm,h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和 已知时,要求取传热面积A必须知K和 则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。◎ 初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数 大于,否则应改变流动方式,重新计算。◆ 计算热流量Q及平均传热温差△tm,根据经验估计总传热系数K估,初估传热面积A估。◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 ◎ 计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数NP和折流板间距B再计算压力降是否合理。这时NP与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。◎ 核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。◎ 计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 换热器的传热强化途径如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的设备上获得更大的生产能力和效益,成为现代工业发展的一个重要问题。依总传热速率方程: 强化方法:提高 K、A、 均可强化传热。◎提高传热系数K 热阻主要集中于 较小的一侧,提高 小的一侧有效。◆ 降低污垢热阻◆ 提高表面传热系数 提高 的方法:无相变化传热:1) 加大流速;2)人工粗造表面; 3)扰流元件。 有相变化传热:蒸汽冷凝 :1)滴状冷凝, 2)不凝气体排放,3)气液流向一致 , 4)合理布置冷凝面, 5)利用表面张力 (沟槽 ,金属丝)液体沸腾: 1)保持核状沸腾,2) 制造人工表面,增加汽化核心数。◎ 提高传热推动力 加热蒸汽P , ◎ 改变传热面积A 关于传热面积A的改变,不以增加换热器台数,改变换热器的尺寸来加大传热面积A,而是通过对传热面的改造,如开槽及加翅片、以不同异形管代替光滑圆管等措施来加大传热面积以强化传热过程。

我给你发过去了,剩下的自己看着画吧,你不能自己一点不动手,只能帮你到这了,不过提醒你下,你这个设计的有问题,自己看图就明白了

某生产过程中,需将6000kg/h的油从140℃冷却至40℃,压力为;冷却介质采用循环水,循环冷却水的压力为,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×的碳钢管,管内流速取ui=。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃)管程流体的定性温度为(℃)根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825kg/m3定压比热容cpo=(kg·℃)导热系数λo=(m·℃)粘度μo=·s循环冷却水在35℃下的物性数据: 密度ρi=994kg/m3定压比热容cpi=(kg·℃)导热系数λi=(m·℃)粘度μi=·s3.计算总传热系数 (1)热流量 Qo=WocpoΔto=6000××(140-40)=×106kJ/h=(kW)(2)平均传热温差 (℃)(3)冷却水用量 (kg/h)(4)总传热系数K 管程传热系数 W/(m·℃)壳程传热系数 假设壳程的传热系数αo=290W/(m2·℃); 污垢热阻Rsi=·℃/W,Rso=·℃/W管壁的导热系数λ=45W/(m·℃)=(m·℃)4.计算传热面积 (m2)考虑15%的面积裕度,S=×S′=×(m2)。 5.工艺结构尺寸 (1)管径和管内流速 选用ф25×传热管(碳钢),取管内流速ui=。 (2)管程数和传热管数 依据传热管内径和流速确定单程传热管数 按单程管计算,所需的传热管长度为(m)按单管程设计,传热管过长,宜采用多管程结构。现取传热管长L=6m,则该换热器管程数为(管程)传热管总根数N=58×2=116(根)(3)平均传热温差校正及壳程数 平均传热温差校正系数 第2章换热器设计按单壳程,双管程结构,温差校正系数应查有关图表。但R=10的点在图上难以读出,因而相应以1/R代替R,PR代替P,查同一图线,可得φΔt=平均传热温差Δtm=φΔtΔ′tm=×39=32(℃)(4)传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。取管心距t=,则 t=×25=≈32(mm)横过管束中心线的管数(根)(5)壳体内径 采用多管程结构,取管板利用率η=,则壳体内径为 (mm)圆整可取D=450mm (6)折流板 采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=×450=(mm),故可取h=110mm。 取折流板间距B=,则B=×450=135(mm),可取B为150。 折流板数NB=传热管长/折流板间距-1=6000/150-1=39(块)折流板圆缺面水平装配。 (7)接管 壳程流体进出口接管:取接管内油品流速为u=,则接管内径为 取标准管径为50mm。 管程流体进出口接管:取接管内循环水流速u=,则接管内径为 6.换热器核算 (1)热量核算 ①壳程对流传热系数对圆缺形折流板,可采用凯恩公式 当量直径,由正三角形排列得 (m) 壳程流通截面积 (m) 壳程流体流速及其雷诺数分别为 普兰特准数 粘度校正 W/(m2·℃) ②管程对流传热系数 管程流通截面积(m2) 管程流体流速 普兰特准数W/(m2·℃) ③传热系数K=(m·℃)④传热面积S(m2)该换热器的实际传热面积Sp(m2)该换热器的面积裕度为 传热面积裕度合适,该换热器能够完成生产任务。 (2)换热器内流体的流动阻力 ①管程流动阻力 ∑ΔPi=(ΔP1+ΔP2)FtNsNpNs=1,Np=2,Ft=由Re=13628,传热管相对粗糙度=,查莫狄图得λi=·℃, 流速ui=,ρ=994kg/m3,所以 管程流动阻力在允许范围之内。 ②壳程阻力 ∑ΔPo=(ΔP′1+ΔP′2)FtNsNs=l,Ft=l流体流经管束的阻力 流体流过折流板缺口的阻力 总阻力∑ΔPo=1202+=(Pa)<10kPa壳程流动阻力也比较适宜。 ③换热器主要结构尺寸和计算结果换热器主要结构尺寸和计算结果见表2-13。 表2-13换热器主要结构尺寸和计算结果 换热器形式:固定管板式管口表 换热面积(m2):48 符号 尺寸 用途 连接型式 工艺参数 a DN80 循环水入口 平面 名称 管程 壳程 b DN80 循环水出口 平面 物料名称 循环水 油 c DN50 油品入口 凹凸面 操作压力,MPa d DN50 油品出口 凹凸面 操作温度,℃ 29/39 140/40 e DN20 排气口 凹凸面 流量,kg/h 32353 6000 f DN20 放净口 凹凸面 流体密度,kg/m3 994 825 附图 流速,m/传热量,总传热系数,W/m2·传热系数,W/m2·K2721476污垢系数,m2·K/阻力降,程数21推荐使用材料碳钢碳钢管子规格ф25×管数116管长mm:6000管间距,mm32排列方式正三角形折流板型式上下间距,mm150切口高度25%壳体内径,mm450保温层厚度,mm热交换设备

列管式换热器的研究论文

在暖气工程设备中, 列管式换热器 是一种高效节能的设备。由于其结构坚固,使用弹性大,适应性强,近些年来又对结构、工艺和材料等方面作了大量改进,使它的技术性能更趋于合理与先进。在供暖设施中的运用尤为关键,而且现在在我们的生活中也越来越受到广泛的运用因此,在门类众多的热交换器中, 列管式换热器 仍居于重要位置。下面我就为大家介绍一下列管式换热器的相关知识。

什么是列管式换热器

管式换热器是设备中很关键的一种装置,日常生活中,我们更为熟悉的称列管式换热器是做管壳式换热器,其实就是一种间壁式换热器,目前在暖气的运输过程中,列管式换热器仍然在各种换热器中占据领先的地位。我们可以见到的列管式换热器一般情况下,由壳体、管束、管板和封头四部分组成。

列管式换热器类型

列管式换热器类型有哪些?常见的类型是固定管板式,通过管与壳体的焊接,使得列管式换热器在固定性上很坚固,也保证了列管式换热器在安装时候安装的工艺比较简便。但是列管式换热器的壳体比较难清洗,因为重量的原因,不好翻转。此外,还有一种浮头式换热器,这种列管式换热器的管箱比较大,而壳体比较灵活,方便移动,是一款可以随意移动的列管式换热器。

“u”型列管式换热器,这种换热器的造型上的“U”型,而且列管式换热器的壳体与换热器在设计上选择了分开,这样的设计保证了列管式换热器可以自由进行伸缩,结构简单是这款列管式换热器的代表,因此在列管式换热器的清洁上是比较方便的。而且这款列管式换热器的传热效果也还是不错的,虽说比不上上述的两款列管式换热器。

列管式换热器结构与工作原理

列管式换热器结构是什么?列管式冷却器,由外部壳体以及内部冷却体两大部份组成.由于结构方式不同,外部连接形式分为管螺纹式和法兰式两种;从安装形式分为卧式和立式;从浮动形式分为浮动盘式和浮动头式;从冷却管结构分为螺管式和翅片管式;从折流的结构分为弓形折流板、矩形折流板、双堰形折流板和圆形折流板等多种结构形式,均按具体条件选用。

外部壳体包括:筒体、分水盖和回水盖.其上设有进、出油管和进、出 水管 ,并附设排油、排水、排气螺塞、锌棒安装孔连温度计接口等.

冷却体由冷却管、定孔盘、动孔盘、折流板等组成.冷却管两端与定、动孔盘连接;定孔盘和外体法兰连接,动孔盘可在外体内自由伸缩,以消除温度对冷却管由于热胀冷缩而产生的影响.折流板起强化传热及支承冷却管的作用。

列管式换热器工作原理是怎样的?列管式冷却器的热介质是由筒体上的接管进口,顺序经各折流通道,曲折地流至接管出口.而冷却介质则采用双管程流动,即冷却介质由进水口经分水盖进入一半冷 却管之后,再从回水盖流入另一半冷却管进入另一侧分水盖及出水管.冷介质在双管程流过程中,吸收热介质放出的余热由出水口排出,使工作介质保持额定的工作温度。

列管式换热器使用与操作

1、在冷却器设备不发生下沉的情况下,留出足够的空间以便能从壳体内抽出管束,设备就位时应按吊装规范进行,待水平找正后拧紧地脚螺丝,连接冷热介质的进出管.

2、冷却器启动前应放尽腔内的空气,以提高传热效率,其步骤:(1)、松开热、冷介质端的放气螺塞,关闭介质排出阀;(2)、缓慢打开热、冷介质的进水阀,使热、冷介质从放气孔溢出为止,然后拧紧放气螺塞,关闭进水阀.

3、当水温升高5~10℃后,打开冷却介质的进水阀(注意:切忌快速打开进水阀,因冷却水大量流过冷却器时,会使换热器表面长期形成一层导热性很差的“过 冷层”),再打开热介质的出入阀,使之处于流动状态,然后注意调整冷却介质的流量,使热介质保持在最佳使用温度.

4、如果冷却水一侧发生电化腐蚀,可在指定位置安装锌棒.

5、较脏的介质通过冷却器之前,应设有过滤装置.

6、被冷却介质的压力应大于冷却介质的压力。

编辑总结:以上就是列管式换热器的结构及工作原理的相关知识介绍,希望能够帮助到有这方面需求的朋友们!如需了解更多相关资讯,请继续关注我们网站,后续将呈现更多精彩内容。

下列转载的文章供你参考:列管式换热器的设计和选用(1) 列管式换热器的设计和选用应考虑的问题◎ 冷、热流体流动通道的选择具体选择冷、热流体流动通道的选择在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。c) 压力高的流体宜在管内,以免壳体承受压力。d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。e) 流量小而粘度大( )的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。g) 需要被冷却物料一般选壳程,便于散热。以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。◎ 流速的选择常用流速范围流速的选择流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。因此选择适宜的流速是十分重要的。根据经验,表及表列出一些工业上常用的流速范围,以供参考。表 列管换热器内常用的流速范围流体种类流速 m/s管程壳程一般液体宜结垢液体气 体~>15~~>~15表 液体在列管换热器中流速(在钢管中)液体粘度 最大流速 m/s>15001000~500500~100100~5335~1>◎ 流动方式的选择流动方式选择流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见节。◎ 换热管规格和排列的选择具体选择 换热管规格和排列的选择换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格,对一般流体是适应的。此外,还有 ,φ57×的无缝钢管和φ25×2, 的耐酸不锈钢管。按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产的钢管长度多为6m、9m,故系列标准中管长有,2,3,,6和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6。 管子的排列方式有等边三角形和正方形两种(图,图)。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。如将正方形排列的管束斜转45°安装(图),可在一定程度上提高表面传热系数。 图 管子在管板上的排列◎ 折流挡板 折流挡板间距的具体选择折流挡板安装折流挡板的目的是为提高管外表面传热系数,为取得良好的效果,挡板的形状和间距必须适当。对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。 a.切除过少b.切除适当 c.切除过多图挡板切除对流动的影响挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的~倍。我国系列标准中采用的挡板间距为:固定管板式有100,150,200,300,450,600,700mm七种 浮头式有100,150,200,250,300,350,450(或480),600mm八种。(2)流体通过换热器时阻力的计算换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格的换热器。按一般经验,对于液体常控制在104~105Pa范围内,对于气体则以103~104Pa为宜。此外,也可依据操作压力不同而有所差别,参考下表。换热器操作允许压降△P换热器操作压力P(Pa)允许压降△P<105 (绝对压力)0~105 (表压)>105 (表压)>5×104 Pa◎ 管程阻力管程阻力可按一般摩擦阻力计算式求得。具体计算公式管程阻力损失管程阻力损失可按一般摩擦阻力计算式求得。但管程总的阻力 应是各程直管摩擦阻力 、每程回弯阻力 以及进出口阻力 三项之和。而 相比之下常可忽略不计。因此可用下式计算管程总阻力损失 : 式中 每程直管阻力 ;每程回弯阻力 ;Ft-结构校正系数,无因次,对于 的管子,Ft=,对于 的管子Ft=;Ns-串联的壳程数,指串联的换热器数;Np-管程数;由此式可以看出,管程的阻力损失(或压降)正比于管程数Np的三次方,即 ∝ 对同一换热器,若由单管程改为两管程,阻力损失剧增为原来的8倍,而强制对流传热、湍流条件下的表面传热系数只增为原来的倍;若由单管程改为四管程,阻力损失增为原来的64倍,而表面传热系数只增为原来的3倍。由此可见,在选择换热器管程数目时,应该兼顾传热与流体压降两方面的得失。◎ 壳程阻力对于壳程阻力的计算,由于流动状态比较复杂,计算公式较多,计算结果相差较大。 埃索法计算公式壳程阻力损失对于壳程阻力损失的计算,由于流动状态比较复杂,提出的计算公式较多,所得计算结果相差不少。下面为埃索法计算壳程阻力损失的公式: 式中 -壳程总阻力损失, ; -流过管束的阻力损失, ; -流过折流板缺口的阻力损失, ;Fs-壳程阻力结垢校正系数,对液体可取Fs=,对气体或可凝蒸汽取Fs=;Ns-壳程数;又管束阻力损失 折流板缺口阻力损失 式中 -折流板数目; -横过管束中心的管子数,对于三角形排列的管束, ;对于正方形排列的管束, , 为每一壳程的管子总数;B-折流板间距,m;D-壳程直径,m; -按壳程流通截面积或按其截面积 计算所得的壳程流速,m/s;F-管子排列形式对压降的校正系数,对三角形排列F=,对正方形排列F=,对正方形斜转45°,F=04; -壳程流体摩擦系数,根据 ,由图求出(图中t为管子中心距),当 亦可由下式求出: 因 , 正比于 ,由式可知,管束阻力损失 ,基本上正比于 ,即 ∝ 若挡板间距减小一半, 剧增8倍,而表面传热系数 只增加倍。因此,在选择挡板间距时,亦应兼顾传热与流体压降两方面的得失。同理,壳程数的选择也应如此。 图 壳程摩擦系数f0与Re0的关系列管式换热器的设计和选用(续)(3)列管式换热器的设计和选用的计算步骤设有流量为去qm,h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和 已知时,要求取传热面积A必须知K和 则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。◎ 初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数 大于,否则应改变流动方式,重新计算。◆ 计算热流量Q及平均传热温差△tm,根据经验估计总传热系数K估,初估传热面积A估。◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 ◎ 计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数NP和折流板间距B再计算压力降是否合理。这时NP与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。◎ 核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。◎ 计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 换热器的传热强化途径如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的设备上获得更大的生产能力和效益,成为现代工业发展的一个重要问题。依总传热速率方程: 强化方法:提高 K、A、 均可强化传热。◎提高传热系数K 热阻主要集中于 较小的一侧,提高 小的一侧有效。◆ 降低污垢热阻◆ 提高表面传热系数 提高 的方法:无相变化传热:1) 加大流速;2)人工粗造表面; 3)扰流元件。 有相变化传热:蒸汽冷凝 :1)滴状冷凝, 2)不凝气体排放,3)气液流向一致 , 4)合理布置冷凝面, 5)利用表面张力 (沟槽 ,金属丝)液体沸腾: 1)保持核状沸腾,2) 制造人工表面,增加汽化核心数。◎ 提高传热推动力 加热蒸汽P , ◎ 改变传热面积A 关于传热面积A的改变,不以增加换热器台数,改变换热器的尺寸来加大传热面积A,而是通过对传热面的改造,如开槽及加翅片、以不同异形管代替光滑圆管等措施来加大传热面积以强化传热过程。

列管式换热器的设计计算 ________________________________________ 【关键词】列管式换热器 【论文摘要】列管式换热器的设计计算 列管式换热器的设计计算 ? 1. 流体流径的选择 ? 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) ? (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子. (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修. (3) 压强高的流体宜走管内,以免壳体受压. (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大. (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果. (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速. (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数. ? 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择. 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积.但是流速增加,又使流体阻力增大,动力消耗就增多.所以适宜的流速要通过经济衡算才能定出. 此外,在选择流速时,还需考虑结构上的要求.例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数.管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降.这些也是选择流速时应予考虑的问题. 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题.若其中一个流体仅已知进口温度,则出口温度应由设计者来确定.例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定.为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量.两者是相互矛盾的.一般来说,设计时可采取冷却水两端温差为5~10℃.缺水地区选用较大的温度差,水源丰富地区选用较小的温度差. 4. 管子的规格和排列方法? 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围.易结垢、粘度较大的液体宜采用较大的管径.我国目前试用的列管式换热器系列标准中仅有φ25×及φ19×mm两种规格的管子. 管长的选择是以清洗方便及合理使用管材为原则.长管不便于清洗,且易弯曲.一般出厂的标准钢管长为6m,则合理的换热器管长应为、2、3或6m.系列标准中也采用这四种管长.此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些). 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示.等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子.正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低.正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高.? 管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异.通常,胀管法取t=(~)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6).焊接法取t=. 5. 管程和壳程数的确定? 当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小.为了提高管内流速,可采用多管程.但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题.列管式换热器的系列标准中管程数有1、2、4和6程等四种.采用多程时,通常应使每程的管子数大致相等. 管程数m可按下式计算,即: ? (4-121)? 式中?u―――管程内流体的适宜速度, m/s; ? u′―――管程内流体的实际速度, m/s.? 图4-49串联列管换热器 当壳方流体流速太低时,也可以采用壳方多程.如壳体内安装一块与管束平行的隔板,流体在壳体内流经两次,称为两壳程,如前述的图4-47和图4-48所示.但由于纵向隔板在制造、安装和检修等方面都有困难,故一般不采用壳方多程的换热器,而是将几个换热器串联使用,以代替壳方多程.例如当需二壳程时,则将总管数等分为两部分,分别安装在两个内径相等而直径较小的外壳中,然后把这两个换热器串联使用,如图4-49所示. 6. 折流挡板? 安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数. 第五节的图4-26已示出各种挡板的形式.最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热. 两相邻挡板的距离(板间距)h为外壳内径D的(~1)倍.系列标准中采用的h值为:固定管板式的有150、300和600mm三种;浮头式的有150、200、300、480和600mm五种.板间距过小,不便于制造和检修,阻力也较大.板间距过大,流体就难于垂直地流过管束,使对流传热系数下降. ?挡板切去的弓形高度及板间距对流体流动的影响如图3-42所示. ?7. 外壳直径的确定? 换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径.根据计算出的实际管数、管径、管中心距及管子的排列方法等,可用作图法确定壳体的内径.但是,当管数较多又要反复计算时,作图法太麻烦费时,一般在初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径.待全部设计完成后,仍应用作图法画出管子排列图.为了使管子排列均匀,防止流体走"短路",可以适当增减一些管子.? 另外,初步设计中也可用下式计算壳体的内径,即: ? (4-122) 式中 ?D――――壳体内径, m; ? t――――管中心距, m; ? nc―――-横过管束中心线的管数; ? b′―――管束中心线上最外层管的中心至壳体内壁的距离, 一般取b′=(1~)do. nc值可由下面的公式计算. 管子按正三角形排列时: (4-123) 管子按正方形排列时: (4-124) 式中n为换热器的总管数. ?按计算得到的壳径应圆整到标准尺寸,见表4-15.? 8.主要构件? 封头封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径 的壳体. 缓冲挡板 为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板. ?导流筒 壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提 高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间.? 放气孔、排液孔 换热器的壳体上常安有放气孔和排液孔,以排除不凝性气体和冷凝液等.? 接管尺寸 换热器中流体进、出口的接管直径按下式计算,即: ?式中Vs--流体的体积流量, /s; ? ?u --接管中流体的流速, m/s. 流速u的经验值为:? 对液体 u=~2 m/s 对蒸汽 u=20~50 m/s? 对气体 u=(15~20)p/ρ (p为压强,单位为atm ;ρ为气体密度,单位为kg/)? 9. 材料选用? 列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用.在高温下一般材料的机械性能及耐腐蚀性能要下降.同时具有耐热性、高强度及耐腐蚀性的材料是很少的.目前 常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等.不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用. ?10. 流体流动阻力(压强降)的计算 ? (1) 管程流体阻力 管程阻力可按一般摩擦阻力公式求得.对于多程换热器,其总阻力 Δpi等于各程直管阻力、回弯阻力及进、出口阻力之和.一般进、出口阻力可忽略不计,故管程总阻力的计算式为: ? ? (4-125)? 式中 ?Δp1、Δp2------分别为直管及回弯管中因摩擦阻力引起的压强降,N/;? ? Ft-----结垢校正因数,无因次,对于φ25×的管子, 取为,对φ19×2mm的管子,取为; ? ? Np-----管程数; ? ? Ns-----串联的壳程数.? 上式中直管压强降Δp1可按第一章中介绍的公式计算;回弯管的压强降Δp2由下面的经验公式估算,即: ? ? (4-126) (2) 壳程流体阻力 现已提出的壳程流体阻力的计算公式虽然较多,但是由于流体的流动状况比较复杂,使所得的结果相差很多.下面介绍埃索法计算壳程压强Δpo的公式,即: ? ? (4-127) 式中 Δp1′-------流体横过管束的压强降,N/; ?Δp2′-------流体通过折流板缺口的压强降,N/;? ?Fs --------壳程压强降的结垢校正因数,无因次,对液体可取 ,对气体或可凝蒸气 可取 而 (4-128) (4-129) 式中 F----管子排列方法对压强降的校正因数,对正三角形排列F=,对正方形斜转45°为,正方形排列为; ? fo----壳程流体的摩擦系数,当Reo>500时, nC----横过管束中心线的管子数; ? NB----折流板数;? ? h ----折流板间距,m;? uo----按壳程流通截面积Ao计算的流速,而. 一般来说,液体流经换热器的压强降为 ~1atm,气体的为~.设计时,换热器的工艺尺寸应在压强降与传热面积之间予以权衡,使既能满足工艺要求,又经济合理. ?三、 列管式换热器的选用和设计计算步骤 ? 1. 试算并初选设备规格? (1) 确定流体在换热器中的流动途径.? (2) 根据传热任务计算热负荷Q.? (3) 确定流体在换热器两端的温度,选择列管式换热器的型式;计算定性温度,并确定在定性 温度下流体的性质. ?(4) 计算平均温度差,并根据温度校正系数不应小于的原则,决定壳程数.? (5) 依据总传热系数的经验值范围,或按生产实际情况,选定总传热系数K选值.? (6) 由总传热速率方程?Q=KSΔtm,初步算出传热面积S,并确定换热器的基本尺寸(如d、L、n及管子在管板上的排列等),或按系列标准选择设备规格.? 2. 计算管、壳程压强降? 根据初定的设备规格,计算管、壳程流体的流速和压强降.检查计算结果是否合理或满足工 艺要求.若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格的设备,重新计算压强降直至满足要求为止.? 3. 核算总传热系数? 计算管、壳程对流传热系数αi 和αo,确定污垢热阻Rsi和Rso,再计算总传热系数K',比较K得初始值和计算值,若K'/K=~,则初选的设备合适.否则需另设K选值,重复以上计算步骤 .? 通常,进行换热器的选择或设计时,应在满足传热要求的前提下,再考虑其他各项的问题.它们之间往往是互相矛盾的.例如,若设计的换热器的总传热系数较大,将导致流体通过换热器的压强降(阻力)增大,相应地增加了动力费用;若增加换热器的表面积,可能使总传热系数和压强降降低,但却又要受到安装换热器所能允许的尺寸的限制,且换热器的造价也提高了. 此外,其它因素(如加热和冷却介质的用量,换热器的检修和操作)也不可忽视.总之,设计者应综合分析考虑上述诸因素,给予细心的判断,以便作出一个适宜的设计.

水水换热器论文模板

看过北方家里的暖气片没,那就是将管道里的水热能,通过散热片释放到家中空气,给家升温。就是这个原理。反之,电脑里常使用的水冷散热器,就是通过散热片把电脑配件(如CPU)发出的热量,交换到散热片中的水管的水中,通过水泵导出机箱外散热。这就是利用水热交换器来散热的。 还有太阳能热水器,上面一条一条的玻璃管,就是水热交换器 同理,水水热交换器,就是两头都是水热交换器组成的复合体

接触多的地方。洗澡的地方。供热公司。或者工业上也有用!汽水换热器就是把蒸汽里的热量交换到水里,使水的温度升高的设备。或者反过来说,把蒸汽冷却。

汽水换热设备主要以汽水换热器为主,如果需要机组的话其他的循环、补水系统为辅。

那么换热器只能用在汽-水,或者液-汽之间的热量交换吗?当然不是。板式换热器也可以用在液-液之间的热量交换。今天就由蒸汽换热器厂家就为大家比较一下汽水换热器与水水换热器之间的区别:

1、热媒是蒸汽的,选用汽水换热器;根据蒸汽温度、压力和你所需要的热水进出水温度、水的循环流量来选择。

2、热媒是高温热水的,选用水水换热器;根据温度、流量和你所需要的热水进出水温度、水的循环流量来选择。

汽水换热器及汽水换热设备等机组,以板式换热器应用较广泛。因为其占地面积小、换热效率高。所以,在工业生产中应用非常广泛。

顾名思义,汽水换热器就是把蒸汽里的热量交换到水里,使水的温度升高的设备。比如,现在的城市集中供热,大都是水暖,就是说,暖气片里流动的是热水。而热电厂送过来的是高温蒸汽,于是就需要通过汽水换热器,用蒸汽加热水,再把热水送到暖气片里去。

管壳式换热器发展毕业论文

Commercial mode comparative study of the online education game Summary The mankind has already entered the era of Internet, but quite a lot of teenagers do not understand how to utilize the resources of the network, they neglect time in the network game of the form. In the face of such a predicament, both personage of education circle and network game runs the commercial city and should bear responsibility - -Then someone has proposed creatively " The educating type network game " This concept. Always there is wide gap difficult to mediate between the games to but educate and amuse seriously, if can deal with these contradictions creatively, it is not merely a kind of break-through in the education circle, let ten million teenagers can enjoy happy learning process, can let game operator while obtaining reputation from China profit too. The first part of this text has probed into the current situation of the online education game and development prospect in our country, put forward the problem faced; Part two Sketch the commercial mode and concept of the key element, thus make it lead to analysis on educational game of network; Part three Have analyzed and compared several domestic characteristic educational games of network, stress the place of its commercial mode's quality; Summarize and look into the distance finally, attempt in order to look for some of good combination to offer reference basis and theory to support among the network, education, game and commerce. Commercial mode of the keyword; Education; Network game请采纳。

软件设计毕业设计论文题目

软件设计毕业设计论文题目如何拟定,大家有参考的范文吗?以下是我为大家整理的关于软件设计毕业设计论文题目,希望大家喜欢!

1) 组合型板翅式换热器热力设计软件的开发

2) 导波结构健康监测系统软件数据管理模块设计

3) 基于SAP2000分析平台的变电站构架设计软件

4) 通用型激光加工工艺控制软件的领域模型设计

5) 基于蚁群算法的自动化立体车库监控软件的优化设计

6) 发电厂自动抄表软件人机交互界面设计

7) 不同种植设计软件对种植体位置偏差的影响

8) 玉米自动考种流水线控制系统设计--基于MCGS嵌入式组态软件

9) 嵌入式实时软件在计算机软件设计中的运用研究

10) 嵌入式实时软件在计算机软件设计中的运用

11) 测控数据实时监测软件设计方法研究

12) 体验模型指导下的云办公软件社会化分享设计

13) 计算机软件开发设计的难点分析

14) 无人机地面在线检测软件的设计

15) 配网数字化规划设计档案一体化软件设计研究

16) 嵌入式系统设计实验的Qt MIPS仿真软件开发

17) Solidworks参数化设计软件在我国家具研发中的应用

18) 会议电视系统平板会控软件设计与实现

19) 锅炉设计中引入三维设计软件的思考

20) 平面设计软件与DICOM图像数据处理技术

21) FLASH动画设计软件在多媒体技术中的应用

22) 无人机飞控计算机自动测试软件设计与开发

23) 基于虚拟现实技术的软件界面设计与研究

24) 面向掩星观测的软件接收机设计

25) 基于软件通信体系结构的波形FPGA软件设计方法

26) 基于MATLAB的`同步发电机原动机及其调速系统参数辨识与校核可视化软件设计

27) 基于USB的软件综合安全模块设计及应用

28) 面向大数据处理的内容服务器软件设计与实现

29) 基于Android终端的企业即时通信软件的设计与实现

30) 临时限速服务器软件设计优化研究

31) 锥形束CT与simplant软件辅助设计模拟种植下颌牙列缺损的临床研究

32) 面向复用的软件设计方法研究

33) 电网规划数据处理辅助软件的流程设计

34) GPS农田平地机土方量及设计高程计算软件开发

35) 基于STC89C52的智能台灯软件设计

36) 浅析计算机平面设计中设计软件的相互结合与应用

37) 商业固体激光器设计软件应用研究

38) 体育运动会比赛软件系统的设计与研究

39) 综合化航空电子系统网络传输延迟测试软件设计

40) 基于XML的监控软件快速设计技术

41) 基于三维动画软件的服装设计分析与研究

42) 基于Matlab的水与蒸汽热力学性质查询软件设计

43) 机顶盒软件模块设计及实现

44) 剪纸拼接与PS软件设计截骨矫正强直性脊柱炎后凸畸形的对比

45) 基于联合辅助设计软件的试验仪控数字化平台开发

46) ZBrush数字雕刻软件在电脑首饰设计中的应用

47) 对以用户体验为导向的智能手机应用软件界面设计的几点探讨

48) 点云数据生成软件的设计及其在月饼模具逆向设计与制造中的应用

49) 一种新型的有源交错并联Boost软件开关电路设计

50) 基于第一创造法的可拓创新软件设计

51) 基于DCS的工程项目设计软件介绍

52) 一种复杂模式网传数据软件模拟器的设计

53) VB环境下交互式GMT地学绘图软件的设计及实现

54) 基于等效的单体包装机软件模块化设计研究

55) 基于Visual Basic的工程数量计算软件设计与开发

56) 基于数据库的油气管道线路施工图设计软件二次开发

57) 基于EDA软件的滤波器设计

58) 基于Android的可配置工业远程监控软件设计与实现

59) 基于图像方式的受电弓滑板磨耗检测系统软件设计

60) 基于移动互联网的个人健康管理软件设计与实现

61) 老年人的握力测量软件沉浸式界面设计

62) 基于XMPP协议的Android即时通信软件的设计与实现

63) CFD软件自动化验证确认云平台设计与实现

64) 基于模糊聚类的色选机上位软件系统研究与设计

65) 双排桩支护结构理正软件设计计算与有限元(MIDAS/GTS)模拟分析

66) 移动端智能手机软件产品的UI设计研究

67) 基于ZYNQ的软件无线电平台设计与实现

68) 基于面向对象的纸机传动系统软件设计的研究

69) 软件企业设计人员胜任力模型研究

70) 算法可视化软件设计中关键问题的研究

71) 基于参与式设计方法的移动端烹饪软件界面设计研究

72) 支持语音识别功能的Andriod记事本软件设计与实现

73) 中小企业财务软件设计与应用

74) 基于Android的便携式心电监护系统软件的设计

75) 通用测试系统软件架构及关键技术的设计与实现

76) 基于双DSP的制导飞行器控制系统的软件设计

77) 达芬奇技术下的视频处理及传输系统的软件设计与实现

78) 基于SolidWorks的管壳式换热器辅助设计软件研究

79) 医学影像处理与分析软件平台设计与实现

80) 软件园研发建筑空间形态设计研究

81) 基于数据库的滑动轴承设计计算软件开发

82) 基于AutoCAD的滴灌工程设计软件研究与实现

83) 基于Gaudi的CSR外靶实验数据处理软件框架设计

84) 轮式起重机回转系统设计计算软件开发

85) 轮式起重机转向系统设计计算软件开发

86) CS公司软件开发人员薪酬体系优化设计研究

87) 基于可拓创新方法的产品创新软件设计与实现

88) 数字示波器自动校准软件设计

89) 基于Linux的多功能监护仪软件设计

90) CFETR设计软件集成平台研发

  • 索引序列
  • 甲苯水列管式换热器毕业论文
  • 毕业论文列管式换热器设计
  • 列管式换热器的研究论文
  • 水水换热器论文模板
  • 管壳式换热器发展毕业论文
  • 返回顶部