首页 > 学术期刊知识库 > 超声波导盲杖论文参考文献

超声波导盲杖论文参考文献

发布时间:

超声波导盲杖论文参考文献

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

如图1所示,电子导盲拐杖由四部分构成:超声波测距电路、光敏报警电路、语音录放电路、电源电路构成。其中,超声波测距电路由超声波测距模块和触发输出电路构成,超声波测距模块工作在40KHz频率下,由超声波发射电路、接收电路、解调电路和信号输出电路构成,发射电路一直发出40KHz的超声波信号,当超声波遇到障碍物之后,返回同频率、不同相位的超声波信号。接收电路是一个鉴相、滤除电路,滤除40KHz信号后,比较相位差,障碍物距离盲人的距离d与相位差ΔP成正比例关系,即:d = k∆P当ΔP超过阀值门限时,触发信号输出电路,发出遇到障碍物信号。电子导盲杖所用的超声波检测范围为12米。 语音电路由录音控制电路、话筒、AD转换电路、ROM存储器电路、DA转换电路、音频放大电路、播放控制构成,完成录音、放音的功能。对盲人的语音提示信息可以通过录音键和录音电路进行修改,直到满意为止。录音完毕之后,语音信息保存在ROM存储器中,等待超声波模块的触发播放信号。一旦超声波模块检测到障碍物,则输出触发信号,此触发信号为低电平,直接连接至语音模块的播放控制输入端。语音模块收到播放信号之后,从ROM中读出语音数据至DA转换电路,再经过二阶滤波和功率放大电路,由喇叭向盲人发出提示语音,如“请你让一让!”等。此外,为了在夜间提示他人,在盲人拐杖上设计了一个光敏检测电路。采用光敏电阻的负亮度特性,即亮度越高,阻值越低,通过三级管反相放大,驱动红色LED发出提示信息。整个系统的供电由9V叠层电池完成,语音录放电路要求5V直流电压,超声波电路要求6V至12V直流电压。为此,将9V电池直接加至超声波收发电路,另将9V经三端稳压集成电路7805稳压为5V输出至语音录放电路和光敏报警电路。

超声波电机论文参考文献

超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法。这是我为大家整理的超声波焊接技术论文,仅供参考!

超声波焊接的研究与展望

摘要:超声波焊接的节能、环保、操作方便等突出优点,越来越受到人们的重视。超声波焊接已广泛应用在众多领域。本文简单介绍了超声波焊接的基本原理。概述了超声波焊接的国内发展现状,并对超声波焊接的发展做了展望。

关键词:超声波 焊接 研究现状

0 引言

1950年美国人发明了超声波焊接技术,该技术作为特种连接技术,在工业生产中得到广泛应用。另外,超声波焊接技术还广泛应用于电子工业、电器制造、新材料的装备、航空航天及核能工业、食品包装盒、高级零件的密封技术等方面。超声波焊接的优点主要表现为:节能、环保、操作方便,这种技术对我国建设资源节约型、环境友好型的社会起着很大的促进作用。

1 超声波焊接原理及特点[1]

超声波焊接作为一种特殊焊接方法,通常情况下是指利用超声波频率(大于16KHZ)的机械振动能量,将同种或异种金属、半导体、塑料及金属陶瓷等进行连接。通过超声波对金属进行焊接时,一方面不需要向工件输送电流,另一方面没有将高温热源引入工件,在焊接过程中,在静压力的作用下,将弹性震动能量转变为工件间的摩擦功、形变能,以及有限的温升等。在母材不发生熔化的情况下,实现接头间的冶金结合,因此,超声波焊接属于固态焊接。

工频电流在超声波发生器的作用下,进一步转变为超声波频率(15~16KHZ)d的振荡电流。通过磁致收缩效应,换能器将电磁能转换成弹性机械振动能。放大器的作用是对振幅进行放大,同时借助耦合杆和上声极与并工件进行耦合。如果换能器、放大器、耦合杆和上声极的自振频率相互一致,在这种情况下,系统将会产生谐振,从而将弹性振动能传递给静压力F的工件。两种薄材工件通过此种能量之间的转换被粘接在一起。

2 国内研究现状

超声波金属焊接的研究现状

崔岩[2]研究超声波焊在坦克铝件焊修中的应用,对铝及铝合金的焊接性进行了详尽的分析,认为保证焊点质量稳定的重要因素是谐振频率的精度。在超声波焊接过程中,由于机械负荷是多变的,失谐现象会随机出现,进而使得焊点质量不稳定。根据超声波焊的特点,制订相应的焊接规范。大量实验证明:通过超声波对铝及铝合金进行焊接,金属表面致密的氧化膜可以有效地去除,进而保证了焊接质量。

华南理工大学杨圣文等人[3]推导了铜片-铜管太阳能集热板超声波焊接接头区域理论区域温度公式,并利用人工热电偶法测得焊接区域温度,分析了实测温度偏差产生的原因,结合焊接接头的扫描电镜(SEW)图片进行对比分析,研究了铜片-铜管超声波焊接接头的形成机理。结果表明:超声波焊接是基于接头区域微齿顶端处高温、纯净金属发生塑性变形后表面充分贴合两个因素基础上的金属键合和机械嵌合而形成接头的物理冶金过程。

南京航空航天大学机电学院的张秋峰[4]研究了1Cr18Ni9Ti与TC4异种金属的固态扩散焊接工艺,在现有的基础上采用超声波加载固态扩散焊的工艺。金相试验分析结果表明:采用超声波加载扩散焊接工艺,使不锈钢和钛形成了良好的连接。

哈尔滨工业大学的闫久春、孙小磊[5]等,在敞开环境下研究了一种适合复杂结构,并且能够进行可靠连接的“超声波振动辅助钎焊技术”原理,同时对铝基复合材料、铝合金、陶瓷/铝、玻璃/铝焊接的初步试验结果进行了描述。焊接结果表明:在钎焊过程中,通过施加适当的超声波振动,母材表面氧化膜可以有效地去除,进一步促进了母材与钎料的润湿。在低温、大气环境下,获得了具备微观组织结构和力学性能良好的连接接头。

南昌大学的朱政强等人[6]用电子背散射衍射(EBSD)方法来研究超声波焊接下铝合金AA6061的微观组织变化,从微观角度里加深对超声波金属焊接的理解。通过实验,得到原始铝箔和焊接后铝箔的品粒取向差分布图。通过分析品粒取向、晶粒结构和晶界特征了解超声波焊接对铝合金组织和结构的影响。

超声波非金属焊接的研究现状

郭毓峰[7]对12μm聚对笨二甲酸乙二醇酯(PET)/30μm聚乙烯(PE)薄膜超声波焊接工艺进行了研究,发现焊接振幅在2-10μm,对焊接接头热合强度的影响不大;在焊接振幅4-7μm出现了焊接接头的热合强度最大值。焊接接头的热合强度随着焊接时间的延长和焊接压力的增大表现出先增大后减小的变化规律。通过对不同工艺参数下焊接区域的结晶程度进行分析,其结果显示,接头的结晶程度影响着PET/PE薄膜焊接接头热合强度,焊接区域试样的结晶程度随着焊接时间、焊接振幅、焊接压力增加先减小后增大,焊接接头的热合强度先升高后降低。

赵钢[8]等人研究超声波焊接在汽车传感器封装中的应用。讲述了通过对材料、焊接方法的选择和焊口及工装设计与制造过程设计,来实现汽车传感器封装的方法。

赵仕彬[9]研究了超声波焊接在连接器中的应用。简明扼要地介绍了超声波焊接的原理,结合面的设计方法、设计要点,以及在连接器中的具体应用和使用范围。

西北工业大学的聂中明[10]研究了高电阻CdZnTe半导体(简称CZT)接触电极与引线的超声波焊接。认为:CZT晶片经机械抛光表面处理后,通过离子溅射法制备的金电极与外引线间具有较高的超声波焊合率,能获得最佳焊点质量的电极厚度为180nm。此外,确定CZT接触电极制备工艺后,楔入压力成为影响CZT接触电极与引线超声波焊接质量的主要因素,焊接功率则为次要因素。

3 总结

目前,对超声波金属的焊接机理认识不足,超声金属焊接作为一种固相焊接方法,或者说是金属间的“键合”过程,在焊接过程中,是否无金属熔化还有待进一步研究。还有在材料焊接中应用超声波,虽然焊接效果比较好,但是对于由超声波发生器、声学系统与机械系统相结合的整个系统来说,在稳定性、可操作性、可靠性等方面依然存在问题,所以声学系统的设计,以及声学系统与试件之间的连接方式等都非常重要。另外,从微观力学的角度研究超声波振动对晶粒和织构的影响也是未来研究的重要方向。

参考文献:

[1]李小明,李彦生,韩景芸.基于超声波焊接技术的快速成型方法研究[J].机床与液压,2007,35(3):4-6.

[2]崔岩.超声波焊在坦克铝件维修中的应用[J].工业技术经济,2000,19(3):114-116.

[3]杨圣文,吴泽群,陈平池.铜片-铜管太阳能集热板超声波焊接试验研究[J].焊接,2005(9):32-35.

[4]张秋峰.钛与不锈钢的超声波扩散焊接[J].机械工程与自动化,2008(1):125-127.

[5]闫久春,孙小磊.超声波振动辅助钎焊技术[J].焊接,2009(3):6-12.

[6]朱政强,马国红,.铝合金AA6061超声波焊接下组织演变分析[A].第七届中国机器人焊接学术与技术交流会议文集[C],2008:107-110.

[7]郭毓峰.聚对苯二甲酸乙二醇酯/聚乙烯薄膜的超声波焊接[J].宇航材料工艺,2010(4):53-55.

[8]赵钢,曹智,董双辉.超声波焊接在汽车传感器封装中的应用[J].沈阳航空工业学院学报,2007(4):25-28.

[9]赵仕彬.超声波焊接在连接器中的应用[J].机电元件,2006(4):36-39.

[10]聂中明,傅莉,任洁,查钢强.CdZnTe接触电极与引线的超声波焊接[J].中国有色金属学报,2009,19(5):919-923.

超声波焊接技术在工业产品设计中的应用探索

【摘 要】本文通过对超声波焊接技术原理的阐述及对超声波影响因素的探究,分析超声波焊接技术的优劣,结合笔者的设计实践,探索超声波焊接技术的发展,抛砖引玉,就基于超声波焊接技术未来的应用领域进行探索。

【关键词】超声波;焊接技术;工业产品

Ultra-sonic Welding Technology in the Application of Industrial Product Design’s Exploration

HE Jun-hua1 MA Wen-juan2 LV Shuang-shuang3 WENG Mao-hong1 GUAN Jun1 GONG Yun1

( of Engineering, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

of Agricultural and Food Science, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

of Landscape Architecture and Architecture, Zhejiang A&F University, Lin’an Zhejiang, 311300, China)

【Abstract】The article through to the illustration of the principle of ultra-sonic welding and the affecting factors of ultra-sonic probe, analyseing the advantages and disadvantages of ultra-sonic welding technology, combined with the author’s design practice, explore the development of ultrasonic welding technology, topic and is based on the exploration on the application felid of ultra-sonic welding technology in the future.

【Key words】Ultra-sonic; Welding technology; Industrial product

在工业产品制作中,经常会用到一些工业材料,像塑料、金属、木材等一些其他工业材料。在日常生活中我们经常会看到某件产品不只用一种材料来制作;我们也经常看到一件产品由多个部分组成、并且各部分之间还会产生空隙,这不仅会影响产品的质量,还会影响产品的美观度。这就要求把它们彼此之间焊接起来。随着技术的发展,人们对焊接技术的要求越来越高,目前传统的焊接技术不但成本较高,而且焊接的质量不高,往往会产生细小的缝隙。因此人们希望运用新的焊接技术来提高产品的质量。

1943年,在总结前人理论和实践的基础上,美国的Behl发明了超声波焊,从此推动了超声波焊接技术的发展。由于超声波焊接技术具有节能、无须装配散烟散热装置、焊接时无须焊接附件、成本低、效率高、密封性好、易实现自动化生产等优点,超声波焊接技术发展的越来越快。

1 超声波焊接技术在工业产品中的应用现状

像在航空航天、核能工业、电子工业等这样一些精度要求很高的工业产品领域中,使用传统的焊接技术很难达到技术要求,而且成本高、效率低。目前,超声波焊接技术在各行各业都有广泛的应用,像医疗机械、包装、五金等行业;能焊接的产品也很多,像汽车零部件、光学镜头、U盘等。

2 超声波焊接技术的原理和特点

超声波是一种频率高于20000赫兹的声波,因此能量大。超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法[1]。超声波作用于热塑性的塑胶表面时,会产生每秒上万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声波能量传到焊区,又由于焊区即两个焊接的交界面处声阻比较大,因此会产生局部高温。又由于塑料制品导热性差,一时还不能及时散发出聚集的能量,因此能量就会聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定的压力后,就会使其融合成为一体。当超声波停止作用后,让压力再持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,从而达到焊接的目的。在对金属进行超声波焊接时,既不向工件输送电流也不向工件施以高温热源,只是在静压力作用之下,将弹性振动能量转变为工件界面间的摩擦功、形变能及有限的温升,使得焊接区域的金属原子被瞬间激活,两相界面处的分子相互渗透,最终实现金属焊件的固态连接。其焊接原理示意图如图1所示[2]。

超声波焊接技术的优点

与传统焊接技术相比较,超声波焊接技术有如下优点:(1)焊接速度快、焊接精度高、焊接焊点强度高;(2)焊接范围广、稳定性好、被焊接后的工件变形很小;(3)焊接物表面清洁美观、平整光滑;(4)焊接时,不需添加焊接剂,对被加工物不产生污染、不产生有害气体,因此是一种环保的焊接方法;(5)焊接时,只需提供较小的动力即可进行焊接,耗能低;(6)操作简单、成本低、效率高、密封性好。

图1 超声波金属焊接原理示意图

超声波焊接技术的缺点

尽管超声波焊接技术有很多的优点,但也存在不足之处,因此不得不加以重视。超声波焊接技术有如下缺点:(1)对超声波焊接机理的认识还不够全面;(2)对金属进行焊接时,焊件不能太厚;(3)对超声波焊接技术的影响因素比较多,不易进行把握分析和总结;(4)制造一些大功率的超声波焊接机成本高、而且比较困难;(5)对焊接好后的工件进行焊接处质量检测比较困难,因此给大批量生产带来阻碍。 3 影响超声波焊接质量的因素

虽然超声波焊接技术有众多优点,但其焊接质量与熔融量、材料的材质等因素有关,概括起来主要包括以下几方面的因素,如图2所示。

图2 影响超声波焊接质量的因素

(1)焊接材料的材质:一般来说焊接质量与材料的物性和材料的改性有关。材料的物性包括材料的弹性模量、摩擦系数、热导率、熔点等。物件的焊接质量与材料的弹性模量、摩擦系数、热导率成正比,与其密度、熔点成反比。材料的改性指的是在适宜的工艺条件下加入一些填料以改善材料的原有性能,使其满足客户的使用要求。在适宜的工艺条件下加入一些性能相近的材料,可以提高焊接接头强度。

(2)焊头与焊件的接触面:焊接面的清洁度、材料表面的粗糙度会影响焊件的焊接质量。增加材料的表面粗糙度可以提高焊接质量;焊接面的清洁度越高,焊接质量也越高。

(3)其他因素:焊接技术的工艺参数、焊接件的结构、连接形式、焊接时的熔融量、超声波的功率等。为达到最佳的焊接效果,在产品研发阶段,要对这些因素进行综合考虑。

4 超声波焊接技术在工业产品设计中的应用案例

正如以上所述,基于超声波焊接技术的产品研发,先要进行综合考虑影响焊接质量的因素,然后结合产品的市场前景,产品的成本,生产技术要求等条件,合理生产设计要素。

下面仅就一个设计案例――美国苹果公司发明的超声波塑料与金属焊接专利技术进行解读,从实践的角度来理解超声波焊接技术在实际中的应用。原有技术的不足:在还没有发明这项专利技术之前,所有的便携式设备(如手机)不能将金属与塑料进行融合,因此某些部件不能用塑料部件来代替,这样生产出来的手机不仅厚重、外形呆板而且缺少个性,设计上也不够自由、缺少灵活性。并且制作成本高、操作复杂、使用不方便,按键操作过多时,会接触不灵。解决案例:采用全新的超声波塑料与金属焊接技术,在手机内部某些部件使用塑料材质,减轻了手机的重量的同时也减少了金属的使用量。在壳体方面采用一次成型工艺,使外壳更加简约、流畅,操作简单,设计灵活,给人一种高端、大气的感觉。先进的超声波焊接技术一般还要使用多种材料融合的技术工艺,设计更加的自由和灵活,设计线条采用极简主义的风格,色彩上运用浅色,给人轻松、愉悦的感觉。在结构上更符合超声波焊接工作原理,使焊接质量更佳。

5 针对超声波焊接技术应用的案例得出的结论和展望

通过这次调研,作者通过对超声波焊接技术的了解,对超声波焊接技术应用进行研究,由于条件有限,在调查研究过程中还有不足之处,在此将在调研过程中涉及到的问题及解决办法总结一下,为后面进一步研究做铺垫。针对焊接质量的问题,我们得出在焊接时应保持接触面清洁和材料表面的粗糙度。要了解用户需求,针对特定的用户进行设计,设计出多种不同的外观形态,为不同的客户量身打造;在设计时还应该考虑情趣化的问题,设计出更加有情趣化的产品,营造轻松愉悦的环境。针对超声波焊接技术在产品设计中的展望,作者经过探索发现可以在工作时增加音乐播放功能,使焊接过程轻松、愉快。未来的超声波焊接技术也将更加的人性化。

【参考文献】

[1]关长石,费玉石.超声波焊接原理与实践[J].机械设计与制造,2004(6).

[2]朱政强,吴宗辉,范静辉.超声波金属焊接的研究现状与展望[J].焊接技术,2010,39(12).

原文 Ultrasonic distance meter Document Type and Number:United States Patent 5442592 Abstract:An ultrasonic distance meter cancels out the effects of temperature and humidity variations by including a measuring unit and a reference unit. In each of the units, a repetitive series of pulses is generated, each having a repetition rate directly related to the respective distance between an electroacoustic transmitter and an electroacoustic receiver. The pulse trains are provided to respective counters, and the ratio of the counter outputs is utilized to determine the distance being measured. Publication Date:08/15/1995 Primary Examiner:Lobo, Ian J. 一、BACKGROUND OF THE INVENTION This invention relates to apparatus for the measurement of distance and, more particularly, to such apparatus which transmits ultrasonic waves between two points. Precision machine tools must be calibrated. In the past, this has been accomplished utilizing mechanical devices such as calipers, micrometers, and the like. However, the use of such devices does not readily lend itself to automation techniques. It is known that the distance between two points can be determined by measuring the propagation time of a wave travelling between those two points. One such type of wave is an ultrasonic, or acoustic, wave. When an ultrasonic wave travels between two points, the distance between the two points can be measured by multiplying the transit time of the wave by the wave velocity in the medium separating the two points. It is therefore an object of the present invention to provide apparatus utilizing ultrasonic waves to accurately measure the distance between two points. When the medium between the two points whose spacing is being measured is air, the sound velocity is dependent upon the temperature and humidity of the air. It is therefore a further object of the,present invention to provide apparatus of the type described which is independent of temperature and humidity variations. 二、SUMMARY OF THE INVENTION The foregoing and additional objects are attained in accordance with the principles of this invention by providing distance measuring apparatus which includes a reference unit and a measuring unit. The reference and measuring units are the same and each includes an electroacoustic transmitter and an electroacoustic receiver. The spacing between the transmitter and the receiver of the reference unit is a fixed reference distance, whereas the spacing between the transmitter and receiver of the measuring unit is the distance to be measured. In each of the units, the transmitter and receiver are coupled by a feedback loop which causes the transmitter to generate an acoustic pulse which is received by the receiver and converted into an electrical pulse which is then fed back to the transmitter, so that a repetitive series of pulses results. The repetition rate of the pulses is inversely related to the distance between the transmitter and the receiver. In each of the units, the pulses are provided to a counter. Since the reference distance is known, the ratio of the counter outputs is utilized to determine the desired distance to be measured. Since both counts are identically influenced by temperature and humidity variations, by taking the ratio of the counts, the resultant measurement becomes insensitive to such variations. 三、BRIEF DESCRIPTION OF THE DRAWINGS The foregoing will be more readily apparent upon reading the following description in conjunction with the drawing in which the single FIGURE schematically depicts apparatus constructed in accordance with the principles of this invention. 四、DETAILED DESCRIPTION Referring now to the drawing, there is shown a measuring unit 10 and a reference unit 12, both coupled to a utilization means 14. The measuring unit 10 includes an electroacoustic transmitter 16 and an electroacoustic receiver 18. The transmitter 16 includes piezoelectric material 20 sandwiched between a pair of electrodes 22 and 24. Likewise, the receiver 18 includes piezoelectric material 26 sandwiched between a pair of electrodes 28 and 30. As is known, by applying an electric field across the electrodes 22 and 24, stress is induced in the piezoelectric material 20. If the field varies, such as by the application of an electrical pulse, an acoustic wave 32 is generated. As is further known, when an acoustic wave impinges upon the receiver 18, this induces stress in the piezoelectric material 26 which causes an electrical signal to be generated across the electrodes 28 and 30. Although piezoelectric transducers have been illustrated, other electroacoustic devices may be utilized, such as, for example, electrostatic, electret or electromagnetic types. As shown, the electrodes 28 and 30 of the receiver 18 are coupled to the input of an amplifier 34, whose output is coupled to the input of a detector 36. The detector 36 is arranged to provide a signal to the pulse former 38 when the output from the amplifier 34 exceeds a predetermined level. The pulse former 38 then generates a trigger pulse which is provided to the pulse generator 40. In order to enhance the sensitivity of the system, the transducers 16 and 18 are resonantly excited. There is accordingly provided a continuous wave oscillator 42 which provides a continuous oscillating signal at a fixed frequency, preferably the resonant frequency of the transducers 16 and 18. This oscillating signal is provided to the modulator 44. To effectively excite the transmitter 16, it is preferable to provide several cycles of the resonant frequency signal, rather than a single pulse or single cycle. Accordingly, the pulse generator 40 is arranged, in response to the application thereto of a trigger pulse, to provide a control pulse to the modulator 44 having a time duration equal the time duration of a predetermined number of cycles of the oscillating signal from the oscillator 42. This control pulse causes the modulator 44 to pass a "burst" of cycles to excite the transmitter 16. When electric power is applied to the described circuitry, there is sufficient noise at the input to the amplifier 34 that its output triggers the pulse generator 40 to cause a burst of oscillating cycles to be provided across the electrodes 22 and 24 of the transmitter 16. The transmitter 16 accordingly generates an acoustic wave 32 which impinges upon the receiver 18. The receiver 18 then generates an electrical pulse which is applied to the input of the amplifier 34, which again causes triggering of the pulse generator 40. This cycle repeats itself so that a repetitive series of trigger pulses results at the output of the pulse former 38. This pulse train is applied to the counter 46, as well as to the pulse generator 40. The transmitter 16 and the receiver 18 are spaced apart by the distance "D" which it is desired to measure. The propagation time "t" for an acoustic wave 32 travelling between the transmitter 16 and the receiver 18 is given by: t=D/V s where V s is the velocity of sound in the air between the transmitter 16 and the receiver 18. The counter 46 measures the repetition rate of the trigger pulses, which is equal to 1/t. Therefore, the repetition rate is equal to V s /D. The velocity of sound in air is a function of the temperature and humidity of the air, as follows: ##EQU1## where T is the temperature, p is the partial pressure of the water vapor, H is the barometric pressure, Γ w and Γ a are the ratio of constant pressure specific heat to constant volume specific heat for water vapor and dry air, respectively. Thus, although the repetition rate of the trigger pulses is measured very accurately by the counter 46, the sound velocity is influenced by temperature and humidity so that the measured distance D cannot be determined accurately. In accordance with the principles of this invention, a reference unit 12 is provided. The reference unit 12 is of the same construction as the measuring unit 10 and therefore includes an electroacoustic transmitter 50 which includes piezoelectric material 52 sandwiched between a pair of electrodes 54 and 56, and an electroacoustic receiver 58 which includes piezoelectric material 60 sandwiched between a pair of electrodes 62 and 64. Again, transducers other than the piezoelectric type can be utilized. The transmitter 50 and the receiver 58 are spaced apart a known and fixed reference distance "D R ". The electrodes 62 and 64 are coupled to the input of the amplifier 66, whose output is coupled to the input of the detector 68. The output of the detector 68 is coupled to the pulse former 70 which generates trigger pulses. The trigger pulses are applied to the pulse generator 72 which controls the modulator 74 to pass bursts from the continuous wave oscillator 76 to the transmitter 50. The trigger pulses from the pulse former 70 are also applied to the counter 78. Preferably, all of the transducers 16, 18, 50 and 58 have the same resonant frequency. Therefore, the oscillators 42 and 76 both operate at that frequency and the pulse generators 40 and 72 provide equal width output pulses. In usage, the measuring unit 10 and the reference unit 12 are in close proximity so that the sound velocity in both of the units is the same. Although the repetition rates of the pulses in the measuring unit 10 and the reference unit 12 are each temperature and humidity dependent, it can be shown that the distance D to be measured is related to the reference distance D R as follows: i D=D R (1/t R )/(1/t) where t R is the propagation time over the distance D R in the reference unit 12. This relationship is independent of both temperature and humidity. Thus, the outputs of the counters 46 and 78 are provided as inputs to the microprocessor 90 in the utilization means 14. The microprocessor 90 is appropriately programmed to provide an output which is proportional to the ratio of the outputs of the counters 46 and 78, which in turn are proportional to the repetition rates of the respective trigger pulse trains of the measuring unit 10 and the reference unit 12. As described, this ratio is independent of temperature and humidity and, since the reference distance D R is known, provides an accurate representation of the distance D. The utilization means 14 further includes a display 92 which is coupled to and controlled by the microprocessor 90 so that an operator can readily determine the distance D. Experiments have shown that when the distance between the transmitting and receiving transducers is too small, reflections of the acoustic wave at the transducer surfaces has a not insignificant effect which degrades the measurement accuracy. Accordingly, it is preferred that each transducer pair be separated by at least a certain minimum distance, preferably about four inches. Accordingly, there has been disclosed improved apparatus for the measurement of distance utilizing ultrasonic waves. While an illustrative embodiment of the present invention has been disclosed herein, it is understood that various modifications and adaptations to the disclosed embodiment will be apparent to those of ordinary skill in the art and it is intended that this invention be limited only by the scope of the appended claims. 译文 超声波测距仪 文件类型和数目:美国专利5442592 摘要:提出了一种超声波测距仪来抵消的影响温度和湿度的变化,包括测量单元和参考资料。在每一个单位,重复的一系列脉冲的产生,每有一个重复率,直接关系到各自之间的距离,发射机和接收机。脉冲提供给各自的主机,和比例的反产出是利用确定的距离被衡量的。 出版日期: 1995年8月15日 主审查员:罗保.伊恩j. 一、背景发明 本发明涉及到仪器的测量距离,更特别是,这种仪器传送超声波两点之间。 精密机床必须校准。在过去,这已经完成利用机械设备,如卡钳,微米等。不过,使用这种装置并不容易本身自动化技术。据了解,该两点之间距离才能确定通过测量传播时间的浪潮往返那些两点。这样一个类型的波是一种超声波,或声,海浪。当超声波旅行两点之间,距离两个点之间可以衡量乘以过境的时间波由波速,在中期分开两点。因此,这是一个对象本发明提供仪器利用超声波准确测量两点之间距离。 当中等两个点之间的间距是被衡量的是空气,声速是取决于温度和空气相对湿度。因此,它是进一步对象的,现在的发明,提供仪器的类型所描述的是独立于温度和湿度的变化。 二、综述发明 前述的和额外的对象是达到了根据这些原则的这项发明提供距离测量仪器,其中包括一个参考的单位和测量单位。参考和测量单位是相同的,每个包括一电发射机和接收机一电。间隔发射器和接收器的参考股是一个固定的参考距离,而间距之间的发射机和接收机的测量单位是距离来衡量。在每一个单位,发射机和接收机是再加上由一个反馈环路导致发射机产生的声脉冲是由接收机和转换成一个电脉冲这是然后反馈到发射机,使重复一系列脉冲的结果。重复率脉冲是成反比关系之间的距离发射器和接收器。在每一个单位,脉冲提供一个反。由于参考的距离是众所周知,比例反产出是利用,以确定所期望的距离来衡量。由于这两方面都是相同的影响,温度和湿度的变化,采取的比例罪状,由此产生的测量变得麻木等变化。 三、简要说明图纸 前述将更加明显后,读下列的说明,在与该绘图并在其中单一数字schematically描绘仪器兴建根据这些原则的这项发明。 四、详细说明 谈到现在的绘图,有结果表明,测量单位和10个参考单位12个,均加上一个利用的手段14 。测量单位包括1 10电发射机16日和1电接收机18 。变送器16包括压电材料20夹心阶层之间的对电极的22日和24日。同样,接收机18个,包括压电材料26夹心阶层之间的对电极的28日和30日。作为众所周知,采用电场整个电极22日和24日,强调的是,诱导,在压电材料20 。如果该字段各有不同,如所申请的一个电脉冲,声波是32所产生的。为进一步众所周知,当声波影响到接收器18 ,这诱导应力,在压电材料26 ,导致一种电信号,以产生全国电极28日和30日。虽然压电传感器已说明,其他电声装置,可利用,例如,静电,驻极体或电磁类型。 如表所示,电极28日和30日的接收18岁以下的耦合的投入一34放大器,其输出耦合输入一个探测器36 。探测器36是安排提供一个信号,脉冲前38时,输出放大器34已经超过预定的水平。脉冲前38 ,然后产生一个触发脉冲,这是提供给脉冲发生器40 。在为了提高灵敏度,该系统,传感器16和18岁以下的共振兴奋。有相应的提供了一个连续波振荡器42提供了一个连续振荡信号在一个固定的频率,最好是共振频率的传感器16和18 。这个振荡信号是提供给调制器44 。要有效地激发发射机16 ,可取的做法是提供几个周期的共振频率信号,而不是一个单脉冲或单周期。因此,脉冲发生器40是安排,在回应的应用存在的一个触发脉冲,提供一个控制脉冲调制器44有一个时间的平等的时间,时间预定人数的周期振荡信号从振荡器42 。这个控制脉冲调制器的原因, 44个通过了“水管爆裂”的周期,以激发发射机16 。 当电力是适用于所描述的电路,有足够的噪音在输入到放大器34 ,其输出触发脉冲发生器40至造成了一片叫好声,振荡周期,以提供整个电极22日和24日的发射器16 。变送器16因此产生声波32条,其中影响到接收器18 。接收器18 ,然后产生一个电脉冲,这是适用于输入放大器的34 ,这再次触发原因的脉冲发生器40 。这个周期重演,使重复一系列的触发脉冲结果的输出脉冲前38 。这脉冲列车是应用到46个柜位,以及向脉冲发生器40 。 变送器16日和接收18岁以下的间隔,除了由距离的“ D ” ,它是理想的衡量。传播时间的“ T ”为一声波32往来变送器16日和接收18所给予的: = D的吨/视频s 凡v s是声速在空气中之间的发射机16日和接收18 。柜台46措施重复率触发脉冲,这是平等的1 /汤匙因此,重复率是平等的一至中五的S /四该声速空气中是一个功能的温度和湿度的空气,内容如下: # # # # equ1其中T是温度, P是局部的压力,水汽, H是该气压, γ瓦特和γ一顷的比例不断的压力,具体的热不断货量具体的热水汽和干燥的空气,分别。因此,虽然重复率触发脉冲测量非常准确地反46 ,声速的影响,温度和湿度,使测量的距离d无法确定准确。 根据这些原则的这项发明,参考单位提供的是12 。参考单位12是相同的建设为测量单位的10个,因此,包括一电发射机50个,其中包括压电材料52夹心之间的一对电极的54和56 ,和一电接收机58 ,其中包括压电材料60夹心阶层之间的一对电极60,61,62和64 。再次,传感器以外的其他类型压电可以利用。变送器50和接收五十八顷间隔,除了已知的和固定的参考距离“博士” 。电极60,61,62和64耦合到输入的放大器66 ,其输出是耦合的投入探测器68 。输出探测器68是耦合的脉搏,前70产生触发脉冲。触发脉冲应用到脉冲发生器的72个控制调制器74通过扫射从连续波振荡器76至变送器50 。触发脉冲从脉冲前70也适用于反78 。 最好是,所有的传感器16 , 18 , 50和58具有相同的共振频率。因此,振荡器42和76都在运作,频率和脉冲发电机40和第72条提供平等的输出脉冲宽度。 在用法上,测量装置10和参考资料股一十二顷在接近,使该声速在这两个单位是相同的。虽然留级率的脉冲在测量单位, 10和参考资料股十二顷每个温度和湿度的依赖性,能证明的距离D来衡量。 其中T R是传播时间超过距离博士在参考股12 。这种关系是独立于双方的温度和湿度。 因此,产出的柜台46和78所提供的投入微处理器的90个利用的手段14 。微处理器90是适当的程序提供了一个输出是成正比的比例,产出的柜台46和78 ,这反过来又是成正比的重复率分别触发脉冲列车的测量单位, 10和参考资料股12 。作为描述,这个比例是独立的温度和湿度,由于参考的距离,博士,是众所周知的,提供了一个准确的代表性距离四,利用手段, 14日还包括一个显示92这是耦合和控制的微处理器,使90一个经营者可以随时确定的距离四 实验表明,当之间的距离发射和接收传感器是太小了,思考的声波在传感器的表面有一个不小的作用,降低了测量精度。因此,最好是每换一双分开,至少由某一个最小距离,最好是约四英寸。 因此,已披露的改善仪器的测量距离,利用超声波。而一个说明性的体现,本发明已披露者外,据了解,各种修改和适应所披露的体现,将是显而易见的那些普通的技巧与艺术,这是打算把这个发明只限于由范围所附的索赔。

超声波论文的英文参考文献

目 录摘 要 IABSTRACT(英文摘要) II目 录 IV第一章引 言 课题的提出 超声波测距发展概况 本课题研究内容及科学意义 3第二章超声波测距技术综述 超声及超声传感器简介 超声概述 超声传感器结构 超声传感器的主要参数及选择 超声测距原理与方法 测量盲区的影响 本章小结 13第三章硬件系统设计 方案论证 凌阳61板简介 功能区分与工作原理 系统各模块工作原理 超声波测距模组简介 超声波谐振频率发生电路、调理电路 超声波回波接受处理电路 超声波模组电源设置 LED键盘模组简介 硬件系统设计说明 系统设计 硬件原理图 系统连接 本章小结 26第四章软件系统设计 主程序设计 超声波测距程序设计 本章小结 31第五章试验结果与改进 系统调试 试验结果分析 试验结果 误差分析 系统改进方法 本章小结 38结论 39参考文献 41致谢 44附录一 45附录二 46

Introduction vibrations of frequencies greater than the upper limit of the audible range for humans—that is, greater than about 20 kilohertz. The term sonic is applied to ultrasound waves of very high amplitudes. Hypersound, sometimes called praetersound or microsound, is sound waves of frequencies greater than 1013 hertz. At such high frequencies it is very difficult for a sound wave to propagate efficiently; indeed, above a frequency of about × 1013 hertz, it is impossible for longitudinal waves to propagate at all, even in a liquid or a solid, because the molecules of the material in which the waves are traveling cannot pass the vibration along rapidly enough. TableMany animals have the ability to hear sounds in the human ultrasonic frequency range. Some ranges of hearing for mammals and insects are compared with those of humans in the Table. A presumed sensitivity of roaches and rodents to frequencies in the 40 kilohertz region has led to the manufacture of “pest controllers” that emit loud sounds in that frequency range to drive the pests away, but they do not appear to work as advertised. Transducers An ultrasonic transducer is a device used to convert some other type of energy into an ultrasonic vibration. There are several basic types, classified by the energy source and by the medium into which the waves are being generated. Mechanical devices include gas-driven, or pneumatic, transducers such as whistles as well as liquid-driven transducers such as hydrodynamic oscillators and vibrating blades. These devices, limited to low ultrasonic frequencies, have a number of industrial applications, including drying, ultrasonic cleaning, and injection of fuel oil into burners. Electromechanical transducers are far more versatile and include piezoelectric and magnetostrictive devices. A magnetostrictive transducer makes use of a type of magnetic material in which an applied oscillating magnetic field squeezes the atoms of the material together, creating a periodic change in the length of the material and thus producing a high-frequency mechanical vibration. Magnetostrictive transducers are used primarily in the lower frequency ranges and are common in ultrasonic cleaners and ultrasonic machining applications. By far the most popular and versatile type of ultrasonic transducer is the piezoelectric crystal, which converts an oscillating electric field applied to the crystal into a mechanical vibration. Piezoelectric crystals include quartz, Rochelle salt, and certain types of ceramic. Piezoelectric transducers are readily employed over the entire frequency range and at all output levels. Particular shapes can be chosen for particular applications. For example, a disc shape provides a plane ultrasonic wave, while curving the radiating surface in a slightly concave or bowl shape creates an ultrasonic wave that will focus at a specific point. Piezoelectric and magnetostrictive transducers also are employed as ultrasonic receivers, picking up an ultrasonic vibration and converting it into an electrical oscillation. Applications in research One of the important areas of scientific study in which ultrasonics has had an enormous impact is cavitation. When water is boiled, bubbles form at the bottom of the container, rise in the water, and then collapse, leading to the sound of the boiling water. The boiling process and the resulting sounds have intrigued people since they were first observed, and they were the object of considerable research and calculation by the British physicists Osborne Reynolds and Lord Rayleigh, who applied the term cavitation to the process of formation of bubbles. Because an ultrasonic wave can be used carefully to control cavitation, ultrasound has been a useful tool in the investigation of the process. The study of cavitation has also provided important information on intermolecular forces. Research is being carried out on aspects of the cavitation process and its applications. A contemporary subject of research involves emission of light as the cavity produced by a high-intensity ultrasonic wave collapses. This effect, called sonoluminescence, is believed to create instantaneous temperatures hotter than the surface of the Sun. The speed of propagation of an ultrasonic wave is strongly dependent on the viscosity of the medium. This property can be a useful tool in investigating the viscosity of materials. Because the various parts of a living cell are distinguished by differing viscosities, acoustical microscopy can make use of this property of cells to “see” into living cells, as will be discussed below in Medical applications. Ranging and navigating Sonar (sound navigation and ranging) has extensive marine applications. By sending out pulses of sound or ultrasound and measuring the time required for the pulses to reflect off a distant object and return to the source, the location of that object can be ascertained and its motion tracked. This technique is used extensively to locate and track submarines at sea and to locate explosive mines below the surface of the water. Two boats at known locations can also use triangulation to locate and track a third boat or submarine. The distance over which these techniques can be used is limited by temperature gradients in the water, which bend the beam away from the surface and create shadow regions. One of the advantages of ultrasonic waves over sound waves in underwater applications is that, because of their higher frequencies (or shorter wavelengths), the former will travel greater distances with less diffraction. Ranging has also been used to map the bottom of the ocean, providing depth charts that are commonly used in navigation, particularly near coasts and in shallow waterways. Even small boats are now equipped with sonic ranging devices that determine and display the depth of the water so that the navigator can keep the boat from beaching on submerged sandbars or other shallow points. Modern fishing boats use ultrasonic ranging devices to locate schools of fish, substantially increasing their efficiency. Even in the absence of visible light, bats can guide their flight and even locate flying insects (which they consume in flight) through the use of sonic ranging. Ultrasonic echolocation has also been used in traffic control applications and in counting and sorting items on an assembly line. Ultrasonic ranging provides the basis of the eye and vision systems for robots, and it has a number of important medical applications (see below). The Doppler effect If an ultrasonic wave is reflected off a moving obstacle, the frequency of the resulting wave will be changed, or Doppler-shifted. More specifically, if the obstacle is moving toward the source, the frequency of the reflected wave will be increased; and if the obstacle is moving away from the source, the frequency of the reflected wave will be decreased. The amount of the frequency shift can be used to determine the velocity of the moving obstacle. Just as the Doppler shift for radar, an electromagnetic wave, can be used to determine the speed of a moving car, so can the speed of a moving submarine be determined by the Doppler shift of a sonar beam. An important industrial application is the ultrasonic flow meter, in which reflecting ultrasound off a flowing liquid leads to a Doppler shift that is calibrated to provide the flow rate of the liquid. This technique also has been applied to blood flow in arteries. Many burglar alarms, both for home use and for use in commercial buildings, employ the ultrasonic Doppler shift principle. Such alarms cannot be used where pets or moving curtains might activate them. Materials testing Nondestructive testing involves the use of ultrasonic echolocation to gather information on the integrity of mechanical structures. Since changes in the material present an impedance mismatch from which an ultrasonic wave is reflected, ultrasonic testing can be used to identify faults, holes, cracks, or corrosion in materials, to inspect welds, to determine the quality of poured concrete, and to monitor metal fatigue. Owing to the mechanism by which sound waves propagate in metals, ultrasound can be used to probe more deeply than any other form of radiation. Ultrasonic procedures are used to perform in-service inspection of structures in nuclear reactors. Structural flaws in materials can also be studied by subjecting the materials to stress and looking for acoustic emissions as the materials are stressed. Acoustic emission, the general name for this type of nondestructive study, has developed as a distinct field of acoustics. High-intensity applications High-intensity ultrasound has achieved a variety of important applications. Perhaps the most ubiquitous is ultrasonic cleaning, in which ultrasonic vibrations are set up in small liquid tanks in which objects are placed for cleaning. Cavitation of the liquid by the ultrasound, as well as the vibration, create turbulence in the liquid and result in the cleaning action. Ultrasonic cleaning is very popular for jewelry and has also been used with such items as dentures, surgical instruments, and small machinery. Degreasing is often enhanced by ultrasonic cleaning. Large-scale ultrasonic cleaners have also been developed for use in assembly lines. Ultrasonic machining employs the high-intensity vibrations of a transducer to move a machine tool. If necessary, a slurry containing carborundum grit may be used; diamond tools can also be used. A variation of this technique is ultrasonic drilling, which makes use of pneumatic vibrations at ultrasonic frequencies in place of the standard rotary drill bit. Holes of virtually any shape can be drilled in hard or brittle materials such as glass, germanium, or ceramic. Ultrasonic soldering has become important, especially for soldering unusual or difficult materials and for very clean applications. The ultrasonic vibrations perform the function of cleaning the surface, even removing the oxide layer on aluminum so that the material can be soldered. Because the surfaces can be made extremely clean and free from the normal thin oxide layer, soldering flux becomes unnecessary. Chemical and electrical uses The chemical effects of ultrasound arise from an electrical discharge that accompanies the cavitation process. This forms a basis for ultrasound's acting as a catalyst in certain chemical reactions, including oxidation, reduction, hydrolysis, polymerization and depolymerization, and molecular rearrangement. With ultrasound, some chemical processes can be carried out more rapidly, at lower temperatures, or more efficiently. The ultrasonic delay line is a thin layer of piezoelectric material used to produce a short, precise delay in an electrical signal. The electrical signal creates a mechanical vibration in the piezoelectric crystal that passes through the crystal and is converted back to an electrical signal. A very precise time delay can be achieved by constructing a crystal with the proper thickness. These devices are employed in fast electronic timing circuits. Medical applications Although ultrasound competes with other forms of medical imaging, such as X-ray techniques and magnetic resonance imaging, it has certain desirable features—for example, Doppler motion study—that the other techniques cannot provide. In addition, among the various modern techniques for the imaging of internal organs, ultrasonic devices are by far the least expensive. Ultrasound is also used for treating joint pains and for treating certain types of tumours for which it is desirable to produce localized heating. A very effective use of ultrasound deriving from its nature as a mechanical vibration is the elimination of kidney and bladder stones. Diagnosis Much medical diagnostic imaging is carried out with X rays. Because of the high photon energies of the X ray, this type of radiation is highly ionizing—that is, X rays are readily capable of destroying molecular bonds in the body tissue through which they pass. This destruction can lead to changes in the function of the tissue involved or, in extreme cases, its annihilation. One of the important advantages of ultrasound is that it is a mechanical vibration and is therefore a nonionizing form of energy. Thus, it is usable in many sensitive circumstances where X rays might be damaging. Also, the resolution of X rays is limited owing to their great penetrating ability and the slight differences between soft tissues. Ultrasound, on the other hand, gives good contrast between various types of soft tissue. Ultrasonic scanning in medical diagnosis uses the same principle as sonar. Pulses of high-frequency ultrasound, generally above one megahertz, are created by a piezoelectric transducer and directed into the body. As the ultrasound traverses various internal organs, it encounters changes in acoustic impedance, which cause reflections. The amount and time delay of the various reflections can be analyzed to obtain information regarding the internal organs. In the B-scan mode, a linear array of transducers is used to scan a plane in the body, and the resultant data is displayed on a television screen as a two-dimensional plot. The A-scan technique uses a single transducer to scan along a line in the body, and the echoes are plotted as a function of time. This technique is used for measuring the distances or sizes of internal organs. The M-scan mode is used to record the motion of internal organs, as in the study of heart dysfunction. Greater resolution is obtained in ultrasonic imaging by using higher frequencies—., shorter wavelengths. A limitation of this property of waves is that higher frequencies tend to be much more strongly absorbed. Because it is nonionizing, ultrasound has become one of the staples of obstetric diagnosis. During the process of drawing amniotic fluid in testing for birth defects, ultrasonic imaging is used to guide the needle and thus avoid damage to the fetus or surrounding tissue. Ultrasonic imaging of the fetus can be used to determine the date of conception, to identify multiple births, and to diagnose abnormalities in the development of the fetus. Ultrasonic Doppler techniques have become very important in diagnosing problems in blood flow. In one technique, a three-megahertz ultrasonic beam is reflected off typical oncoming arterial blood with a Doppler shift of a few kilohertz—a frequency difference that can be heard directly by a physician. Using this technique, it is possible to monitor the heartbeat of a fetus long before a stethoscope can pick up the sound. Arterial diseases such as arteriosclerosis can also be diagnosed, and the healing of arteries can be monitored following surgery. A combination of B-scan imaging and Doppler imaging, known as duplex scanning, can identify arteries and immediately measure their blood flow; this has been extensively used to diagnose heart valve defects. Using ultrasound with frequencies up to 2,000 megahertz, which has a wavelength of micrometre in soft tissues (as compared with a wavelength of about micrometre for light), ultrasonic microscopes have been developed that rival light microscopes in their resolution. The distinct advantage of ultrasonic microscopes lies in their ability to distinguish various parts of a cell by their viscosity. Also, because they require no artificial contrast mediums, which kill the cells, acoustic microscopy can study actual living cells. Therapy and surgery Because ultrasound is a mechanical vibration and can be well focused at high frequencies, it can be used to create internal heating of localized tissue without harmful effects on nearby tissue. This technique can be employed to relieve pains in joints, particularly in the back and shoulder. Also, research is now being carried out in the treatment of certain types of cancer by local heating, since focusing intense ultrasonic waves can heat the area of a tumour while not significantly affecting surrounding tissue. Trackless surgery—that is, surgery that does not require an incision or track from the skin to the affected area—has been developed for several conditions. Focused ultrasound has been used for the treatment of Parkinson's disease by creating brain lesions in areas that are inaccessible to traditional surgery. A common application of this technique is the destruction of kidney stones with shock waves formed by bursts of focused ultrasound. In some cases, a device called an ultrasonic lithotripter focuses the ultrasound with the help of X-ray guidance, but a more common technique for destruction of kidney stones, known as endoscopic ultrasonic disintegration, uses a small metal rod inserted through the skin to deliver ultrasound in the 22- to 30-kilohertz frequency region. Infrasonics The term infrasonics refers to waves of a frequency below the range of human hearing—., below about 20 hertz. Such waves occur in nature in earthquakes, waterfalls, ocean waves, volcanoes, and a variety of atmospheric phenomena such as wind, thunder, and weather patterns. Calculating the motion of these waves and predicting the weather using these calculations, among other information, is one of the great challenges for modern high-speed computers. TableAircraft, automobiles, or other rapidly moving objects, as well as air handlers and blowers in buildings, also produce substantial amounts of infrasonic radiation. Studies have shown that many people experience adverse reactions to large intensities of infrasonic frequencies, developing headaches, nausea, blurred vision, and dizziness. On the other hand, a number of animals are sensitive to infrasonic frequencies, as indicated in the Table. It is believed by many zoologists that this sensitivity in animals such as elephants may be helpful in providing them with early warning of earthquakes and weather disturbances. It has been suggested that the sensitivity of birds to infrasound aids their navigation and even affects their migration. One of the most important examples of infrasonic waves in nature is in earthquakes. Three principal types of earthquake wave exist: the S-wave, a transverse body wave; the P-wave, a longitudinal body wave; and the L-wave, which propagates along the boundary of stratified mediums. L-waves, which are of great importance in earthquake engineering, propagate in a similar way to water waves, at low velocities that are dependent on frequency. S-waves are transverse body waves and thus can only be propagated within solid bodies such as rocks. P-waves are longitudinal waves similar to sound waves; they propagate at the speed of sound and have large ranges. When P-waves propagating from the epicentre of an earthquake reach the surface of the Earth, they are converted into L-waves, which may then damage surface structures. The great range of P-waves makes them useful in identifying earthquakes from observation points a great distance from the epicentre. In many cases, the most severe shock from an earthquake is preceded by smaller shocks, which provide advance warning of the greater shock to come. Underground nuclear explosions also produce P-waves, allowing them to be monitored from any point in the world if they are of sufficient intensity. The reflection of man-made seismic shocks has helped to identify possible locations of oil and natural-gas sources. Distinctive rock formations in which these minerals are likely to be found can be identified by sonic ranging, primarily at infrasonic frequencies.

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

超声波加工技术论文参考文献

超声波应用范围很广。但目前较成熟的有:1:超声波水下测距军民用技术都很成熟。、2:超声波探伤,目前工程应用广泛,金属结构、钢结构与混凝土领域等。3:超声波清洗,除垢,粉碎(医疗体外碎石等),雾化等。

摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 [关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。 2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。 4.超声波传感器在测距系统中的应用 超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。 三、小结 文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。 参考文献: [1]单片机原理及其接口技术.清华大学出版社. [2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04). [3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社. [4]王松,郑正奇,邹晨祎.超声定位车辆路径监测系统的设计.2006,(10). [5]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社. 转贴于 中国论文下载中心

毕业设计超声波的期刊参考文献

目 录摘 要 IABSTRACT(英文摘要) II目 录 IV第一章引 言 课题的提出 超声波测距发展概况 本课题研究内容及科学意义 3第二章超声波测距技术综述 超声及超声传感器简介 超声概述 超声传感器结构 超声传感器的主要参数及选择 超声测距原理与方法 测量盲区的影响 本章小结 13第三章硬件系统设计 方案论证 凌阳61板简介 功能区分与工作原理 系统各模块工作原理 超声波测距模组简介 超声波谐振频率发生电路、调理电路 超声波回波接受处理电路 超声波模组电源设置 LED键盘模组简介 硬件系统设计说明 系统设计 硬件原理图 系统连接 本章小结 26第四章软件系统设计 主程序设计 超声波测距程序设计 本章小结 31第五章试验结果与改进 系统调试 试验结果分析 试验结果 误差分析 系统改进方法 本章小结 38结论 39参考文献 41致谢 44附录一 45附录二 46

2008-09-26 09:22

参考文献2008-09-26 09:22 翻译与原文2008-09-26 09:23 96,768 开题报告.doc2008-09-26 09:23 24,064 实习报告.doc2008-09-26 09:23 91,136 实习日记.doc2008-09-26 09:23 136,192 文献综述.doc2008-09-26 09:23 523,776 毕业论文.doc【摘要】超声波测距技术在当今社会生活中已有很广泛的应用,本论文在了解超声波测距原理的基础上,完成了基于时差测距原理的一种超声波测距系统的软硬件设计,其中的控制芯片是采用凌阳公司开发的SPCE061A系列单片机。论文着重介绍了SPCE061A与超声波测距模块组成的超声波测距系统的组成原理以及应用,另外也介绍了LED显示等模组的应用。该系统可广泛应用于小距离测距、机器人检测、车辆倒车雷达以及家居安防系统等应用方案。最后实际使用表明能实现基本测量。【关键词】SPCE061A 超声波 距离测量目 录一、 引言 4二、 凌阳SPCE061A简介 总述 性能 结构概览 61板卡说明 7三、 系统分析与设计 超声波测距基本原理 系统总体方案介绍 10四、 硬件电路设计 超声波发射模块 超声波接受模块 键盘模块 LED显示模块 超声波测距系统工作过程 14五、 以SPCE061A为核心的软件设计 总体设计 测距算法 系统调试 18六、 系统的测试与结果分析 系统误差分析 系统测试 21七、 结束语 22八、 参考文献 23九、 致谢 24十、附录(源程序)25

摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 [关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。 2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。 4.超声波传感器在测距系统中的应用 超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。 三、小结 文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。 参考文献: [1]单片机原理及其接口技术.清华大学出版社. [2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04). [3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社. [4]王松,郑正奇,邹晨祎.超声定位车辆路径监测系统的设计.2006,(10). [5]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社. 转贴于 中国论文下载中心

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

  • 索引序列
  • 超声波导盲杖论文参考文献
  • 超声波电机论文参考文献
  • 超声波论文的英文参考文献
  • 超声波加工技术论文参考文献
  • 毕业设计超声波的期刊参考文献
  • 返回顶部