首页 > 学术期刊知识库 > 人工智能职业素养论文参考文献

人工智能职业素养论文参考文献

发布时间:

人工智能职业素养论文参考文献

人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!

摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。

关键词:人类智能,人工智能,认知,心理学

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年

5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年

下一页分享更优秀的<<<人工智能的期末论文

1. [期刊论文]产教融合视域下汽车智能技术专业人才需求分析 期刊:《内燃机与配件》 | 2021 年第 002 期 摘要:在国务院印发《国家职业教育改革实施方案2. [期刊论文]汽车智能技术专业群"1+X"课证融通的探索与实践 期刊:《时代汽车》 | 2021 年第 011 期 摘要:职业教育改革中重点关注3. [期刊论文]汽车电子技术中的智能传感器技术分析 期刊:《电子测试》 | 2021 年第 002 期 摘要:现代电子信息技术的大力发展,使得各行各业的

人工智能养殖论文参考文献

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!

人工智能技术推动我国ICT产业发展模式探讨

【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。

【关键词】人工智能;政策引导;发展模式

0 引言

工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。

1 国内外人工智能技术在ICT产业的发展现状

从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。

搜索引擎方向的发展

信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。

从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。

人脑科学助推人工智能技术发展

人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。

谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。

智能终端和可穿戴设备引起产业变革

移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。

我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。

物联网部分领域发展

全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。

物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波()RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。

2 我国ICT产业的政策引导

目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。

国家政策方面的引导

世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。

加强政策顶层设计

成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。 加强自主创新能力

将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。

深化科技体制改革

将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。

知识产权方面的引导

专利方面

国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。

著作权方面

目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长,云计算软件著作权共3017件,同比增长,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。

3 ICT相关企业实现方式探讨

经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。

政、学、研、产、用全面推进

政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。

加强合作、推进新技术的产业化与商用

通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。

全力抢占大数据

我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。

重点发展云计算

2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。

4 小结

发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。

下一页分享更优秀的>>>科技人工智能论文

测绘人工智能论文参考文献

可以写参考,工程测量规范,测量学,等等注意要写出版社和主编,其实随便拿本书,看最后一页模仿一下就好了

人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!

摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。

关键词:人类智能,人工智能,认知,心理学

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年

5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年

下一页分享更优秀的<<<人工智能的期末论文

测绘工程论文参考文献

参考文献的著录格式是否规范反映作者论文写作经验和治学态度,下同时也是论文的重要构成部分,也是学术研究过程之中对于所涉及到的所有文献资料的总结与概括。以下是我精心整理的测绘工程论文参考文献,欢迎大家借鉴与参考,希望对大家有所帮助。

[1]于武盛,王守杰,吕锦有等.辽宁省地表水资源分布及成因分析[J].农业科技与装.(2):25-29

[2]李智慧,姜延辉,郁凌峰.辽宁省水资源时空分布特点及对策[J].东北水利水电.2011(11):30-34

[3]赵秀风,弓丨水隧洞洞内消能问题的研究[D]:(硕士学位论文).郑州:华北水电学院,2006.

[4]袁丹青,陈向阳,白滨等.水力机械空化空蚀问题的研究进展[J]#灌机械,(27):269-272

[5]肖富仁,苏玮,消能工的发展及其在工程中旳应用[J].水电站设计,(1):63-69.

[6]李超,管道内部锥阀水流水力特性及消能研究[D]:(硕士学位论文).西安:西安理工大学,2008.

[7]王才欢,肖兴斌,底流消能设计研究与应用现状述评[J].四川水力发电,(1):79-85.

[8]张慧丽,王爱华,张力春,底流消能及其在工程上的应用[J].黑龙江水利科技.

[9]方神光,吴保生,南水北调中线干渠闸前变水位运行方式探讨[J].水动力学研究与进展,.

[10]李冰,变水头无压输水隧洞洞内消能和稳定输水研究[D]:(硕士学位论文).郑州.华北水电学院,.

[11]武汉水利电力学院水力学教研室.水力计算手册[M].水利出版社,1980.

[12]SL20~92.水工建筑物测流规范[S].中国:水利电力出版社,1992.

[13]赵昕,赵明登等,水力学[M],北京:中国电力出版社,2009.

[14]刘亚坤等.水力学[M],北京:中国水利水电出版社,2008.

[15]李桂芬.水工水力学研究进展与展望[J].中国水利水电科学研究院学报,(3):183-189

[16]左东启等.模型试验的理论和方法[M],北京:水利电力出版社,1988.

[17]SL155—95.水工(常规)模型试验规程[S].中国:水利水电出版社,1995.

[18]中国水利水电科学研究院,水工(专题)模型试验规范(SL156~165-95)[M],水利水电出版社.

[19]电力部水利部水利水电规划设计总院、华北水利水电学院北京研究生部陈肇和等人翻译,泄水建筑物水力计算手册[M],.

[20]刘士和.高速水流[M].北京:科学出版社,2005.

[21]水利水电科学研究院,南京水利科学研究院编,水工模型试验(第二版)[D],水利出版社,1985.

[1]黄杏元,马劲松,汤勤.地理信息系统概论[M].修订版.北京:高等教育出版社,1990:165-171.

[2]《第二次全国土地调查技术规程》,TD/T1014-2007.北京,中华人民共和国国土资源部,2007.

[3]陈泽民.中国矢量数据交换格式的应用研究[J].武汉大学学报信息科学版,2004,29(5):451-455.

[4]吴文新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,28-29.

[5]Kang-tsungChang著,陈建飞等译.地理信息系统导论[M].北京:科学出版社,2003,43-44.

[6]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.

[7]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1990:130-133.

[8]陈先伟,郭仁忠,闫浩文.土地利用数据库综合中图斑拓扑关系的创建和一致性维护[J].武汉大学报信息科学版,2005,30(4):370-373.

[9]毋河海.关于GIS中缓冲区的建立问题[J].武汉测绘科技大学学报[J].1997,22(4):358-364.

[10]张国辉,胡闻达,李慧智.基于GDI+的缓冲区建立及边界描述方法[J].测绘科学技术学报,2010,27(3):292-232.

[11]冯花平,连文娟,卢新明.求缓冲区算法[J].山东大学学报自然科学版,2005,24(3):57-59.

[12]张欣,陈国雄,钟耳顺.优化栅格细化算法的`线状地物提取[J].地球信息科学,2007,9(3):25-27.

[13]潘瑜春,钟耳顺,刘巧芹.土地资源数据库中线状地物面积扣除技术研究[J].资源科学,2001,24(6):12-17.

[14]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报·信息科学版,2011,36(7):853-856.

[15]尹为华,刘盛庆.ARCGIS在地类面积统计中的应用[J].科技资讯,2012:29.

[16]刘洪江,曹玉香.基于ArcGIS实现地类图斑净面积的计算[J].城市勘测,2012(10)114-116.

[17]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996.

[18]任娜,张道军.基于空间推理及语义的图斑扣除线状地物面积关键算法及其在土地调查建库中的应用[J].安徽农业科学,39(35):22013-22016.

[19]计长飞.土地利用现状图的矢量化方法研究[J].测绘与空间地理信息,2011,34(4):159-163.

[20]马欣,吴绍洪,康相武.线状地物的区域影响模型及其在综合评价中的应用[J].地理科学进展,2007,26(1):87-94.

[1]韩绍伟.GPS组合观测值理论及应用.测绘学报,1995,21(2):8-13.

[2]常青等.GPS载波相位组合观测值理论研究.航空学报,1998,5(19):614-616.

[3]王泽民,柳景斌.Galileo卫星定位系统相位组合观测值的模型研究[J].武汉大学学报(信息科学版),2003,28(6):723-727.

[4]申俊飞,何海波,郭海荣,王爱兵.三频观测量线性组合在北斗导航中的应用[J].全球定位系统,2012,37(6):690-695.

[5]中国卫星导航系统管理办公室.北斗卫星导航系统发展报告(版)[R].2013,12:3-6.

[6]邢喆,王泽明,伍岳.利用模糊聚类方法筛选GPS载波相位组合观测值[J].武汉大学学报(信息科学版),2006,31(1):23-26.

[7]黄令勇,宋力杰,刘先冬.基于自适应聚类算法的GPS三频载波相位组合观测值优化选取[J].大地测量与地球动力学,2011,31(4):99-102.

[8]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2003.

[9]李征航,黄劲松.GPS测量与数据处理[M].武汉大学出版社,2008.

[10]熊伟,伍岳,孙振冰,王泽民.多频数据组合在周跳探测和修复上的应用[J].武汉大学学报(信息科学版),2007,32(4):319-322.

[11]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学,2005.

[12]楼晓俊,李隽颖,刘海涛.距离修正的模糊C均值聚类算法[J].计算机应用,2012,32(3):646-648.

[13]徐军,陶庭叶,高飞.GLONASS三种载波频率组合值研究[J].大地测量与地球动力学,2013,33(1):86-89.

[14]陶庭叶,高飞,李晓莉.一种高精度GPS卫星钟差预报方法[J].中国空间科学技术,2013-4:56-61.

[15]何伟,陶庭叶,王志平.基于改进FCM的北斗三频组合观测值选取[J].中国空间科学技术(已录用).

[16]何伟,李明,阚起源.抗差加权非等时距GM(1,1)模型在大型建筑物沉降预测中的应用[J].测绘工程,2014-3,34-37.

[17]徐军,陶庭叶,高飞,张京奎.基于GLONASS三频组合观测值的周跳探测与修复[J].大地测量与地球动力学,2013,33(6):45-49.

[18]罗腾,白征东,过静珺.两种周跳探测方法在北斗三频中的应用比较研究[J].测绘通报,2011(4):1-3.

[19]范建军,王飞雪,郭桂蓉.GPS三频非差观测数据周跳的自动探测与改正研究[J].测绘科学,2006,31(5):24-26.

[20]刘旭春,伍岳,黄学斌等.多频组合数据在原始载波观测值预处理中的应用[J].测绘通报,2007(2):14-17.

[21]梁开龙,张玉册.现代化GPS信号的宽巷组合及其求解模糊度研究.测绘通报,2002年第4期:l-3

[22]张成军,许其凤,李作虎.对伪距/相位组合量探测与修复周跳算法的改进[J].测绘学报,2009,38(4):402-407.

[23]刘旭春,伍岳,张正禄.GPS三频数据在周跳和粗差探测与修复中的应用[J].煤炭学报,2006,31(5):334-339.

[24]王帅,高井祥.利用三频组合观测值进行GPS周跳探测与修复[J].测绘科学,2012,37(5):40-42.

人工智能论文参考文献作者

清华大学出版社最近推出了两部人工智能新教材?:《人工智能概论》和《人工智能导论》,前者为人工智能通识课教材,后者面向人工智能专业及计算机、自动化和电子信息类专业。也两本书的最大特点就是易读易懂,易教易学。

有《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》等等。据查询相关公开信息《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》均属于人工智能与会计电算化参考文献。受时代发展人工智能得以更加便捷系统地处理、呈现财务信息。这意味着人工智能将渐渐取代基层会计人员。

Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。推荐两本有意思的书,一本是《Simple Heuristics that Makes Us Smart》另一本是《Bounded Rationality: The Adaptive Toolbox》 ---------------------------------------------------------------------<从CSDN上转载的> 机器学习与人工智能学习资源导引 我经常在 TopLanguage 讨论组上推荐一些书籍,也经常问里面的牛人们搜罗一些有关的资料,人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索这些无疑是 CS 领域最好玩的分支了(也是互相紧密联系的),这里将最近有关机器学习和人工智能相关的一些学习资源归一个类: 首先是两个非常棒的 Wikipedia 条目,我也算是 wikipedia 的重度用户了,学习一门东西的时候常常发现是始于 wikipedia 中间经过若干次 google ,然后止于某一本或几本著作。 第一个是“人工智能的历史”(History of Artificial Intelligence),我在讨论组上写道: 而今天看到的这篇文章是我在 wikipedia 浏览至今觉得最好的。文章名为《人工智能的历史》,顺着 AI 发展时间线娓娓道来,中间穿插无数牛人故事,且一波三折大气磅礴,可谓"事实比想象更令人惊讶"。人工智能始于哲学思辨,中间经历了一个没有心理学(尤其是认知神经科学的)的帮助的阶段,仅通过牛人对人类思维的外在表现的归纳、内省,以及数学工具进行探索,其间最令人激动的是 Herbert Simon (决策理论之父,诺奖,跨领域牛人)写的一个自动证明机,证明了罗素的数学原理中的二十几个定理,其中有一个定理比原书中的还要优雅,Simon 的程序用的是启发式搜索,因为公理系统中的证明可以简化为从条件到结论的树状搜索(但由于组合爆炸,所以必须使用启发式剪枝)。后来 Simon 又写了 GPS (General Problem Solver),据说能解决一些能良好形式化的问题,如汉诺塔。但说到底 Simon 的研究毕竟只触及了人类思维的一个很小很小的方面 —— Formal Logic,甚至更狭义一点 Deductive Reasoning (即不包含 Inductive Reasoning , Transductive Reasoning (俗称 analogic thinking)。还有诸多比如 Common Sense、Vision、尤其是最为复杂的 Language 、Consciousness 都还谜团未解。还有一个比较有趣的就是有人认为 AI 问题必须要以一个物理的 Body 为支撑,一个能够感受这个世界的物理规则的身体本身就是一个强大的信息来源,基于这个信息来源,人类能够自身与时俱进地总结所谓的 Common-Sense Knowledge (这个就是所谓的 Emboddied Mind 理论。 ),否则像一些老兄直接手动构建 Common-Sense Knowledge Base ,就很傻很天真了,须知人根据感知系统从自然界获取知识是一个动态的自动更新的系统,而手动构建常识库则无异于古老的 Expert System 的做法。当然,以上只总结了很小一部分我个人觉得比较有趣或新颖的,每个人看到的有趣的地方不一样,比如里面相当详细地介绍了神经网络理论的兴衰。所以我强烈建议你看自己一遍,别忘了里面链接到其他地方的链接。 顺便一说,徐宥同学打算找时间把这个条目翻译出来,这是一个相当长的条目,看不动 E 文的等着看翻译吧:) 第二个则是“人工智能”(Artificial Intelligence)。当然,还有机器学习等等。从这些条目出发能够找到许多非常有用和靠谱的深入参考资料。然后是一些书籍 书籍: 1. 《Programming Collective Intelligence》,近年出的入门好书,培养兴趣是最重要的一环,一上来看大部头很容易被吓走的:P 2. Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)。 3. 《The Elements of Statistical Learning》,数学性比较强,可以做参考了。 4. 《Foundations of Statistical Natural Language Processing》,自然语言处理领域公认经典。 5. 《Data Mining, Concepts and Techniques》,华裔科学家写的书,相当深入浅出。 6. 《Managing Gigabytes》,信息检索好书。 7. 《Information Theory:Inference and Learning Algorithms》,参考书吧,比较深。 相关数学基础(参考书,不适合拿来通读): 1. 线性代数:这个参考书就不列了,很多。 2. 矩阵数学:《矩阵分析》,Roger Horn。矩阵分析领域无争议的经典。 3. 概率论与统计:《概率论及其应用》,威廉·费勒。也是极牛的书,可数学味道太重,不适合做机器学习的。于是讨论组里的 Du Lei 同学推荐了《All Of Statistics》并说到 机器学习这个方向,统计学也一样非常重要。推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。 4. 最优化方法:《Nonlinear Programming, 2nd》非线性规划的参考书。《Convex Optimization》凸优化的参考书。此外还有一些书可以参考 wikipedia 上的最优化方法条目。要深入理解机器学习方法的技术细节很多时候(如SVM)需要最优化方法作为铺垫。 王宁同学推荐了好几本书: 《Machine Learning, Tom Michell》, 1997.老书,牛人。现在看来内容并不算深,很多章节有点到为止的感觉,但是很适合新手(当然,不能"新"到连算法和概率都不知道)入门。比如决策树部分就很精彩,并且这几年没有特别大的进展,所以并不过时。另外,这本书算是对97年前数十年机器学习工作的大综述,参考文献列表极有价值。国内有翻译和影印版,不知道绝版否。 《Modern Information Retrieval, Ricardo Baeza-Yates et al》. 1999老书,牛人。貌似第一本完整讲述IR的书。可惜IR这些年进展迅猛,这本书略有些过时了。翻翻做参考还是不错的。另外,Ricardo同学现在是Yahoo Research for Europe and Latin Ameria的头头。 《Pattern Classification (2ed)》, Richard O. Duda, Peter E. Hart, David G. Stork大约也是01年左右的大块头,有影印版,彩色。没读完,但如果想深入学习ML和IR,前三章(介绍,贝叶斯学习,线性分类器)必修。 还有些经典与我只有一面之缘,没有资格评价。另外还有两本小册子,论文集性质的,倒是讲到了了不少前沿和细节,诸如索引如何压缩之类。可惜忘了名字,又被我压在箱底,下次搬家前怕是难见天日了。 (呵呵,想起来一本:《Mining the Web - Discovering Knowledge from Hypertext Data》 ) 说一本名气很大的书:《Data Mining: Practical Machine Learning Tools and Techniques》。Weka 的作者写的。可惜内容一般。理论部分太单薄,而实践部分也很脱离实际。DM的入门书已经不少,这一本应该可以不看了。如果要学习了解 Weka ,看文档就好。第二版已经出了,没读过,不清楚。 信息检索方面,Du Lei 同学再次推荐: 信息检索方面的书现在建议看Stanford的那本《Introduction to Information Retrieval》,这书刚刚正式出版,内容当然up to date。另外信息检索第一大牛Croft老爷也正在写教科书,应该很快就要面世了。据说是非常pratical的一本书。 对信息检索有兴趣的同学,强烈推荐翟成祥博士在北大的暑期学校课程,这里有全slides和阅读材料: maximzhao 同学推荐了一本机器学习: 加一本书:Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。最后,关于人工智能方面(特别地,决策与判断),再推荐两本有意思的书, 一本是《Simple Heuristics that Makes Us Smart》 另一本是《Bounded Rationality: The Adaptive Toolbox》 不同于计算机学界所采用的统计机器学习方法,这两本书更多地着眼于人类实际上所采用的认知方式,以下是我在讨论组上写的简介: 这两本都是德国ABC研究小组(一个由计算机科学家、认知科学家、神经科学家、经济学家、数学家、统计学家等组成的跨学科研究团体)集体写的,都是引起领域内广泛关注的书,尤其是前一本,后一本则是对 Herbert Simon (决策科学之父,诺奖获得者)提出的人类理性模型的扩充研究),可以说是把什么是真正的人类智能这个问题提上了台面。核心思想是,我们的大脑根本不能做大量的统计计算,使用fancy的数学手法去解释和预测这个世界,而是通过简单而鲁棒的启发法来面对不确定的世界(比如第一本书中提到的两个后来非常著名的启发法:再认启发法(cognition heuristics)和选择最佳(Take the Best)。当然,这两本书并没有排斥统计方法就是了,数据量大的时候统计优势就出来了,而数据量小的时候统计方法就变得非常糟糕;人类简单的启发法则充分利用生态环境中的规律性(regularities),都做到计算复杂性小且鲁棒。 关于第二本书的简介: 1. 谁是 Herbert Simon 2. 什么是 Bounded Rationality 3. 这本书讲啥的: 我一直觉得人类的决策与判断是一个非常迷人的问题。这本书简单地说可以看作是《决策与判断》的更全面更理论的版本。系统且理论化地介绍人类决策与判断过程中的各种启发式方法(heuristics)及其利弊(为什么他们是最优化方法在信息不足情况下的快捷且鲁棒的逼近,以及为什么在一些情况下会带来糟糕的后果等,比如学过机器学习的都知道朴素贝叶斯方法在许多情况下往往并不比贝叶斯网络效果差,而且还速度快;比如多项式插值的维数越高越容易 overfit,而基于低阶多项式的分段样条插值却被证明是一个非常鲁棒的方案)。 在此提一个书中提到的例子,非常有意思:两个团队被派去设计一个能够在场上接住抛过来的棒球的机器人。第一组做了详细的数学分析,建立了一个相当复杂的抛物线近似模型(因为还要考虑空气阻力之类的原因,所以并非严格抛物线),用于计算球的落点,以便正确地接到球。显然这个方案耗资巨大,而且实际运算也需要时间,大家都知道生物的神经网络中生物电流传输只有百米每秒之内,所以 computational complexity 对于生物来说是个宝贵资源,所以这个方案虽然可行,但不够好。第二组则采访了真正的运动员,听取他们总结自己到底是如何接球的感受,然后他们做了这样一个机器人:这个机器人在球抛出的一开始一半路程啥也不做,等到比较近了才开始跑动,并在跑动中一直保持眼睛于球之间的视角不变,后者就保证了机器人的跑动路线一定会和球的轨迹有交点;整个过程中这个机器人只做非常粗糙的轨迹估算。体会一下你接球的时候是不是眼睛一直都盯着球,然后根据视线角度来调整跑动方向?实际上人类就是这么干的,这就是 heuristics 的力量。 相对于偏向于心理学以及科普的《决策与判断》来说,这本书的理论性更强,引用文献也很多而经典,而且与人工智能和机器学习都有交叉,里面也有不少数学内容,全书由十几个章节构成,每个章节都是由不同的作者写的,类似于 paper 一样的,很严谨,也没啥废话,跟《Psychology of Problem Solving》类似。比较适合 geeks 阅读哈。 另外,对理论的技术细节看不下去的也建议看看《决策与判断》这类书(以及像《别做正常的傻瓜》这样的傻瓜科普读本),对自己在生活中做决策有莫大的好处。人类决策与判断中使用了很多的 heuristics ,很不幸的是,其中许多都是在适应几十万年前的社会环境中建立起来的,并不适合于现代社会,所以了解这些思维中的缺点、盲点,对自己成为一个良好的决策者有很大的好处,而且这本身也是一个非常有趣的领域。 (完)

由人民邮电出版社出版的《人工智能通识》面向我国人工智能的通识教育与专业技术人才的培养。全书共8章,分为3篇,分别为人工智能的基本理论、人工智能的应用以及人工智能的融合拓展,涵盖了目前主流的人工智能技术。《人工智能通识》在介绍人工智能的基本原理时,尽量回避了相关的复杂模型和算法设计,方便读者在社会层面理解人工智能的应用形式和未来的发展路径。此外,书中每章都设计了一些思考与练习的题目,以便读者在课堂练习和研讨中使用。

人工智能小论文含参考文献

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/ W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

  • 索引序列
  • 人工智能职业素养论文参考文献
  • 人工智能养殖论文参考文献
  • 测绘人工智能论文参考文献
  • 人工智能论文参考文献作者
  • 人工智能小论文含参考文献
  • 返回顶部