首页 > 学术期刊知识库 > 上海材料研究所论文

上海材料研究所论文

发布时间:

上海材料研究所论文

1992年2月26日上海市有机氟材料研究所申请组建上海三爱富新材料股份有限公司,同年5月,上海市人民政府同意以有机氟材料研究所相关资产作为公司发起人设立上海三爱富新材料股份有限公司,同年7月,中国人民银行上海市分行同意公司向社会公开发行股票。1992年8月28日国内首家由专业科研开发型研究所转制而成立的股份制上市公司-上海三爱富新材料股份有限公司召开首次股东大会暨创立大会,化学工业部副部长谭竹洲前来到会祝贺。同日通过了公司章程、选举产生了第一届董事会、监事会。1992年12月以来上海三爱富新材料股份有限公司连续被上海高新技术企业(产品)认定办公室确认为上海高新技术企业。1993年11月本公司与江苏华龙工贸公司组建常熟三爱富氟化工有限公司,出资比例为80:20。1996年12月,江苏华龙工贸公司20%股权转让给自然人。1994年1月本公司企业管理模式论文《抓住机遇,走科工贸一体化发展之路》获上海市经委一九九三年企业优秀管理成果二等奖。1994年9月本公司被评为一九九四年度上海化工系统科技先进单位。1994年10月化工部部长顾秀莲来三爱富公司子公司常熟三爱富氟化工有限公司视察并题词:发展氟化工、振兴三爱富。1995年10月本公司模塑用聚全氟乙丙烯树脂-氟树脂462获采用国际标准产品标志证书,并获一九九五年度国家级新产品证书。1996年4月本公司研制的分散聚四氟乙烯树脂-氟树脂203A获一九九五年度上海市优秀新产品二等奖,一九九六年获国家级新产品证书。1996年5月公司与法国埃尔夫-阿托化学公司合资成立常熟埃尔夫阿托三爱富氟化工有限责任公司,公司占有10%股权。为有利于公司发展,2002年9月经外资委同意,公司转让了常熟阿托菲纳三爱富氟化工有限责任公司的股权。1997年2月本公司被评为上海市一九九五~一九九六年度花园式单位。1997年4月上海市委副书记陈至立、副市长左焕琛来公司视察、陈至立题词:以高科技为本,走产业化之路。1997年5月化学工业部副部长陈士能来公司视察,题词:为发展我国氟化工多作贡献。同年8月,化学工业部副部长王新芳来公司视察。1997年12月本公司研制的羟基封端液体含氟苯撑硅橡胶FE2821获化工部科技进步二等奖。FE2811获化工部科技进步三等奖。羟基封端液体含氟苯撑硅橡胶及高温耐油室温硫化密封剂HM1001获国家科委技术发明三等奖。1998年6月经上海市外国投资工作委员会同意,本公司与美国戈尔公司

新材料技术渗透现代生活

与信息技术、生物技术一样,材料科学技术上的每一次革新都会引起生产技术的革命,加速社会发展,带来社会生产和生活方式上的变化。

新材料比传统材料性能更为优异。目前,世界上的新材料品种正以每年大约5%的速度在增长。漫步市民中心区的新材料专业展馆,纳米材料、超导材料、特殊功能材料,新材料琳琅满目,让人应接不暇。超导材料应用商机无限

北京有色金属研究总院展区内,除了一辆簇新的镍氢动力电池试验车抢人眼之外,展台上正在进行的高温超导磁悬浮教学演示也吸引了众多饶有兴趣的参展者。

一内含超导材料的圆柱状金属块上,是一重达30公斤的永久磁铁。工作人员把零下196摄氏度的液态氮倒入中空的磁铁后,磁铁立马悬浮起来。只须轻轻一推,磁铁就开始了不停地旋转。据了解,其最大悬浮力可达200公斤以上。另一边的磁悬浮运输模型展示,同样吸引了好奇的观众。内含超导材料的小车模型在注入液态氮后,给一点动力,就可在磁性轨道上悬浮运行。

据介绍,高温超导材料在液态氮温度(零下196摄氏度)下即可呈现出超导性,即零电阻和抗磁性。由于悬浮状态下运动的物体没有接触磨擦,因而可以实现近乎无阻力的高速运动,可用于制作无磨擦轴承、飞轮储能装置以及磁悬浮车等。

据参展的中科院物理所教授曹必松教授介绍,高温超导材料是二十世纪基础研究的一个极为重要的成果,目前,高温超导材料在微波应用上,已在通信、卫星、雷达与电子战系统等领域取得了重大突破。其中,在移动通信领域已初具全球性产业化态势。用超导薄膜制备的高温超导滤波器可以提高接收机的抗干扰能力、增加基站容量、扩大覆盖面积、改善通话质量,还可降低手机所需要的发射功率。目前,欧、美、日等国家和地区已开始了商业化运作。他说,高温超导微波子系统还可为卫星及军用武器装备带来革命性变化。使导弹制导精确、雷达探测能力增强,还可大幅度改善卫星有效载荷的性能。纳米技术全渗透

新材料展馆中,纳米一词如今已不是一个神秘的概念。纳米技术在陶瓷、洁具、建材领域、防水材料、特殊材料,以及生物医药等领域上的广泛渗透,让参展者切切实实地感觉到纳米技术的亲和力。

武汉理工大学科研处张大有教授告诉记者,学校此次带来的包括光电子材料技术与光纤传感器在内的五大类精品项目中,最受欢迎就是生物无机纳米粒子抑癌项目了。

他说,见到相关报道后,很多人就是单冲着这个抑癌项目买票入场的。据介绍,研究表明,某些无机纳米粒子具有杀伤癌细胞的特异性。当这些无机纳米粒子小到纳米级时,即可进入癌细胞中,改变癌基因表达,阻止癌细胞的增殖,抑制癌细胞生长,对正常细胞影响轻微。细胞培养和动物实验发现,羟基磷灰石纳米粒子就具有杀伤癌细胞的特异性。纳米技术的进入,使广谱型新型抗癌药物出现成为可能,为癌症的治疗开辟出新的天地。

据了解,目前该项目处于动物实验阶段,尚未进行临床实验。可即便如此,仍有很多参展者留下电话,有的甚至于愿意把自己患病的亲人用来做临床实验。

你可以去借鉴下(材料科学)、(材料化学前沿)等等这类期刊里面的论文~学习下别人的写作思路~

《理化检验-化学分册》杂志创刊于1963年,系由上海材料研究所与机械工程学会理化检验分会联合主办的应用类技术刊物。主要报道材料的化学分析与仪器分析专业领域中的新方法、新技术、新设备以及国内外的研究方向。“面向生产,注重实用,反映动向,兼顾普及”是刊物的编辑方针,旨在最大幅度地满足不同层次读者的需要。涉及的领域为机械、冶金、石油化工、环境科学、生命科学等,主要读者对象为工矿企业、科研单位、大专院校中从事理化测试专业的科研、测试与教学人员。主要栏目有“研究与试验报告”、“综述”、“工作简报”、“知识与经验介绍”、“读者园地”、“专题讲座”、“动态与信息”。 《理化检验-化学分册》为国内理化检验行业权威刊物,期刊方阵中双效期刊,已被列为全国中文核心期刊、中国科技论文统计用期刊、美国“CA千种表”中我国化学化工类核心期刊、中国学术期刊(光盘版)和中国期刊网全文数据库及美国工程信息公司Ei Page One数据库收录期刊。曾多次获得国家机械行业、上海市优秀期刊奖。详细投稿要求请前往期刊官网查询:

上海病毒研究所论文

最虔诚的病毒--熊猫烧香 对于这个在06年给人们带来黑色记忆的病毒,其成因只因为作者为了炫耀自己而产生,其借助U盘的传播方式也引领新的反病毒课题,但这一切都没有其LOGO的熊猫给人的印象深刻,熊猫拿着三根香虔诚的祈祷什么?这给很多人以遐想。所以最虔诚的病毒只能颁给举着香在祈祷的熊猫。

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;细胞中 Pten 的下调;检测PTEN及AKT的表达; 与shRNA脱靶比较;E.尾静脉注射质粒示意图;.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;.在293T和N2a细胞中敲低 Vegfa ;蛋白的表达;病毒质粒示意图;F.实验流程图;的mRNA表达水平;.激光烧伤之前或之后7天的 Vegfa mRNA水平;诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ ](

研究所定位于生命科学基础研究,在PI制的基础上,针对生物化学和细胞生物学主要前沿研究方向,围绕国家重点实验室和研究中心形成了三大研究集群,涵盖五大前沿领域 。三大研究集群 :分子生物学国家重点实验室细胞生物学国家重点实验室国家蛋白质科学研究中心·上海(筹)五大前沿领域 :基因调控RNA表观遗传学蛋白质科学细胞信号转导细胞与干细胞生物学癌症和其它重大疾病机理公共技术支撑平台 :细胞分析技术平台动物实验技术平台分子生物学技术平台化学生物学技术平台干细胞技术平台斑马鱼技术平台果蝇资源与技术平台在十二五及创新2020期间,研究所将力争在“染色质结构与功能的调控”、“细胞谱系建立和转化的功能调控”、“细胞信号转导对炎症/肿瘤的调控”等三项重大科学问题上取得突破 。 2009-2011年,研究所新增科技部、基金委、中科院及上海市科委竞争性科研项目(课题)共184项,获得竞争性经费亿元 。 重大科研项目(2009-2011年) 上海生化与细胞研究所历史启动的重大科研项目 干细胞战略先导科技专项 “干细胞与再生医学研究”战略先导科技专项是中科院第一批启动战略先导专项中唯一的生物专项,是“创新2020”实施方案的重要组成部分,第一期执行期5年(2011-2015),总合成经费亿元 生化与细胞所积极承担专项科研任务,景乃禾研究院担任专项项目一“细胞谱系的建立于发育调控”负责人,13位研究员担任专项一、二、四学术骨干,获得子课题合同经费共计亿元。自2011年初专项启动以来,至2012年,专项取得重大进展,至2012年7月,已发表Cell 1篇,Nature 2篇,Science 1篇,Cell Stem Cell 1篇, Nature Cell Biology 1篇,Developmental Cell 1 篇,Molecular Cell 1 篇 。 SCI论文发表(截止) (生化与细胞所发表文章必为重要科研进展,均为英文文章。 基础研究文章不同于社会科学等文科论文,无灌水抄袭一说,请阅者尊重那些辛勤的科学家)2015年,共计8篇,其中,Nature 1篇。2014年,共计64篇,其中CNS(即Cell 、Nature、Science生命科学领域三大顶尖杂志)及子刊文章共计6篇。2013年,共计66篇,其中CNS 文章5篇。2009-2012年7月,研究所共发表SCI论文388篇 ,其中:* 在国际顶尖期刊发表论文6篇,包括Cell 2篇,Nature 3篇,Science 1篇。* 在国际一流期刊发表论文59篇,包括Cell Stem Cell 2篇,Development Cell 3 篇,Molecular Cell 1篇,Blood 2篇……2001-2011年生化细胞所发表SCI论文篇均影响因子 注:影响因子是表征文章重要程度(质量)高低的一个指标,关于其正确与否存有争论,但需知在中国,影响因子超过5的文章即被认为是极高水平的工作成果,而绝大数发表的SCI文章(包括国内主办的一些杂志)影响因子往往在零点几,甚至无影响因子可言。 2001-2011研究所发表的影响因子>JBC(该杂志2014年影响因子 )文章占全部SCI论文比例 上海生化与细胞研究所2001-2011年所获得的科研荣誉部分 获奖成果(2001-2013) 成果名称获奖时间奖励名称奖励/等级单位/排序DC细胞活化调控与Th细胞分化机制在免疫相关疾病中的研究2013国家自然科学奖二等奖1新的癌症靶向基因-病毒治疗(CTGVT)2013上海市自然科学奖二等奖1Nudel蛋白在细胞分裂、迁移和胞内运输中的功能和作用机理2012上海市自然科学奖一等奖1上海市青科技杰出贡献奖(李劲松)2012上海市青科技杰出贡献奖阿尔茨海默病及相关认知障碍的发病机制和诊治的基础与临床2011上海市上海市科技进步奖一等奖2核糖核酸的结构、功能2009上海市自然科学奖二等奖1阿片类药物信号转导新机制及其在成瘾中的作用2009上海市自然科学奖一等奖2亮氨酰-tRNA合成酶对底物的识别2008上海市自然科学奖二等奖1精子在附睾中成熟的分子基础研究2008国家自然科学奖二等奖1G蛋白偶联受体信号与其它细胞信号通路间的对话机制2007国家自然科学奖二等奖1精子在附睾中成熟的分子基础研究2007上海市自然科学奖一等奖1G蛋白偶联受体信号与其它细胞信号通路间的对话机制2006上海市自然科学奖一等奖1细胞因子神经调节作用的分子机制2006上海市自然科学奖三等奖2核糖体失活蛋白与核糖体RNA结构与功能的研究2005国家自然科学奖二等奖1活性多肽毒素结构与功能的研究2005上海市自然科学奖一等奖1家蚕生物反应器生产生物制品的方法2004国家技术发明奖二等奖2上海市科技功臣(张永莲)2003上海市科技功臣奖核糖体失活蛋白与核糖体RNA结构与功能的研究2003上海市自然科学奖二等奖1重组基因工程药物凝血因子FVIII的研究制与开发2003上海市自然科学奖三等奖1空间细胞电融合2003上海市科学技术进步奖三等奖3重组人表皮生长因子2002国家科技进步奖二等奖1蛋白激酶在阿片类物质介导的信号转导和耐受依赖中的作用2002国家自然科学奖二等奖2重组人表皮生长因子2001中国科学院科技进步奖二等奖1蛋白激酶在阿片类物质介导的信号转导和耐受成瘾中的作用2001上海市自然科学奖一等奖2日本血吸虫中国大陆株抗原基因的克隆和表达及动物保护效果评估2001上海市科技进步奖二等奖2帕金森病发病机制神经功能显像及基因治疗实验研究2001上海市科技进步奖二等奖2氨基酰-tRNA合成酶及其与相关tRNA的相互作用2001国家自然科学奖二等奖1 2012年上海生化与细胞研究所申请的专利 授权专利号专利名称授权发明人专利类型蓬乱蛋白和β-连环蛋白之间相互作用的调节剂2012-12-19李林 甘肖菁 王计勇 席莹王伟发明专利胆固醇代谢调节蛋白及其用途2012-11-07宋保亮 曹剑 王江 戚炜缪红华发明专利抗桥骨蛋白OPN单克隆抗体及其应用2012-09-12孙兵 等发明专利一种胆固醇代谢调控药物筛选系统及方法2012-09-12宋保亮 唐静洁发明专利抑制癌细胞侵袭性的方法和试剂2012-09-12金由辛 史毅 赵波涛发明专利单克隆抗体 其制备方法及用途2012-09-12孙兵 潘荣 曹刘丽 季永镛田林发明专利一种利用单层培养技术制备和分离定型内胚层细胞的方法2012-09-12王欣 徐晨欢 吕晓雯发明专利一种抗病毒相关蛋白及其用途2012-09-12王琛 阳凯 石贺欣 刘心义单玉飞发明专利-氧代绣线菊内酯抑制Wnt信号途径的新应用2012-09-12李林 王伟 郝小江 刘海洋发明专利稳定表达细胞周期因子FoxM1的体系及其医药用途2012-08-15王欣 何志颖发明专利一种定型内胚层细胞的制备和分离方法2012-08-15王欣 丁小燕 李福明发明专利α-突触核蛋白在筛选帕金森症药物中的应用2012-08-15胡红雨 谢圆圆 林东海发明专利肝细胞癌相关的蛋白质分子标记异种核糖核蛋白K的筛选及其应用2012-07-25曾嵘 王红阳 夏其昌 李辰谈冶雄发明专利抑制TM4SF4表达的干扰分子及其应用2012-07-25赵慕钧等发明专利一种体外酶催化合成腺苷甲硫胺酸的方法2012-07-18赵辅昆 罗赟星 袁中一发明专利一种固相化SUMO化系统及固相化去SUMO化系统2012-07-18杨淑伟 程夏楷发明专利一种重组表达可溶性转录中介体复合物Med23亚基的方法2012-07-04王纲 黄燕 姚潇 杨冠珍发明专利肝细胞癌相关的蛋白质分子标记原癌蛋白18的筛选及其应用2012-07-04曾嵘 王红阳 夏其昌 李辰谈冶雄发明专利US8193162B2肝再生2012-06-05赵慕钧 刘章武 秦佳 李载平发明专利转基因构建物及其在制备时空可调性肝脏损伤模型中的应用2012-05-02王欣 胡晓发明专利天花粉蛋白诱导的小鼠过敏性哮喘疾病模型2012-05-02孙兵 王媛 毛开睿发明专利非洲爪蟾XPAPC基因启动子及其组织特异性增强子2012-01-11丁小燕 王金虎 娄鑫发明专利抗H5N1来源的血凝素蛋白的单克隆抗体及其应用2012-01-04孙兵 庄筱筱 季永镛发明专利白念珠菌菌丝发育相关基因及其用途2012-01-04陈江野 逯杨发明专利已酮糖(磷酸)激酶的应用2012-01-04曾嵘 袁新雨 李辰 周晓发明专利蛋白酶体调节亚基1非ATP酶的应用2012-01-04曾嵘 袁新雨 李辰 周晓发明专利糖蛋白的应用2012-01-04曾嵘 李辰 周晓 袁新雨发明专利国际专利(2009-2011) 上海生化与细胞研究所获得的重大国际专利 一、培养目标 1. 具有坚定的社会主义信念,热爱祖国,遵纪守法;树立爱国主义思想;具有团结统一、爱好和平、勤劳勇敢、自强不息的精神;具备严谨的科学态度和优良学风,具有较强的事业心,积极为国家现代化建设服务。2. 掌握本学科坚实宽广的基础理论和系统深入的专业知识,具有独立从事科学研究工作的能力,有良好的科研道德和为科学献身的精神,在科学或专业技术上作出创造性的成果。3. 身心健康。二、培养年限 硕-博连读生学制为5年,学习年限最长不得超过6年半。研究生应在规定的年限内完成学习任务。三、学科专业及研究方向 培养硕-博连读研究生的一级学科为生物学,学科专业为生物化学与分子生物学,细胞生物学和发育生物学。研究方向形成了以基因表达调控为主要核心,蛋白质科学和表观遗传调控为主线的生物化学与分子生物学领域;及以增殖、分化、凋亡和迁移等细胞活动的信号网络为核心,细胞行为与命运决定和干细胞与个体发育为主线的细胞生物学领域。四、培养方式 1. 硕-博连读研究生入学后,经过2-3个实验室轮转学习,进行导师与学生的双向选择,确定导师。在研究生培养过程中实行导师负责制。2. 研究生进入实验室后,在导师指导下确定科研方向,选择研究课题,研究所统一组织开题报告。研究生根据开题报告的评议意见进入论文工作。3. 硕-博连读研究生入学时按照硕士生培养,入学后第二学年第二学期进行转博考核,即博士生资格考核。硕士研究生转为博士研究生培养时,应由本人提出申请,并获得导师推荐,由导师小组在考核前对研究生的课题工作给予指导,研究所组织考核小组根据研究生的在学成绩和研究课题内容进行审核。审核通过者可攻读博士学位;未通过者半年后可以有第二次考核机会。最终没有通过者改作硕士培养或退学处理。4. 硕-博连读生转博后在博士二年级开始时由研究所组织考核小组对其课题工作进展进行考核和指导,即相对标准考核,未通过考核的可以半年后进行第二次考核,仍未通过者建议硕士毕业。5. 研究生在博士三年级按照生科院的要求完成专业综述,以加强对其研究领域的深层次认识。同时研究所组织一次工作进展考核。如果研究生在考核前已达到研究所毕业答辩的发表论文要求的,可以不参加工作进展考核,届时需提出申请并提交已发表的论文。对于考核不通过的学生,建议其硕士毕业或退学。6. 为扩大学生知识面,研究生每学期必须参加各类学术报告不得少于6次,并于每学期末提交每次报告的题目,时间,报告人以及100字左右摘要或体会。 中国科学院上海生命科学研究院研究生奖学金 年级硕士研究生硕博连读研究生博生研究生一220022003100二240024003400三260031003800四3400五3800注:1 以上奖学金为研究生所在年级的平均数 2 所有在读研究生部收学费3 自2014年下半年始,奖学金略有提高。4 奖学金由国科大和实验室共同承担,以二年级2500元(2015年)为例,国科大 500元,余下由实验室发给。5 中科院研究生除基本奖学金外,还有诸多竞争性的奖学金和各种福利。

一、计算机病毒(Computer Virus)在《中华人民共和国计算机信息系统安全保护条例》中被明确定义,病毒指“编制或者在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用并且能够自我复制的一组计算机指令或者程序代码”。而在一般教科书及通用资料中被定义为:利用计算机软件与硬件的缺陷,破坏计算机数据并影响计算机正常工作的一组指令集或程序代码 。计算机病毒最早出现在70年代 David Gerrold 科幻小说 When . was One.最早科学定义出现在 1983:在Fred Cohen (南加大) 的博士论文 “计算机病毒实验”“一种能把自己(或经演变)注入其它程序的计算机程序”启动区病毒,宏(macro)病毒,脚本(script)病毒也是相同概念传播机制同生物病毒类似.生物病毒是把自己注入细胞之中。二、计算机病毒的长期性:病毒往往会利用计算机操作系统的弱点进行传播,提高系统的安全性是防病毒的一个重要方面,但完美的系统是不存在的,过于强调提高系统的安全性将使系统多数时间用于病毒检查,系统失去了可用性、实用性和易用性,另一方面,信息保密的要求让人们在泄密和抓住病毒之间无法选择。病毒与反病毒将作为一种技术对抗长期存在,两种技术都将随计算机技术的发展而得到长期的发展。三、计算机病毒的产生:病毒不是来源于突发或偶然的原因。一次突发的停电和偶然的错误,会在计算机的磁盘和内存中产生一些乱码和随机指令,但这些代码是无序和混乱的,病毒则是一种比较完美的,精巧严谨的代码,按照严格的秩序组织起来,与所在的系统网络环境相适应和配合起来,病毒不会通过偶然形成,并且需要有一定的长度,这个基本的长度从概率上来讲是不可能通过随机代码产生的。现在流行的病毒是由人为故意编写的,多数病毒可以找到作者和产地信息,从大量的统计分析来看,病毒作者主要情况和目的是:一些天才的程序员为了表现自己和证明自己的能力,处于对上司的不满,为了好奇,为了报复,为了祝贺和求爱,为了得到控制口令,为了软件拿不到报酬预留的陷阱等.当然也有因政治,军事,宗教,民族.专利等方面的需求而专门编写的,其中也包括一些病毒研究机构和黑客的测试病毒.四、计算机病毒的特点,计算机病毒具有以下几个特点:(1) 寄生性 计算机病毒寄生在其他程序之中,当执行这个程序时,病毒就起破坏作用,而在未启动这个程序之前,它是不易被人发觉的。(2) 传染性 计算机病毒不但本身具有破坏性,更有害的是具有传染性,一旦病毒被复制或产生变种,其速度之快令人难以预防。传染性是病毒的基本特征。在生物界,病毒通过传染从一个生物体扩散到另一个生物体。在适当的条件下,它可得到大量繁殖,并使被感染的生物体表现出病症甚至死亡。同样,计算机病毒也会通过各种渠道从已被感染的计算机扩散到未被感染的计算机,在某些情况下造成被感染的计算机工作失常甚至瘫痪。与生物病毒不同的是,计算机病毒是一段人为编制的计算机程序代码,这段程序代码一旦进入计算机并得以执行,它就会搜寻其他符合其传染条件的程序或存储介质,确定目标后再将自身代码插入其中,达到自我繁殖的目的。只要一台计算机染毒,如不及时处理,那么病毒会在这台机子上迅速扩散,其中的大量文件(一般是可执行文件)会被感染。而被感染的文件又成了新的传染源,再与其他机器进行数据交换或通过网络接触,病毒会继续进行传染。 正常的计算机程序一般是不会将自身的代码强行连接到其他程序之上的。而病毒却能使自身的代码强行传染到一切符合其传染条件的未受到传染的程序之上。计算机病毒可通过各种可能的渠道,如软盘、计算机网络去传染其他的计算机。当您在一台机器上发现了病毒时,往往曾在这台计算机上用过的软盘已感染上了病毒,而与这台机器相联网的其他计算机也许也被该病毒染上了。是否具有传染性是判别一个程序是否为计算机病毒的最重要条件。 病毒程序通过修改磁盘扇区信息或文件内容并把自身嵌入到其中的方法达到病毒的传染和扩散。被嵌入的程序叫做宿主程序;(3) 潜伏性 有些病毒像定时炸弹一样,让它什么时间发作是预先设计好的。比如黑色星期五病毒,不到预定时间一点都觉察不出来,等到条件具备的时候一下子就爆炸开来,对系统进行破坏。一个编制精巧的计算机病毒程序,进入系统之后一般不会马上发作,可以在几周或者几个月内甚至几年内隐藏在合法文件中,对其他系统进行传染,而不被人发现,潜伏性愈好,其在系统中的存在时间就会愈长,病毒的传染范围就会愈大。 潜伏性的第一种表现是指,病毒程序不用专用检测程序是检查不出来的,因此病毒可以静静地躲在磁盘或磁带里呆上几天,甚至几年,一旦时机成熟,得到运行机会,就又要四处繁殖、扩散,继续为害。潜伏性的第二种表现是指,计算机病毒的内部往往有一种触发机制,不满足触发条件时,计算机病毒除了传染外不做什么破坏。触发条件一旦得到满足,有的在屏幕上显示信息、图形或特殊标识,有的则执行破坏系统的操作,如格式化磁盘、删除磁盘文件、对数据文件做加密、封锁键盘以及使系统死锁等;(4) 隐蔽性 计算机病毒具有很强的隐蔽性,有的可以通过病毒软件检查出来,有的根本就查不出来,有的时隐时现、变化无常,这类病毒处理起来通常很困难。(5)破坏性 计算机中毒后,可能会导致正常的程序无法运行,把计算机内的文件删除或受到不同程度的损坏 。通常表现为:增、删、改、移。

上海巴斯德研究所论文

臧敬五博士自2007年转入创新药物研发领域,曾担任GSK全球高级副总裁,中国研发中心总裁,创建了GSK中国研发中心,负责公司在神经免疫系统的全球新药研发。在发展高峰期,臧敬五负责约500人的全球研发团队,将早期实验室研发成果推进至临床一期及二期阶段,为中国,特别是上海培养了一批国际化的创新药物研发人才。

1.来自中国科学院,浙江自然博物馆,英国莱斯特大学等处的研究人员发现了一个成年达尔文翼龙(Darwinopterus)的化石以及一枚与其在一起的蛋,并对这种恐龙进行了雌雄两性比较,从而为判别这些已灭绝动物的性别提供了直接证据。这一研究成果公布在上周出版的Science杂志上。2. 来自哈佛医学院,麻省总医院,澳大利亚墨尔本大学等处的研究人员就利用这一技术进行了大规模测序,并配合功能预测,和实验验证,揭示了线粒体complex I失序症的分子机制,从而提出了一种利用高通量测序方法分析候选基因的新策略。这一研究成果公布在Nature Genetics杂志上。 3.近期来自中国、美国和韩国的科学家在miRNA研究领域又取得一些重要的研究进展,研究成果相继发表在国际顶级期刊Nature 和Cell杂志上,值得关注。4.近日上海交通大学生命科学技术学院力学生物学与医学工程研究所在国家自然科学基金重点项目“血管细胞分化与迁移的力学生物学机制”研究取得重要进展,研究论文发表在本年1月18日的《美国科学院院刊》(PNAS)上5. 近日中科院上海生命科学研究院生物化学与细胞生物学研究所肖磊课题组利用病毒载体在细胞中表达多种重编程因子,诱导绵羊成纤维细胞重编程转化成诱导多能干(iPS)细胞,这是目前世界上首次报道获得的绵羊iPS细胞系。研究论文在线发表在2011年1月11日的《细胞研究》(cell research)杂志上。 6.中科院上海巴斯德研究所戈宝学课题组11月10日在免疫学权威学术期刊《Journal of Immunology》上发表最新论文,该成果揭示了microRNA在固有免疫中的作用以及调控机制,并研究了这种作用在地塞米松抗炎症效应中的地位。7.来自哈佛医学院,麻省总医院,澳大利亚墨尔本大学等处的研究人员就利用这一技术进行了大规模测序,并配合功能预测,和实验验证,揭示了线粒体complex I失序症的分子机制,从而提出了一种利用高通量测序方法分析候选基因的新策略。这一研究成果公布在Nature Genetics杂志上。 8.来自麻省总医院癌症中心首席科学家:Daniel A. Haber教授是一位在癌症研究领域从事多年科研工作的科学家,他曾获得过多项癌症研究方面的新技术,比如高效地捕获肿瘤细胞的CTC芯片、少量细胞多层次图谱等。近期Haber教授又接连在Science,Nature,N Engl J Med等著名期刊上发表文章,解析癌症新技术。 9.英国科学家近日利用高科技扫描器—一种名叫“功能磁共振成像”的机器,可在人类的大脑在活动时进行扫描并拍摄相关图像。从扫描器中不仅能够看到大脑与皮、骨之间清晰图像,甚至能观察到了人类同情心等心理活动中大脑的运作过程。 10. 来自清华大学生科院,医学院,普林斯顿大学Lewis Thomas实验室等处的研究人员报道了一种重要的转运因子的蛋白结构,这一结构由6个跨膜区域以之前未见报道的新折叠形式出现,这对于了解核黄素(维生素 B2)的运输,以及进一步拓展生物学结构具有重要意义。

臧敬五博士对中国科研体制创新的贡献:臧敬五博士不但是一个优秀的海归科学家也是一个优秀的科研管理者,回国后进入上海第二医学院(现上海交大医学院)及中国科学院,长期在上海工作,曾担任上海市免疫学研究所所长,上海交大医学院基础医学院院长,上海交大医学院医学科学院院长,创建了中科院健康科学研究所和上海巴斯德研究所,并任两家研究所的首任所长。在此期间,臧敬五充分发挥了其在美国及欧洲的基础研究及临床应用的管理经验,结合当时国内转化医学研究相对薄弱,基础科学和临床研究脱节的现状,在科研体制创新,特别是转化医学方面做了开拓性的工作。臧敬五创建的健康科学研究所及中科院巴斯德研究所一直是基于转化医学的科研体制创新的典范。臧敬五作为外籍海归科学家曾两次获得上海市政府颁发的“白玉兰奖”(金奖一次,银奖一次)。

你是文科? 是江苏的?江苏的我不知道 但其他省文科不可以报生物 文科也不能学医

上海免疫学研究所发表论文

臧敬五博士长期致力于免疫系统疾病的研究,在1993年以第一作者发表了关于T细胞疫苗治疗自身免疫疾病的研究成果,首次阐明了T细胞疫苗治疗的效果及机理,文章发表在《科学》期刊,为全球同行所关注。在此期间,臧敬五针对自身免疫疾病中各种致病T淋巴细胞开展了系统性的研究,在国际上逐步形成了针对自身免疫T淋巴细胞致病机理从疾病模型、细胞功能、分子机制三个不同层次的研究体系。 2002年回国后,任职交大医学院及中国科学院,带领团队在自身免疫病领域进一步深耕,在《自然-免疫学》、《自然-医学》、《免疫》等国际顶级学术期刊上发表了大量优秀论文,曾获得科技部863项目,自然基金委重大专项,教育部重大专项及上海市科委连续的科研支持。臧敬五回国后的科研工作曾获许多奖项,如“上海市科技进步二等奖”,中科院“百人计划”,上海市“浦江人才计划等。

我也叫做林晨

臧敬五博士对中国科研体制创新的贡献:臧敬五博士不但是一个优秀的海归科学家也是一个优秀的科研管理者,回国后进入上海第二医学院(现上海交大医学院)及中国科学院,长期在上海工作,曾担任上海市免疫学研究所所长,上海交大医学院基础医学院院长,上海交大医学院医学科学院院长,创建了中科院健康科学研究所和上海巴斯德研究所,并任两家研究所的首任所长。在此期间,臧敬五充分发挥了其在美国及欧洲的基础研究及临床应用的管理经验,结合当时国内转化医学研究相对薄弱,基础科学和临床研究脱节的现状,在科研体制创新,特别是转化医学方面做了开拓性的工作。臧敬五创建的健康科学研究所及中科院巴斯德研究所一直是基于转化医学的科研体制创新的典范。臧敬五作为外籍海归科学家曾两次获得上海市政府颁发的“白玉兰奖”(金奖一次,银奖一次)。

福建童星林晨

上海有机化学研究所论文奖励

1.中国科学院化学研究所(北京)

中国科学院化学研究所成立于1956年,是一所以基础研究为主,以国家急需和具有重要战略目标的高技术创新研究为重点,与高新技术的应用和转化协调发展的多学科综合性研究所。是具有重要国际影响力的高水平化学研究机构。

化学研究所的主要学科有高分子科学、物理化学、有机化学、分析化学和无机化学。

因此,自成立以来,化学研究所已获得300多项国家级和省级成果奖。在发表SCI论文数和被引论文数方面,连续十多年位居全国科研机构前列,特别是高影响力论文数保持增长,自然指数连续五年居中科院研究所首位。

化学所的专利申请和授权数量在中科院研究机构中一直名列前茅,一批重要成果应用于国家经济建设和国防建设。

2.中国科学院上海有机化学研究所

中国科学院上海有机化学研究所(简称上海有机所)是集基础研究、应用研究和高科技创新研究为一体的综合性化学研究机构。它创建于1950年5月,是中国科学院首批成立的15个研究所之一。其前身是1928年7月成立的原中央研究院化学研究所。

上海有机技术研究所现有两个国家重点实验室和四个重点实验室,分别是生物有机化学国家重点实验室、金属有机化学国家重点实验室、中国科学院有机氟化学国家重点实验室。

中国科学院天然产物有机合成化学国家重点实验室、中国科学院有机功能分子合成与组装化学国家重点实验室和中国科学院能源调控材料国家重点实验室。此外,还有多个与国内外高校和企业联合建立的联合研究中心,如沪港化学合成联合实验室、宁波新材料创造中心等。

受中国化学会委托,上海有机所负责编辑出版《有机化学》《化学学报》《中国化学》(英文版)。

3.中国科学院大连化学物理研究所

中国科学院大连化学物理研究所(以下简称“大连化物所”)创建于1949年3月,当时的名称是“大连大学科学研究所”。1961年底更名为“中国科学院化学物理研究所”,1970年正式命名为“中国科学院大连化学物理研究所”。

大连化学物理研究所是一所基础研究与应用研究并重,应用研究与技术改造相结合,以课题为主要特色的综合性研究所。大连化学物理研究所的重点学科是催化化学、工程化学、化学激光与分子反应动力学、现代分析化学与生物技术。

围绕国家能源发展战略,大连化工学院于2011年10月启动了清洁能源国家实验室(DNL)的筹建工作。DNL是中国能源领域首个筹建的国家实验室,拟筹建化石能源及应用催化、低碳催化与工程、节能与环境、燃料电池、储能、氢能及先进材料、生物能源、太阳能、海洋能、能源基础与战略、能源研究技术平台等。

因此,大连化学物理研究所自成立以来,造就了一批享誉国内外的科学家和一大批高素质的研究技术人才。20名科学家当选中国科学院和中国工程院院士,4名发展中国家科学院院士,1名欧洲人文和自然科学院院士。截至2018年底,两院院士14人,国家千人计划入选21人,创新人才推进计划入选25人,国家杰出青年基金获奖25人。

上海有机所1985 年7月被批准建立有机化学博士后科研流动站,拥有1个一级学科博士点,2个一级学科硕士点,3个专业硕士点。学科方向主要有生命有机化学、金属有机化学、有机氟化学、有机合成化学、物理有机化学和计算机化学。 一级学科博士点:有机化学 一级学科硕士点:高分子化学与物理、有机化学 专业硕士点:材料工程、化学工程、生物工程 截至2009年6月,自1999年开始评选的全国优秀博士学位论文,10年来研究所共计入选9篇,入选数居全国化学学科和中科院下属化学口研究所之首。入选数占全国化学学科学科总数(共计69篇)的13%。占中科院化学学科入选总数(共计36篇)的25%。自1989年启动的院长奖学金评选,研究所共有67名研究生获奖(其中博士生55名),在55名获奖的博士生中有15名获院长奖学金特别奖。上海有机所自1978年恢复研究生招生以来,共招收2208名研究生。其中博士研究生944名,硕士研究生1264名。 已授博士学位695人,硕士学位466人。 有在学研究生446人。其中博士生184人;硕士生262人。

以前有机所是很牛的 但是现在人员流失比较严重···只剩下几个大牛还在撑场面···不过底蕴还是很雄厚的···可以考虑···

尼玛 这是全国最牛逼的地方了。

  • 索引序列
  • 上海材料研究所论文
  • 上海病毒研究所论文
  • 上海巴斯德研究所论文
  • 上海免疫学研究所发表论文
  • 上海有机化学研究所论文奖励
  • 返回顶部