首页 > 学术期刊知识库 > 热固性树脂期刊

热固性树脂期刊

发布时间:

热固性树脂期刊

《农化新世纪》 《明胶科学与技术》 《氯碱工业》 《山东陶瓷》 《上海化工》 《染料与染色》 《山东农药信息》 《全面腐蚀控制》 《燃料与化工》 《生物质化学工程》 《热固性树脂》 《青岛科技大学学报(自然科学版)》 《上海塑料》 《沈阳化工学院学报》 《上海涂料》 《日用化学品科学》 《山东化工》 《山西化工》 《世界橡胶工业》 《四川理工学院学报(自然科学版)》 《塑料助剂》 《塑料制造》

基本无机化学工业/硅酸盐工业类1 硅酸盐通报 中国硅酸盐学会;中材人工晶体研究院 191032 硅酸盐学报优先出版 中国硅酸盐学会 444773 电镀与涂饰 广州市二轻工业科学技术研究所 99744 中国陶瓷 中国轻工业陶瓷研究所 97055 水泥 建筑工业技术情报研究所 79766 无机盐工业 中海油天津化工研究设计院 148587 电镀与精饰 天津市电镀工程学会 85768 电镀与环保 上海市轻工业科技情报研究所 94629 陶瓷学报 景德镇陶瓷学院 465210 耐火材料 洛阳耐火材料研究院 7879基本有机化学工业/纤维素质的化学加工工业类1 热固性树脂优先出版 独家授权 天津市合成材料工业研究所 79802 塑料 独家授权 北京市塑料研究所 111293 塑料科技 独家授权 大连塑料研究所有限公司;深圳市塑胶行业协会 104084 中国塑料 独家授权 中国塑料加工工业协会;北京工商大学;轻工业塑料加工应用研究所 238035 林产化学与工业 中国林学会林产化学化工学会;中国林业科学研究院林产化学工业研究所 167416 工程塑料应用 中国兵器工业集团第五三研究所;中国工程塑料工业协会;中国兵工学会非金属专业委员会;兵器工业非金属材料专业情报网 170387 塑料工业 中蓝晨光化工研究院 185848 聚氨酯工业 中国聚氨酯工业协会;江苏省化工研究所有限公司 60889 现代塑料加工应用 中国石化集团扬子石油化工有限责任公司;中国石化集团资产经营管理有限公司扬子石化分公司 843310 弹性体 中国石油天然气股份有限公司吉林石化分公司;全国合成橡胶信息总站 589811 合成纤维工业 合成纤维工业中国石化集团资产经营管理有限公司巴陵石化分公司 772912 合成树脂及塑料 中国石化集团资产经营管理有限公司北京燕山石化分公司;橡塑新型材料合成国家工程研究中心 720013 橡胶工业 北京橡胶工业研究设计院 10882其他化学工业类1 日用化学工业中国日用化学工业研究院 169702 新型炭材料 中国科学院山西煤炭化学研究所 114393 燃料化学学报 中国化学会;中国科学院山西煤炭化学研究所 225334 涂料工业 中海油常州涂料化工研究院;中国化工学会涂料涂装专业委员会 178685 中国胶粘剂 上海市合成树脂研究所 121296 煤炭转化 太原理工大学;中科院煤转化国家重点实验室 11800

合成树脂及塑料期刊怎么样

《合成树脂及塑料》北大中文核心,这个还可以的,14年的核心,发论文,找九品论文网。

1 塑料为合成的高分子化合物{聚合物(polymer)},又可称为高分子或巨分子(macromolecules),也是一般所俗称的塑料(plastics)或树脂(resin),可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。 2 塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。加工方法(通常称为塑料的一次加工)包括压塑(模压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。 具体的请看下面的地址.

您好!PAA是合成树脂。PAA是聚丙烯酸,是一种无毒,易溶与水的阻垢缓蚀剂。除用于循环冷却水系统作用阻垢分散剂使用。丙烯酸改性树脂别称丙烯酸树脂乳液

酚醛树脂成品为浅黄色的透明物,不溶于水,但溶于乙醇和丙酮等有机溶剂。酚醛树脂是以酚类化合物与醛类化合物缩聚而成的。其中,以苯酚和甲醛缩聚制得的酚醛树脂最为重要,应用最广。

以合成树脂为主要成膜物质的涂料叫做合成和树脂涂料,合成树脂涂料的装饰性跟机械性都优于油基性涂料

合成树脂是由人工合成的一类高分子聚合物。在外力作用下可呈塑性流动状态,某些性质与天然树脂相似。 由人工合成的一类高分子聚合物。为粘稠液体或加热可软化的固体,受热时通常有熔融或软化的温度范围,在外力作用下可呈塑性流动状态,某些性质与天然树脂相似。合成树脂最重要的应用是制造塑料。为便于加工和改善性能,常添加助剂,有时也直接用于加工成形,故常是塑料的同义语。合成树脂还是制造合成纤维、涂料、胶粘剂、绝缘材料等的基础原料。合成树脂种类繁多。按主链结构有碳链、杂链和非碳链合成树脂;按合成反应特征有加聚型和缩聚型合成树脂。实际应用中,常按其热行为分为热塑性树脂和热固性树脂。生产合成树脂的原料来源丰富,早期以煤焦油产品和电石碳化钙为主,现多以石油和天然气的产品为主,如乙烯、丙烯、苯、甲醛及尿素等。合成树脂的生产方法采用本体聚合、悬浮聚合、乳液聚合、溶液聚合、熔融聚合和界面缩聚等。 合成树脂最重要的应用是制造塑料。为便于加工和改善性能,常添加助剂,有时也直接用于加工成形,故常是塑料的同义语。合成树脂还是制造合成纤维、涂料、胶粘剂、绝缘材料等的基础原料。 合成树脂种类繁多。按主链结构有碳链、杂链和非碳链合成树脂;按合成反应特征有加聚型和缩聚型合成树脂。实际应用中,常按其热行为分为热塑性树脂和热固性树脂。其中,热塑性树脂有聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。热固性树脂有酚醛树脂和脲醛树脂,环氧树脂,氟树脂,不饱和聚酯和聚氨酯等。 塑料为合成的高分子化合物{聚合物(polymer)},又可称为高分子或巨分(macromolecules),也是一般所俗称的塑料(plastics)或树脂(resin),可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的。 塑料的主要成分是合成树脂。树脂这一名词最初是由动植物分泌出的脂质而得名,如松香、虫胶等,目前树脂是指尚未和各种添加剂混合的高聚物。树脂约占塑料总重量的40%~100%。塑料的基本性能主要决定于树脂的本性,但添加剂也起着重要作用。有些塑料基本上是由合成树脂所组成,不含或少含添加剂,如有机玻璃、聚苯乙烯等。所谓塑料,其实它是合成树脂中的一种,形状跟天然树脂中的松树脂相似,但因经过化学手段进行人工合成,而被称之为塑料。 根据美国材料试验协会所下的定义,塑料乃是一种以高分子量有机物质为主要成分的材料,它在加工完成时呈现固态形状,在制造以及加工过程中,可以借流动(flow)来造型。 因此,经由此说明我们可以得到以下几项了解: ●它是高分子有机化合物 ●它可以多种型态存在例如液体固体胶体溶液等 ●它可以成形(moldable) ●种类繁多,因为不同的单体及其组成可以合成不同的塑料 ●用途广泛产品呈现多样化 ●具有不同的性质 ●可以用不同的加工方法(processing method ) 塑料和树脂这两个名词也常混用。

合成树脂是一种化工材料,是液体状的, 塑料是一种我们非常常见的成品,他的主要原材料就是聚氨酸酯或聚碳酸酯。 这个我不是很专业,你可以咨询一下科宝化工公司,百度搜索即可

合成树脂瓦,是运用高新化学化工技术研制而成的新型建筑材料,具有重量轻、强度大、防水防潮、防腐阻燃、隔音隔热等多种优良特性,普遍适用于开发区平改坡、农贸市场、商场、住宅小区、新农村建设居民高档别墅、雨篷、遮阳篷、仿古建筑等。 合成树脂瓦是大力倡导国家与推广的新一代轻型环保建筑材料,产品环保、节能并可再生利用,其独特的性能优势赢得了建筑界人士的普遍关注与认可,产品市场甚为广阔。其运用高新化学化工技术研制而成的新型建筑材料,具有重量轻、强度大、防水防潮、防腐阻燃、隔音隔热等多种优良特性,普遍适用于开发区平改坡、农贸市场、商场、住宅小区、新农村建设居民高档别墅、雨篷、遮阳篷、仿古建筑等。

是核心,也在新版核心目录里面。 刊名: 合成树脂及塑料 China Synthetic Resin and Plastics 主办: 中国石化集团资产经营管理有限公司北京燕山石化分公司;橡塑新型材料合成国家工程研究中心 周期: 双月 出版地:北京市 语种: 中文; 开本: 大16开 ISSN: 1002-1396 CN: 11-2769/TQ 邮发代号: 2-923 历史沿革: 现用刊名:合成树脂及塑料 创刊时间:1984 该刊被以下数据库收录: CA 化学文摘(美)(2011) 核心期刊: 中文核心期刊(2008) 中文核心期刊(2004) 采纳哦

要花钱买啊,免费的可能弄不到啊

初级形态塑胶:直接从厂方出来的塑料,如乙烯聚合物、丙烯,相关烯烃聚合物、苯乙烯聚合物等等。 合成树脂制造:由人工合成的一类高分子聚合物。在外力作用下可呈塑性流动状态,某些性质与天然树脂相似。 以上由环球塑化提供回答。

是核心,也在新版核心目录里面。 刊名: 合成树脂及塑料 China Synthetic Resin and Plastics 主办: 中国石化集团资产经营管理有限公司北京燕山石化分公司;橡塑新型材料合成国家工程研究中心 周期: 双月 出版地:北京市 语种: 中文; 开本: 大16开 ISSN: 1002-1396 CN: 11-2769/TQ 邮发代号: 2-923 历史沿革: 现用刊名:合成树脂及塑料 创刊时间:1984 该刊被以下数据库收录: CA 化学文摘(美)(2011) 核心期刊: 中文核心期刊(2008) 中文核心期刊(2004)采纳哦

树脂动态力学性能研究论文

1. 玻璃纤维/碳纤维配比对环氧树脂性能有影响。2. 玻璃纤维和碳纤维都是常见的增强材料,它们的性能差异很大。玻璃纤维的强度和刚度相对较低,但价格便宜,耐腐蚀性好;碳纤维则具有高强度、高刚度、低密度等优点,但价格昂贵。因此在制备环氧树脂复合材料时,合理的玻璃纤维/碳纤维配比可以根据需要平衡材料的性能和成本。3. 通过研究不同配比的玻璃纤维/碳纤维增强环氧树脂复合材料的性能,可以更好地探究复合材料的力学性能、热学性能、耐腐蚀性能等方面的规律,为复合材料的应用提供理论基础和实践指导。

纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。在化学工业上的应用编辑环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:(1)各向异性(短切纤维复合材料等显各向同性);(2)不均质(或结构组织质地的不连续性);(3)呈粘弹性行为;(4)纤维(或树脂)体积含量不同,材料的物理性能差异;(5)影响质量因素多,材料性能多呈分散性。树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。树脂基复合材料的力学性能力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。1、树脂基复合材料的刚度树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。2、树脂基复合材料的强度材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。树脂基复合材料的物理性能树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。树脂基复合材料的化学性能大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。树脂基复合材料的工艺特点树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。组合复合效应复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。1、光学性能与力学性能的组合复合纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。2、电性能与力学性能的组合复合玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。3、热性能与力学性能的组合复合①耐热性能树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。②耐烧蚀性能航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。

玻璃纤维/碳纤维配比对环氧树脂性能的影响研究非常重要,因为不同配比比例的玻璃纤维/碳纤维会对环氧树脂性能产生不同的影响,因此,研究不同配比比例玻璃纤维/碳纤维对环氧树脂性能的影响,能够更好的设计出更加符合要求的环氧树脂性能。在实际的应用中,通过研究不同玻璃纤维/碳纤维配比比例,能够更好的提高环氧树脂的性能,以满足不同的应用要求。

粘胶纤维的结晶度降低,但纤维表面更加光滑,含硅官能团含量增加。针对原液着色粘胶纤维颜色较浅的问题,采用低折射率树脂增深整理粘胶纤维,探讨了树脂种类、树脂用量、轧余率、焙烘时间和熔烘温度对纤维颜色明暗度(L值)、断裂强力和断裂伸长率的影响,借助红外光谱仪、X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜等研究了树脂整理后原液着色粘胶纤维的化学结构、表面元素组成及官能团、结晶性能和表面形貌的变化。结果表明:增深剂质量浓度为80 g/L,轧余率为90%,熔烘温度为150 ℃,焙烘时间为180s时,原液着色粘胶纤维的值降低到,断裂强力和断裂伸长率保持率分别为和;粘胶纤维的结晶度降低,但纤维表面更加光滑,含硅官能团含量增加。

木材与树脂论文期刊有哪些杂志

有省级期刊,国家级期刊,核心期刊。省级期刊是由各省、自治区、直辖市的各部门、委办、厅、局、所,省级社会团体和机构以及各高等院校主办,在新闻出版部门有登记备案,国内外公开发行的学术期刊。私:六零16四八26四国家级期刊,即由党中央、国务院及所属各部门,或中国科学院、中国社会科学院、各民主党派和全国性人民团体主办的期刊及国家一级专业学会主办的会刊。

我觉得这里有很多中国期刊全文数据库

三聚氰胺树脂专利文献光盘是计算机专用数据光盘,在Windows操作系统运行环境下,可以直接打开、阅读、打印。本光盘收录了三聚氰胺树脂相关专利和期刊原版文献资料,为您的企业参与市场产品开发提供第一手宝贵资料。 (以下各项资料全部在一张光盘内,价格200元/张,含邮政特快邮资,款到当天办理邮寄) 。汇款购买方式可以点击这里查看收录三聚氰胺树脂相关专利技术27项1、薄型刨花板低压快速贴面用的新改性型三聚氰胺浸渍树脂的制造配方及工艺2、低甲醛具有膨胀性能的三聚氰胺甲醛胶粘剂及其制造方法3、低游离甲醛、三聚氰胺-甲醛减粘剂和使用方法4、防火毯和其它含有蜜胺树脂的组合物和具有防火性质的产品5、改性三聚氰胺高效减水剂6、改性三聚氰胺尿素甲醛共聚树脂的制造和用于生产浸渍纸7、改性三聚氰胺树脂及其制备方法和用途8、高磺化三聚氰胺甲配合树脂的制备方法9、甲醛含量降低的低粘度蜜胺-甲醛树脂微胶囊分散体10、结晶型蜜胺及其在氨基-甲醛树脂中的用途11、具有三聚氰胺-甲醛树脂涂层的片状功能颜料12、聚酰胺树脂溶液为反应介质合成三聚氰胺氰尿酸及其制备方法13、抗微生物蜜胺树脂和由其制备的产品14、蜜胺树脂泡沫体15、三聚氰胺脲醛树脂不脱水胶及其生产方法16、三聚氰胺树脂容器结构17、三聚氰胺树脂一体成型木材板的制法18、三聚氰胺缩合产物制备方法19、水溶性和贮存稳定的可熔型酚醛三聚氰胺树脂20、稳定的三聚氰胺脲甲醛液体树脂21、一种皮革复鞣填充用的改性三聚氰胺树脂的制备方法22、一种三聚氰胺缩合产物和含磷酸的盐23、用三聚氰胺磺酸盐甲醛缩合物对水泥混凝土改性的方法24、用于脲醛和脲-蜜胺-甲醛基胶粘剂的固化剂、包括该固化剂的胶粘剂组合物及其应用25、在层压纸上涂布三聚氰胺树脂的方法26、制备着色三聚氰胺-甲醛缩聚物的方法27、自由流动的三聚氰胺氰脲酸酯附聚物 收录三聚氰胺树脂相关期刊文献131项1、《木材胶粘剂及其树脂检验方法》和《木材工业胶粘剂用脲醛酚醛三聚氰胺甲醛树脂》2、《生产低甲醚化三聚氰胺树脂》3、585_3树脂的研制报告4、E1级三聚氰胺改性脲醛树脂的制备与性能研究5、E_1级三聚氰胺改性脲醛树脂的研制6、HMM树脂的改性研究7、J_3改性尿素-三聚氰胺-甲醛树脂的研制及应用8、L-2改性三聚氰胺甲醛树脂的研制及应用9、MCM_41负载三聚氰胺缩甲醛树脂_钯及其催化性能英文10、MUF共缩聚树脂的制备及其在防潮型刨花板上的应用11、MUF树脂生产环保型刨花板技术12、保护胶体对三聚氰胺甲醛树脂微胶囊成囊性影响的研究英文13、苯酚_三聚氰胺_尿素_甲醛胶粘剂的合成及其应用14、丙烯酰胺改性蜜胺甲醛树脂的絮凝性能研究15、玻璃纤维增强芳烷基酚三聚氰胺甲醛模压塑料的研究16、层压纤维板三聚氰胺甲醛树脂胶纸饰面17、超低醛高稳定性改性三聚氰胺树脂整理剂的研制18、低分子量三聚氰胺-甲醛树脂固定泡桐压缩木回弹的研究19、低摩尔三聚氰胺树脂稳定性的研究20、低压短周期三聚氰胺浸渍纸生产中常见的问题及解决办法21、低压短周期三聚氰胺浸渍纸原材料与浸渍技术22、低压短周期三聚氰胺树脂的反应工艺23、低压短周期饰面用三聚氰胺甲醛树脂的开发24、淀粉基木材胶黏剂研究现状与展望25、改性 M_348 胶在树脂饰面胶合板模板生产中的应用26、改性模压三聚氰胺浸渍树脂的研制与应用27、改性脲醛树脂胶粘剂制备的研究28、改性三聚氰胺29、改性三聚氰胺甲醛树脂的合成及性能研究30、改性三聚氰胺甲醛树脂抗水剂31、改性三聚氰胺甲醛树脂提高纸张湿强度的研究32、改性三聚氰胺甲醛树脂增湿强剂的制备及其分析33、改性三聚氰胺氰尿酸盐阻燃PA6的研究34、改性三聚氰胺树脂的应用35、改性三聚氰胺树脂鞣剂合成36、改性三聚氰胺树脂自动分水器的设计37、高固含量醚化蜜胺甲醛树脂制备及其稳定性38、高固含量三聚氰胺甲醛树脂的制备及应用研究39、关于_三聚氰胺甲醛树脂_在生产过程中发生凝固现象的机理研究与探讨40、含溴芳基磷酸三聚氰胺盐的合成及应用41、磺化三聚氰胺_尿素甲醛树脂的合成42、磺化三聚氰胺甲醛树脂的合成工艺研究43、磺化三聚氰胺甲醛树脂的合成与水溶性及稳定性研究44、磺化三聚氰胺甲醛树脂对水泥水化机理的影响45、磺化三聚氰胺甲醛树脂合成的磺化工艺及磺化结构分析46、磺化三聚氰胺甲醛树脂磺化阶段化学结构变化47、磺化三聚氰胺甲醛树脂与金属钙离子的复合物对水泥的作用48、磺化三聚氰胺脲醛树脂的三步法合成工艺研究49、磺化三聚氰胺脲醛树脂合成工艺的研究50、甲醛捕捉剂YZ_1在脲醛_三聚氰胺甲醛复合树脂衬布硬挺整理剂中的应用51、浸渍用三聚氰胺树脂的固化曲线及其应用52、浸渍纸用三聚氰胺树脂合成新工艺53、聚乙二醇对三聚氰胺甲醛树脂的改性研究54、利用C_13NMR探讨影响MF树脂贮存稳定性的因素55、六甲氧基甲基三聚氰胺与树脂酸反应的TG-DSC研究56、密胺树脂高效减水剂合成机理57、蜜胺-脲甲醛树脂新型制法研究58、蜜胺罩光树脂的研制59、模压货盘用MUF树脂的研制60、模压木制品装饰纸用三聚氰胺_甲醛树脂粘合剂的制备和使用61、模压木制品装饰纸用三聚氰胺-甲醛树酯粘合剂的制备和使用62、耐沸水性三聚氰胺苯酚尿素甲醛复合树脂63、尿素_三聚氰胺_甲醛共缩聚树脂应用进展64、脲_三聚氰胺_甲醛树脂对白乳胶的改性研究65、脲醛预聚体改性三聚氰胺甲醛树脂增湿强剂的研究66、浅谈三聚氰胺甲醛MUF树脂67、浅谈纸张湿强剂三聚氰胺甲醛树脂68、氰尿酸三聚氰胺与氢氧化镁协效阻燃EVA的研究英文69、三步法合成磺化三聚氰胺脲醛树脂的工艺研究70、三聚氯氰在活性单体及聚合物合成中的应用研究进展71、三聚氰胺_甲醛树脂/蒙脱土纳米复合材料的研制72、三聚氰胺_尿素_甲醛树脂固化初期胶层粘度变化的热机械分析研究73、三聚氰胺产业现状及发展74、三聚氰胺的国内现状及经济分析75、三聚氰胺的生产应用及市场分析76、三聚氰胺的生产与应用77、三聚氰胺改性脲醛树脂的制备及其在室外型中纤板上的应用78、三聚氰胺改性脲醛树脂粉体胶粘剂的研制79、三聚氰胺改性脲醛树脂胶在MDF生产中的应用80、三聚氰胺改性脲醛树脂胶粘剂研究进展81、三聚氰胺改性脲醛树脂胶粘剂在中密度纤维板上的应用研究82、三聚氰胺改性脲醛树脂浸渍预油漆纸的耐潮湿性能83、三聚氰胺改性脲醛树脂在木塑复合材中固化条件的研究84、三聚氰胺改性树脂的研究进展85、三聚氰胺和腰果壳油改性酚醛树脂的研究86、三聚氰胺甲醛磺化树脂高效减水剂的制备87、三聚氰胺甲醛聚乙烯复合层压板生产工艺88、三聚氰胺甲醛树脂的光学性质89、三聚氰胺甲醛树脂的化学修饰及应用90、三聚氰胺甲醛树脂对白乳胶改性的研究91、三聚氰胺甲醛树脂对金的吸附行为92、三聚氰胺甲醛树脂改性PVAC_MMA乳液的合成93、三聚氰胺甲醛树脂改性的PVAc_MMA_AA乳液94、三聚氰胺甲醛树脂合成_盐酸的催化作用及对产物稳定性的影响95、三聚氰胺甲醛树脂合成与性能的研究96、三聚氰胺甲醛树脂及其衍生物的研究现状与应用前景97、三聚氰胺甲醛树脂液的制备与使用98、三聚氰胺甲醛树脂用作絮凝剂的探讨99、三聚氰胺浸渍纸饰面人造板粘板问题探讨100、三聚氰胺脲醛共缩合树脂试验报告101、三聚氰胺脲醛树脂改性酚醛树脂胶粘剂的研究102、三聚氰胺氰尿酸盐和稳定性ClO_2生产开发大有可为103、三聚氰胺氰尿酸盐阻燃环氧树脂的研究104、三聚氰胺生产技术与市场105、三聚氰胺树脂的改性技术及其在制革工业上的应用106、三聚氰胺树脂丁醇改性过程中凝胶现象的探讨107、三聚氰胺树脂浸渍纸生产技术108、三聚氰胺树脂性能变化的研究109、三聚氰胺系高效减水剂的研究及应用110、三聚氰胺系高效减水剂的研究进展与展望111、三聚氰胺系列减水剂的研究与应用112、三聚氰胺主要下游产品的发展现状及前景预测113、设备对三聚氰胺_甲醛树脂MFR的质量影响114、湿强剂三聚氰胺甲醛树脂及其改性115、树脂酸甲氧基甲基三聚氰胺衍生物合成的研究116、双氰胺固化环氧树脂制备无卤化覆铜板的研究117、水煤浆添加剂磺化三聚氰胺_尿素_甲醛树脂的合成118、水性环氧119、涂料用高醚化三聚氰胺甲醛树脂的合成120、新型三聚氰胺尿素甲醛共聚树脂的研制121、新型阻燃性三聚氰胺树脂鞣剂的合成性能及应用122、氧化镁负载三聚氰胺缩甲醛树脂_钯配合物的合成及其催化Heck芳基化反应性能123、乙二醇单丁醚对三聚氰胺_甲醛树脂浸渍纸的增塑作用124、以沉淀法白炭黑为载体的六甲氧基甲基三聚氰胺干浓缩物125、异丁醇醚化三聚氰胺甲醛树脂试验报告126、影响三聚氰胺甲醛浸渍树脂质量的因素探讨127、用于装饰板的改性三聚氰胺树脂128、预固化度对三聚氰胺浸渍纸质量的影响129、杂质对三聚氰胺树脂胶反应影响及其精制处理130、纸中三聚氰胺树脂的鉴别与测定131、自制三聚氰胺甲醛树脂固化剂

超低密度植物纤维材料尺寸稳定性的研究 摘 要:具有“桁架”网状结构的超低密度植物纤维材料在干燥过程中存在外形尺寸收缩的问题,当干燥温度小于100℃时,收缩量与温度之间呈正相关性,最大收缩量可超过5%;当温度大于100℃时,材料内部出现分层的现象。材料置于模具中进行干燥可以消除水平方向的收缩,但高度的收缩率大于无模具干燥的情况。关键词:尺寸稳定性 低密度 温度 成型 干燥Study on dimension stability of low-density mat made from plant fiberXie Yongqun Yang WenbinAbstract: low density mat made from plant fiber have a reticular structure. It’s dimension is reduced in drying process. Under 100℃ tempreture, shrink has a direct proportion with tempreture, maximal is more then 5%. when thempreture higher then 100℃, interstice is keep in the mat. When mat be dryed in form mould, this shrink almost is not keep on the horizon plan, but is carried out more vertical dimension decrease then in case without form mould. Key words: dimension stability, low density, tempreture, form mould, drying 低密度植物纤维材料一直是人们关注的重要问题,在纤维板、刨花板等人造板的研究中不断有相关的研究成果推出。但由于当前的包括人造板、纸板和纸等植物纤维产品的生产工艺主要依靠压力和温度两个参数[1,2],因此密度一般高于,试图取得更低密度的材料是十分困难的事情。为克服这一困难,研究人员采取了在人造板中添加发泡塑料等低密度材料;采取大片刨花,并同时辅以降低热压压力提高热压温度等措施降低其密度;利用宏观结构的构建,制造蜂窝纸板和瓦楞纸板等广义的低密度材料[3-8]。利用液体发泡原理构筑桁架结构(如图1)[9],可以避开由于使用温度、压力制造工艺带来的困扰,为超低密度材料的生产寻找出一条新路。依照液体发泡原理构筑桁架结构的理论,水是其重要的中间介质[10]。水分子在被帚化的植物纤维端部间构成水桥,使纤维在泡沫溶液中其端部得以接近并连接[11]。当含水坯料被干燥后,水分被逐渐去除,使纤维端部的氢键实现联接(如图2)。水分逐渐去除的过程也是纤维端部接近的过程,其宏观表现为坯料在干燥过程的尺寸收缩。不同的干燥工艺,其产生的收缩率和收缩方向存在着明显的差异,对材料形成的产品外观和性能有直接的影响。1 实验材料及设备 主要原料 南平造纸厂硫酸盐化学木浆、福建将乐森绒绒毛浆厂杉木绒毛浆、福建福人木业有限公司中密度纤维板用纤维(松阔比3:7);萜烯类起泡剂、非离子型烷基表面活性剂、FPC复合胶(自制)。 主要设备: ZSP300高浓盘磨、ZD-2自动电位滴定计、NDJ-9S数字粘度计、7312—I搅拌机、5l定量箱(自制)、成型箱(240×120×60) 、通用干燥箱。 样品参数: 坯料含水率:830~910%(干基)、坯料尺寸:240×120×60mm。 测试方法:将坯料放入干燥箱干燥至恒重(时间6小时),取出测量各边的尺寸变化。2 实验结果与分析 温度对尺寸变化的影响 无模具干燥 无模具干燥是将经过静置,在重力脱水过程结束后,将成型坯料从模具中脱出并放入干燥箱进行干燥,分别设定干燥温度为60℃、70℃、80℃、90℃、100℃、110℃、120℃七个干燥温度值,干燥至恒重,干燥时间分别为:7小时、小时、6小时、小时、小时、小时、小时。图4为样品图,图5为样品各尺寸的收缩率曲线。 带模具干燥 带模具干燥是指坯料在模具内静置,使重力脱水过程结束,坯料随模具一道进入干燥箱。分别设定干燥温度为60℃、70℃、80℃、90℃、100℃、110℃、120℃七个干燥温度值,干燥至恒重,干燥时间分别为:7小时、小时、6小时、小时、小时、小时、小时。图6为样品图,图7为样品各尺寸的收缩率曲线。 实验结果讨论: 1) 无模具干燥情况下,坯料上部品面自由平面和厚度均产生收缩,收缩程度与干燥温度有关。在实验温度范围内,坯料上部自由平面的收缩程度随温度的升高而增大,其边长收缩为:60℃时%、100℃时%、120℃时达到了%;在高度尺寸上的尺寸收缩则表现为现加大后减少的情况:60℃时为%,100℃时达到%,120℃时则%。而下部尺寸则出现了增大的情况,增大幅度的最大值出现在温度相对较低的70、80℃时,分别为%和%。 2) 坯料随同模具干燥的情况下,坯料上下面在模具中基本保持原有尺寸,从模具中取出后的测量值表明一些无规律的尺寸变化。高度方向的尺寸变化规律与无模具状况呈相同趋势,即:在高度尺寸上的尺寸收缩则表现为现加大后减少的情况,但收缩值更大:60℃时为%,100℃时达到%,120℃时则%。干燥后的坯料总体形状保持良好,其上部表面随高度变化呈水平平行下降。3 结果分析与结论 超低密度纤维材料在干燥过程中,其外形尺寸会产生收缩。各部分尺寸变化原因分析为: 1) 无模具状态下,底部尺寸的扩张是由于坯料在高含水率情况下呈现出一定的流动特性,使其在干燥前受重力作用作用产生流变,导致底部向外扩长,使底部尺寸加大。 2) 各表面尺寸在无约束情况下,在干燥过程中产生收缩,是由于在干燥过程中,由于水分的减少,作用于纤维间的水桥拉近了纤维间的距离,当水分完全消失时,纤维实现联接,这一过程宏观上表现为坯料上边和厚度的收缩,而底部由于它与固体界面的接触阻碍了收缩过程的进行。利用模具作为容器和坯料一同干燥可以解决这重力影响产生的流变问题。参考文献[1] 华毓坤主编.人造板工艺学[M], 北京:中国林业出版社,2002年10月[2] 阿伦,马岩. 微米长薄片状木纤维低密度人造板的开发及应用前景[J],木材加工机械.[3] 马岩. 微米木纤维低密度轻质板制造技术探讨[J],木材工业 , 2006,(04) [4] 谢力生,陈志喜.干法低密度纤维板常规热压传热研究[J],林业科技,2005,(1)[5] 谢力生,李英俊. 低密度纤维成形体制造方法及其工艺的研究[J]林产工业2005,(3)[6] 谢力生,刘焕荣.低密度刨花板的常规热压传热[J],东北林业大学学报2005,(4)[7] 罗鹏,杨传民,滕立军.改性脲醛树脂胶低密度稻壳-木材复合材料制造工艺的研究[J],林产工业2005(6)[8] 王建萍.缓冲包装材料的研发、改进与利用[J],机械研究与应用.2004,, (5)p29-30[9] 谢拥群,陈彦,张璧光. 植物纤维膨化材料的研究[J],木材工业.,(2) p30-33[10] 顾惕人主编.表面化学[M], 北京:科学出版社,1994年6月[11] 王中厚主编.制浆造纸工艺[M], 北京:中国轻工业出版社,2006年2月还有这个网站你看一

树脂论文可参考文献

论文的参考文献格式怎么写

问题一:word2013怎么插入和引用参考文献 1 输入一段正文:(论文最好通过插入多级列表的方式生成) 注:文档的参考文献上标是教程做完后生成的,而不是输入的时候就有; 2 在文档最后添加引用的文献并编号: 注意:先添加编号再输内容!!!! ① 打开Word2013文档页面,在“开始”--“段落”中单击“编号”下三角按钮;如下图2-1: 3 ② 在列表中选择符合我们要求的编号类型就能将第一个编号插入到文档中。 ③ 在第一个编号后面输入文本内容,按回车键将自动生成第二个编号;如下图2-2: 4 以同样的方法可以添加多个用到的参考文献; 注意,此时参考文献只是添加并未插入!如下图2-3: 5 插入文献: 1、在正文需要插入参考文献的地方,点击 “插入”―“交叉引用”--- 引用类型“编号项”---选择要插入的文献; 2、点击“插入”后关闭;插入后 3、将正文中的插入文献编号选中,按组合键“ctrl”+“ shift” +“+”将编号变为上标,如下图3所示: 4、按相同方法依次插入多个文献, 附加:引用文献的整理:在正文中插入新引用的参考文献 例如:要求在引用文献【1】和【2】之间的正文中插入新的参考文献(假设参考文献名为:武汉大学电气工程学院); ⑴在结尾的参考文献中相应位置(由要求知插入在文献【1】和【2】之间)插入此文献,由于设置了编号,原文献【2】以后的参考文献编号会自动更改; ⑵ 在正文中按第三步的办法同样插入新的参考文献【2】;(注意:此时正文中参考文献编号并未自动更改) ⑶先ctrl+S保存下文件,然后ctrl+A选中全文,右键“更新域”(可能需选择“更新整个目录”); ⑷ 回到正文可发现参考文献编号已经自动更改; 【注】参考文献格式获取: 从中国知网之类的数据库获取参考文献格式的方法:(以参考文献【3】--夏开全.纤维增强树脂基复合材料输电杆塔及其应用进展---为例) 1、进入中国知网数据库,输入查询“纤维增强树脂基复合材料输电杆塔及其应用进展”,选中正确的文献,点击“导出/参考文献” 2、在新窗口选中后点击 “导出/参考文献” 3、点击复制到剪切板,然后到Word中粘贴即可! 问题二:写论文时,参考文献的引用规范是什么? 参考文献加标注一般是在引用文字的末尾点击插入引用――脚注和尾注,选择尾注就可以了,参考文献应该属于尾注,在菜单里选“插入---引用----脚注和尾注”,脚注是在文章的某一页下面的注解,而尾注就是在文章最后了,打开后就可以选编码,即角码。可以自己设定类型、格式。双击编码就可以在文章和参考文献间转换。 在英文输入法状态下输入[1],选中[1].按ctrl+shift++号键 把光标放在引用参考文献的地方,在菜单栏上选“插入|脚注和尾注”,弹出的对话框中选择“尾注”,点击“选项”按钮修改编号格式为 *** 数字,位置为“文档结尾”,确定后Word就在光标的地方插入了参考文献的编号,并自动跳到文档尾部相应编号处请你键入参考文献的说明,在这里按参考文献著录表的格式添加相应文献。参考文献标注要求用中括号把编号括起来,至今我也没找到让Word自动加中括号的方法,需要手动添加中括号。 在文档中需要多次引用同一文献时,在第一次引用此文献时需要制作尾注,再次引用此文献时点“插入|交叉引用”,“引用类型”选“尾注”,引用内容为“尾注编号(带格式)”,然后选择相应的文献,插入即可。 不要以为已经搞定了,我们离成功还差一步。论文格式要求参考文献在正文之后,参考文献后还有发表论文情况说明、附录和致谢,而Word的尾注要么在文档的结尾,要么在“节”的结尾,这两种都不符合我们的要求。 解决的方法似乎有点笨拙。首先删除尾注文本中所有的编号(我们不需要它,因为它的格式不对),然后选中所有尾注文本(参考文献说明文本),点“插入|书签”,命名为“参考文献文本”,添加到书签中。这样就把所有的参考文献文本做成了书签。在正文后新建一页,标题为“参考文献”,并设置好格式。光标移到标题下,选“插入|交叉引用”,“引用类型”为“书签”,点“参考文献文本”后插入,这样就把参考文献文本复制了一份。选中刚刚插入的文本,按格式要求修改字体字号等,并用项目编号进行自动编号。 到这里,我们离完美还差一点点。打印文档时,尾注页同样会打印出来,而这几页是我们不需要的。当然,可以通过设置打印页码范围的方法不打印最后几页。这里有另外一种方法,如果你想多学一点东西,请接着往下看。选中所有的尾注文本,点“格式|字体”,改为“隐藏文字”,切换到普通视图,选择“视图|脚注”,此时所有的尾注出现在窗口的下端,在“尾注”下拉列表框中选择“尾注分割符”,将默认的横线删除。同样的方法删除“尾注延续分割符”和“尾注延续标记”。删除页眉和页脚(包括分隔线),选择“视图|页眉和页脚”,首先删除文字,然后点击页眉页脚工具栏的“页面设置”按钮,在弹出的对话框上点“边框”,在“页面边框”选项卡,边框设置为“无”,应用范围为“本节”;“边框”选项卡的边框设置为“无”,应用范围为“段落”。切换到“页脚”,删除页码。选择“工具|选项”,在“打印”选项卡里确认不打印隐藏文字(Word默认)。 参考文献格式: 作者.题名[D].所在城市:保存单位,发布年份. 李琳.住院烧伤患者综合健康状况及其影响因素研究[D].福州:福建医科大学,2009. 其他的: 作者.题名[J].刊名,年,卷(期):起止页码. 沈平,彭湘粤,黎晓静,等.临床路径应用于婴幼儿呼吸道异物手术后的效果[J].中华护理杂志,2012,47(10):930-932. 作者.书名[M]. 版次.出版地: 出版者,出版年:起止页码. 胡雁.护理研究[M].第4版.北京:人民卫生出版社,2012:38. 作者.题名[N].报......>> 问题三:论文后面参考文献在文章中怎么引用 1 、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码2、 专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码3、 论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码4 、学位论文作者.题名〔D〕.保存地点.保存单位.年份5 、专利文献题名〔P〕.国别.专利文献种类.专利号.出版日期6、 标准编号.标准名称〔S〕7、 报纸作者.题名〔N〕.报纸名.出版日期(版次)8 、报告作者.题名〔R〕.保存地点.年份9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期二、文献类型及其标识1、根据GB3469 规定,各类常用文献标识如下:①期刊〔J〕②专著〔M〕③论文集〔C〕④学位论文〔D〕⑤专利〔P〕⑥标准〔S〕⑦报纸〔N〕⑧技术报告〔R〕2、电子文献载体类型用双字母标识,具体如下:①磁带〔MT〕②磁盘〔DK〕③光盘〔CD〕④联机网络〔OL〕①联机网上数据库〔DB/OL〕②磁带数据库〔DB/MT〕③光盘图书〔M/CD〕④磁盘软件〔CP/DK〕 问题四:论文中引用多个参考文献如何标注? 看你是什么论文,要发表什么期刊了,不同期刊对参考文献的标注办法有差别的,你可以向58论文网问问,哪个期刊什么论文什么要求,他们都知道。 问题五:word2013怎么插入和引用参考文献 工具/原料 台式电脑/笔记本电脑 Microsoft Office 2007/2010/2013 方法/步骤 在word引用处,进入“引用”项中,点开“脚注”右下角的箭头,然后选择“插入”即可。这时,光标定位到文档结尾处,你能看到一个带虚线框的编号,即参考文献的编号,将该参考文献内容写完。 注意,双击该编号则光标定位到引用处;双击引用处编号则光标定位到参考文献内容处。 因此,推荐一边写论文一边写参考文献。 往后的参考文献引用,只需要直接使用“引用”项中“插入尾注”即可,编号自动,不需调整。 需要注意的是,如果多处引用同一篇参考文献时,不能采用“插入尾注”的方法,采用的是“插入”(或者是“引用”)项中的“交叉引用”。 对于交叉引用的编号,需要人为添加中括号,并设置为上标形式(“shift”+“ctrl”+“=”)。如果有新的参考文献引用插入或删除,需要“更新域”,确保交叉引用的编号也随之修改(尾注编号自动修改)。 当整篇论文写完,参考文献引用也完成后,需要在编号上添加中括号,这将使用“开始”项中的“替换”功能。 对 于尾注,将“^e”替换为“[^&]”(如果是脚注,则将“^f”替换为“[^&]”),但是替换时“不限定格式”要处于灰色状态。替换时,最好将光标定位在文档最前,然后选择“全部替换”。需要注意的是,如果后来有新的参考文献插入引用时,最好是先将光标定位到该插入的引用 前,然后“查找下一处”,最后选择“替换”,切记不要直接“全部替换”! 参考文献不是论文的最后部分,但尾注只能是节的结尾或者文档的结尾。解决方法是,将文档结尾的参考文献中的所有编号都删除,然后选中这些内容,选择“插 入”项中的“书签”,将其添加到书签中,书签名如“参考文献内容”等。这部分工作推荐放在论文已修改无误后进行。 在文档中新建参考文献的页上,选择“交叉引用”,将之前添加的书签插入,并对这些参考文献进行自动编号。 问题六:参考文献的引用的格式 参考文献及注释 凡有直接引用他人成果(文字、数据、事实以及转述他人的观点)之处的均应列于参考文献中或加以注释,参考文献按文中出现的顺序列出。论文分章节的,每章结束后都应该注明本章参考文献,不分章节的在文后统一注明。注释统一按分页下注的方式进行。 参考文献书写格式应符合GB7714-87《文后参考文献著录规则》。各类引用参考文献条目的编排格式如下: (1)学术期刊文献 [序号]作者.文献题名[J].刊名,出版年份,卷号(期号):起-止页码 (2)学术著作 [序号]作者.书名[M].版次(首次免注).翻译者.出版地:出版社, 出版年: 起-止页码 (3)有ISBN号的论文集 [序号]作者.题名[A].主编.论文集名[C].出版地:出版社,出版年:起-止页码 (4)学位论文 [序号]作者.题名[D].保存地:保存单位,年份 (5)专利文献 [序号]专利所有者.专利题名[P].专利国别:专利号,发布日期 (6)技术标准 [序号]标准代号,标准名称[S].出版地:出版者,出版年 (7)报纸文章 [序号]作者.题名[N].报纸名,出版日期(版次) (8)报告 [序号]作者.文献题名[R].报告地:报告会主办单位,年份 (9)电子文献 [序号]作者.电子文献题名[文献类型/载体类型].文献网址或出处,发表或更新日期/引用日期(任选) 问题七:如何用word撰写和引用参考文献 文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 格式与写法 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。 主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。 总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。 参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。 问题八:参考文献的标准格式?? 引用别人的毕业论文怎么标注 ? 参考文献规范格式 一、参考文献的类型 参考文献(即引文出处)的类型以单字母方式标识,具体如下: M――专著 C――论文集 N――报纸文章 J――期刊文章 D――学位论文 R――报告 对于不属于上述的文献类型,采用字母“Z”标识。 对于英文参考文献,还应注意以下两点: ①作者姓名采用“姓在前名在后”原则,具体格式是: 姓,名字的首字母. 如: Malcolm Richard Cowley 应为:Cowley, .,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. & .; ②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。 二、参考文献的格式及举例 1.期刊类 【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码. 【举例】 [1] 王海粟.浅议会计信息披露模式[J].财政研究,2004,21(1):56-58. [2] 夏鲁惠.高等学校毕业论文教学情况调研报告[J].高等理科教育,2004(1):46-52. [3] Heider, . The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 C 67. 2.专著类 【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码. 【举例】[4] 葛家澍,林志军.现代西方财务会计理论[M].厦门:厦门大学出版社,2001:42. [5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45. 3.报纸类 【格式】[序号]作者.篇名[N].报纸名,出版日期(版次). 【举例】 [6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3). [7] French,埂W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33). 4.论文集 【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起始页码. 【举例】 [8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17. [9] Spivak,G. “Can the Subaltern Speak?”[A]. In & L. Gros *** erg(eds.). Victory in Limbo: Imigi *** [C]. Urbana: University of Illinois Press, 1988, . [10] Almarza, . Student foreign language teacher’s knowledge growth [A]. In and (eds.). Teac......>> 问题九:论文参考文献标准格式如何写 50分 参考文献规范格式 一、参考文献的类型 参考文献(即引文出处)的类型以单字母方式标识,具体如下: M――专著 C――论文集 N――报纸文章 J――期刊文章 D――学位论文 R――报告 对于不属于上述的文献类型,采用字母“Z”标识。 对于英文参考文献,还应注意以下两点: ①作者姓名采用“姓在前名在后”原则,具体格式是: 姓,名字的首字母. 如: Malcolm Richard Cowley 应为:Cowley, .,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. & .; ②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。 二、参考文献的格式及举例 1.期刊类 【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码. 【举例】 [1] 王海粟.浅议会计信息披露模式[J].财政研究,2004,21(1):56-58. [2] 夏鲁惠.高等学校毕业论文教学情况调研报告[J].高等理科教育,2004(1):46-52. [3] Heider, . The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 C 67. 2.专著类 【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码. 【举例】[4] 葛家澍,林志军.现代西方财务会计理论[M].厦门:厦门大学出版社,2001:42. [5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45. 3.报纸类 【格式】[序号]作者.篇名[N].报纸名,出版日期(版次). 【举例】 [6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3). [7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33). 4.论文集 【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起始页码. 【举例】 [8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17. [9] Spivak,G. “Can the Subaltern Speak?”[A]. In & L. Gros *** erg(eds.). Victory in Limbo: Imigi *** [C]. Urbana: University of Illinois Press, 1988, . [10] Almarza, . Student foreign language teacher’s knowledge growth [A]. In and (eds.). Teac......>>

一、参考文献著录格式1 、期刊作者.题名[J].刊名,出版年,卷(期)∶起止页码2、专著作者.书名[M].版本(第一版不著录).出版地∶出版者,出版年∶起止页码3、论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码4 、学位论文作者.题名〔D〕.保存地点.保存单位.年份5 、专利文献题名〔P〕.国别.专利文献种类.专利号.出版日期6、 标准编号.标准名称〔S〕7、 报纸作者.题名〔N〕.报纸名.出版日期(版次)8 、报告作者.题名〔R〕.保存地点.年份9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期二、文献类型及其标识1、根据GB3469 规定,各类常用文献标识如下:①期刊〔J〕②专著〔M〕③论文集〔C〕④学位论文〔D〕⑤专利〔P〕⑥标准〔S〕⑦报纸〔N〕⑧技术报告〔R〕2、电子文献载体类型用双字母标识,具体如下:①磁带〔MT〕②磁盘〔DK〕③光盘〔CD〕④联机网络〔OL〕3、电子文献载体类型的参考文献类型标识方法为:〔文献类型标识/载体类型标识〕。例如:①联机网上数据库〔DB/OL〕②磁带数据库〔DB/MT〕③光盘图书〔M/CD〕④磁盘软件〔CP/DK〕⑤网上期刊〔J/OL〕⑥网上电子公告〔EB/OL〕三、举例1、期刊论文〔1〕周庆荣,张泽廷,朱美文,等.固体溶质在含夹带剂超临界流体中的溶解度〔J〕.化工学报,1995(3):317—323〔2〕Dobbs J M, Wong J M. Modification of supercritical fluid phasebehavior using polor coselvent〔J〕. Ind Eng Chem Res, 1987,26:56〔3〕刘仲能,金文清.合成医药中间体4-甲基咪唑的研究〔J〕.精细化工,2002(2):103-105〔4〕 Mesquita A C, Mori M N, Vieira J M, et al . Vinyl acetate polymerization by ionizing radiation〔J〕.Radiation Physics and Chemistry,2002, 63:4652、专著〔1〕蒋挺大.亮聚糖〔M〕.北京:化学工业出版社,2001.127〔2〕Kortun G. Reflectance Spectroscopy〔M〕. New York: Spring-Verlag,19693、论文集〔1〕郭宏,王熊,刘宗林.膜分离技术在大豆分离蛋白生产中综合利用的研究〔C〕.//余立新.第三届全国膜和膜过程学术报告会议论文集.北京:高教出版社,1999.421-425〔2〕Eiben A E, vander Hauw J K.Solving 3-SAT with adaptive genetic algorithms 〔C〕.//Proc 4th IEEE Conf Evolutionary Computation.Piscataway: IEEE Press, 1997.81-864、学位论文〔1〕陈金梅.氟石膏生产早强快硬水泥的试验研究(D).西安:西安建筑科学大学,2000〔 2 〕 Chrisstoffels L A J . Carrier-facilitated transport as a mechanistic tool in supramolecular chemistry〔D〕.The Netherland:Twente University.19885、专利文献〔1〕Hasegawa, Toshiyuki, Yoshida,et al.Paper Coating composition〔P〕.EP 0634524.1995-01-18〔 2 〕 仲前昌夫, 佐藤寿昭. 感光性树脂〔 P 〕. 日本,特开平09-26667.1997-01-28〔3〕Yamaguchi K, Hayashi A.Plant growth promotor and productionthereof 〔P〕.Jpn, Jp1290606.1999-11-22〔4〕厦门大学.二烷氨基乙醇羧酸酯的制备方法〔P〕.中国发明专利,CN1073429.1993-06-236、技术标准文献〔1〕ISO 1210-1982,塑料——小试样接触火焰法测定塑料燃烧性〔S〕〔2〕GB 2410-80,透明塑料透光率及雾度实验方法〔S〕7、报纸〔1〕陈志平.减灾设计研究新动态〔N〕.科技日报,1997-12-12(5)8、报告〔1〕中国机械工程学会.密相气力输送技术〔R〕.北京:19969、电子文献〔1〕万锦柔.中国大学学报论文文摘(1983-1993)〔DB/CD〕.北京:中国百科全书出版社,1996

[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.

[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.

[3] Giannalis E layered silicate Mater,1996,8(1):29~35.

[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.

[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.

[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.

[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.

[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.

[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.

[10] OlejnikSL,,1968,72(1):241~249.

[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.

[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.

[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.

[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.

[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.

[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.

[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.

[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.

[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.

[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.

[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.

[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.

[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.

[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.

[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.

[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.

[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.

[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.

[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.

[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.

[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.

[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.

[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.

[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.

[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.

[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.

[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.

[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.

[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.

[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.

[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.

[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.

[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.

[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.

[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.

[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.

[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.

[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.

[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.

[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.

[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.

[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.

[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.

  • 索引序列
  • 热固性树脂期刊
  • 合成树脂及塑料期刊怎么样
  • 树脂动态力学性能研究论文
  • 木材与树脂论文期刊有哪些杂志
  • 树脂论文可参考文献
  • 返回顶部