第一步是C=O断开成-C-O-,苯环上羟基邻位的H与苯环断开,C连苯环,O连H。
第二步是C-OH断开,苯酚上羟基对位的H与苯环断开,-OH与H结合成水,C连苯环。
在有机反应中,相同的反应物在同一条件下会反应生成不同生成物,例如甲烷与氯气反应,同是在光照条件下,会生成一氯甲烷、二氯甲烷、三氯甲烷和四氯化碳,加入的催化剂不同,也许生成物的比率也不同,所以为了控制邻位,需要加入特定催化剂。
性质
固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,实体的比重平均左右,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。
由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。
以上内容参考:百度百科-酚醛树脂
酚醛树脂是以酚类化合物与醛类化合物为原料经缩聚反应制得的合成树脂的总称。它是最早实现工业化的合成树脂,由于它具有很多优点,如绝缘性能好、隔热、防腐、防潮、其模塑品强度高、尺寸稳定性好,耐高温、价廉等,因此在现代工业中是应用最广的塑料之一。本实验是在酸性催化剂下,使甲醛与过量的苯酚缩聚而得到热塑性树脂。其反应式为: 分子量在1000以下。可加热熔融,可溶于丙酮、酒精或碱性溶液中。三、实验内容1、实验药品 苯酚 甲醛(30%水溶液) 盐酸(d=)2、实验步骤 将40g苯酚及33g甲醛溶液放入250ml的三口烧瓶中混合,用水浴加热,温度维持在60±2℃,取样2~3g后,加入盐酸,反应立即开始,每隔30min用滴管取样2~3g样品放入三角瓶中,进行分析。反应3h后,将三口烧瓶内所有物料倒入水蒸发器中,冷却倒掉上层水,将下层缩聚物用水搅拌洗涤数次,直到呈中性为止。然后用小火加热,以除去水及未反应的苯酚等挥发成分。挥发完毕后泡沫消失,而且树脂表面变得光滑。当温度约达170~180℃时,停止加热,把树脂放在铁皮上 使其冷却,称其产量,计算产率。四、苯酚存在下甲醛含量的测定 1、分析甲醛含量: 根据甲醛与亚硫酸钠作用,生成氢氧化钠,然后用标准盐酸溶液滴定生成的氢氧化钠 。2、测定步骤: 将准确称量过的2—3g苯酚、甲醛混合物置于250ml的锥形瓶中,加入25ml蒸馏水,再加入3滴百里酚酞指示剂,用CNaOH=·L-1NaOH标准液滴定至溶液出现蓝色。然后加入1mol亚硫酸钠溶液25ml,为了使亚硫酸钠与甲醛反应完全,混合物在室温下放置2h,然后用CHCl=·L-1盐酸滴定至蓝色褪去。甲醛的百分含量计算式为:x%=C·V·MHCHO/1000W式中:x——甲醛含量 V——滴定所消耗的盐酸体积,ml C——盐酸的mol浓度 W——称量样品物质量 MHCHO——甲醛分子量五、实验数据处理1、实验数据:反 应时 间反 应现 象反 应温 度取 样空瓶质量g空瓶质量+样品质量g物料量g百分含量 2、根据分析结果,计算在不同时间甲醛的转化率,以时间对甲醛的浓度作图。六、思考题:1、计算配方中苯酚甲醛mol比,为什么要如此配方?2、苯酚与甲醛缩聚为什么既能生成线型缩聚物,又能生成体型缩聚物?任务书实验项目考核标准成果展示实验室规则总结
一、背景介绍 酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加 着色剂 而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于 丙酮 、酒精等 有机溶剂 中。苯酚醛或其衍生物缩聚而得。 酚醛树脂是世界最早人工合成和工业化生产的一类合成树脂,其原料易得,生产工艺简单,综合性能优良,应用非常广泛,因此研究酚醛树脂的制备方法,具有很高的社会意义和经济价值。酚醛树脂合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。 缩聚反应是指具有两个或两个以上官能团的单体,相互反应生成高分子化合物,同时产生有小分子(如 H2O、HX、醇等)的化学反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。 酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及 合成纤维 等 二、实验仪器 试管,烧杯,胶头滴管,酒精灯,石棉网,三脚架,药匙,玻璃棒,天平,量筒 三、实验试剂 苯酚,40%甲醛溶液,浓盐酸,乙醇 四、实验原理 苯酚和甲醛在酸性或碱性的催化剂作用下,通过缩聚反应生成酚醛树脂。 在酸性催化剂作用下,苯酚过量时生成线型热塑性树脂。 在碱性催化剂作用下,甲醛过量时生成体型热固性树脂。 五、实验装置六、实验步骤及现象 1、往试管中加入2g苯酚和3mL甲醛溶液,再用胶头滴管加入3滴浓盐酸,放在沸水浴中加热。 2、当试管中反应物渐渐沸腾时,从沸水中取出试管,并用玻璃棒不断搅拌试管中的溶液,可以观察到有白色固体生成。 3、待试管冷却至室温,往试管中加入无水乙醇,发现固体不溶解。 4、再将试管放在沸水浴中加热,白色固体也不溶解。说明制得了酚醛树脂。 七、 缩聚反应的特点是: (1)单体不一定含有不饱和键,但必须含有两个或两个以上的反应基团(如—OH、—COOH、—NH2、—X等)。 (2)缩聚反应的结果,不仅生成高聚物,而且还有副产物(小分子)生成。 (3)所得高分子化合物的化学组成跟单体的化学组成不同。
就是n个苯酚和n个甲醛一定条件合成一个缩合物,还得到n个水
LDZ1994 - 助理 二级 连自己的身份都敢暴露真是胆子大啊,复合材料在军事上的应用非常广泛,如坦克的复合装甲应用前景非常的好,上面的资料已经非常的充分了
既然你这么急,给你推荐一个人吧 他能帮你的,很快Q9281 06483
已发表学术论文40余篇,被SCI/EI收录23篇(其中SCI收录17篇),被引用136次,单篇引用最高达36次。 (1)学术论文: 2014-2015年17) Bing Zhang *, Dandan Zhao , Yonghong Wu, Hongjing Liu , Tonghua Wang *, Jieshan Qiu. Fabrication and Application of Catalytic Carbon Membranes for Hydrogen Production from Methanol Steam Reforming. . Res. (IF=), 2015, 54(2): 623-632. SCI/EI收录16) B Zhang*, D Wang, Y Wu, Z Wang, T Wang, J Qiu. Modification of the desalination property of PAN-based nanofiltration membranes by a preoxidation method. Desalination (IF=), 2015, 357: 208-214. SCI/EI收录15) Zhang, Bing*; Dang, Xiaolong; Wu,Yonghong; Liu, Hongjing; Wang, Tonghua; Jieshan, Qiu. Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. Journal of Materials Research (IF=), 2014, 29(23): 2881-2890, (SCI/EI)14)Bing Zhang*, Yonghong Wu, Yunhua Lu, Tonghua Wang, Jieshan Qiu*.Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science (IF=), 2015, 474:114-121. (SCI/EI)13) . Liu, D. Li, H. Yao, Y. Pan, Y. Zhang, B. Zhang, Enhancement of Carbon Dioxide Mass Transfer Coupling the Synthesis of Calcium Carbonate Fine Particles by (Ionic Liquid)-Emulsion Liquid Membrane, Journal of Dispersion Science and Technology, 36 (2015) 489-495. (SCI/EI)12)吴永红,张兵,张满闯, 周佳玲, 王同华. 聚丙烯腈基炭膜的制备及气体分离性能的研究. 化学工程, 2015, 已录用。2015-0086。(CSCD收录)10) 吴永红,谷裕,肖大君,张兵, 江园, 周佳玲. 聚丙烯腈基纳滤膜脱盐性能的研究. 应用化工,2015,已录用。(CSCD收录)9) 孙明珠,张兵*,吴永红,朱静. 超声波在强化燃料油氧化脱硫技术的研究进展. 现代化工,2015, 已录用。(CSCD收录)8) 吴永红,张兵*,肖大君. 宁夏无烟煤基活性炭的制备及吸附性能研究. 化工新型材料,2015,已录用。(CSCD收录)7) 张兵*, 赵丹丹, 沈国良, 于智学, 吴永红, 王同华.强化甲醇制氢反应的酚醛树脂基炭膜制备. 沈阳工业大学学报,2014,36(5):503~) Zhang, B*; Shi, Y; Wu, Y; Wang, T; Qiu,J. Preparation and characterization of supported ordered nanoporous carbon membranes for gas separation. Journal of Applied Polymer Science, 131 (4):2136-2146, 2014.(SCI/EI)。5) B Zhang*, Y Shi, Y Wu, T Wang, J Qiu. Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation. Separation Science and Technology, 49 (2): 171–178, 2014. (SCI/EI)。4) B. Zhang*, Z. Yu, Y. An, Y. Wu, Y. Shi,Z. Liu, T. Wang. Preparation and characterisation of large sized ordered mesoporous carbon film from resorcinol/formaldehyde by basic catalysts. Materials Research Innovations, 2014, 18(4): 294-299. (SCI/EI)。3) 吴永红,张兵*,石毅,赵丹丹,党晓龙,王同华. ODPA-ODA型聚醚酰亚胺膜的预氧化机理. 沈阳工业大学学报, 2014,36(3):280~) 张兵*, 党晓龙, 吴永红, 于智学,王同华. 成膜基质对炭膜结构与气体分离性能的影响. 膜科学与技术, 2014, 34(6): ) 张兵*,石毅,吴永红, 赵丹丹, 党晓龙, 王同华. 分离炭膜研究的新技术进展. 化工新型材料, 2014,42(8): 7-8+年5) 吴永红, 张兵*, 沈国良, 赵丹丹, 党晓龙. 烟煤基活性炭的制备及脱除甲基橙性能的研究. 化工进展, 32(z): 88-92, ) 张兵*,于智学,石毅,吴永红,王同华. BPDA-ODA型聚酰亚胺基沸石杂化炭膜的制备及气体分离性能. 膜科学与技术, 33(3): 33-38, ) 张兵*,王颖,吴永红,赵薇. 聚丙烯腈纳滤膜的制备及其对氯化钙的去除. 化工环保, 33(4):349-353, ) Sun, MZ*; Zhang, B; Wu, YH; Zhu, J;Zhao, DZ. Deep oxidative desulfurization of FCC diesel fuel with ultrasound. Petroleum Science and Technology, 30(23): 2471-2477, 2012. (SCI/EI)1) 吴永红, 孟繁妍, 于智学, 张兵*, 王同华. 有序多孔炭材料的研究进展. 化工新型材料, 40(1): 10-12, 年13) B. Zhang*, Y. Wu, T. Wang, J. Qiu, . Microporous carbon membranes from sulfonated poly(phthalazinone ethersulfone ketone): Preparation, characterization and gas permeation. Journal of Applied Polymer Science, 122 (2): 1190-1197, 2011. (SCI/EI)12) B. Zhang*, Y. Wu, F. Meng, T. Xu, , M. Sun. Preparation and characterization of ordered nanoporous carbonmaterials by templating method. Procedia Engineering, 27: 762 – 767, 2012. (EI)11) Zhang, B*; Wu, YH; Wang, TH; Qiu, JS;Xu, TJ; Sun, XH. Effects of curing method on the gas separation performance of phenolic resin/poly(vinyl alcohol)-based carbon membrane materials. Materials Science Forum, 675-677: 1185-1188, 2011.(EI)10) 吴永红,张兵*,朱静,孙明珠. 偏三甲苯溶剂法2,4′-二羟基二苯砜的合成. 精细石油化工,28(3):73-76, ) 孟繁妍,于智学,吴永红,张兵*. 支撑有序孔炭膜的制备及气体分离性能. 化工进展,30(Z2):85-88, ) 张兵*,于智学,吴永红,傅承碧,班玉凤. 无机膜反应器的研究进展. 材料导报, 25(S2):450-453, ) 宋菊玲,吴永红,刘波,张兵. 沸石吸附脱除水溶液中品红的研究. 化学工程与装备,(1):30-31, ) 吴永红,孟繁妍,朱静,孙明珠,张兵*. 活性炭二次化学活化剂其吸附性能的研究. 石油化工, 39 (z):1000-1002, ) 赵文凯,朱静,宋菊玲,孙明珠,吴永红. 生物柴油降凝方法的研究. 当代化工, 39(2): 141-143, ) 朱静,付雪,孙明珠,吴永红. 大豆油生物柴油降凝方法研究.粮食与油脂, 11:7-9, ) B Zhang, G Shen, Y Wu, T Wang, J Qiu, TXu, C Fu. Preparation and characterization of carbon membranes derived frompoly(phthalazinone ether sulfone) for gas separation. . , 48 (6): 2886–2890. (SCI/EI)2) T Wang, B Zhang, J Qiu, Y Wu, S Zhang, Y Cao. Effects of sulfone/ketone inpoly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. Journal of Membrane Science, 2009, 330: 319-325. (SCI/EI)1) B. Zhang, T. Wang, Y. Wu, S. Zhang, etal. Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Technology, 2008, 60: 259–263. (SCI/EI)2006年以前6) B. Zhang, . Wang, . Zhang, , . Jian. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 2006, 44 (13): 2764-2769. (SCI/EI)5) B. Zhang, . Wang, . Liu, , . Qiu. Structure and morphology of microporous carbon materialsderived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Material, 2006, 96(1-3):79-83. (SCI/EI)4) Q. Liu, T. Wang, C. Liang, B. Zhang, , Y. Cao, J. Qiu. Zeolite married to carbon-a new family of membrane materials with excellent gas separation performance. Chem. Mater., 2006, 18(26): 6283-6288. (SCI/EI)3) 张兵,王同华,邱介山等,聚酰亚胺基气体分离炭膜的研究进展, 膜科学与技术,2007,27(5):) 刘诗丽,王同华,张兵,聚醚砜酮薄膜热稳定性及热解动力学规律的研究, 新型炭材料, 2004,19: 224-228. (SCI收录)1) 张兵, 李平. 活性炭纤维填充床脱除水中苯和氯苯及其再生的研究, 沈阳化工学院学报, 2003, 17 (3): 188-192.学术会议交流30) Yonghong Wu1, Bing Zhang1,2,*, Dandan Zhao1, Xiaolong Dang1, Tonghua Wang2. Fabrication of supported carbon/carbon composite membranes for gas separation. PO-1-00931. The 10th International congress on membranes and membrane processes. ICOM2014, July 20-25, 2014, Suzhou,) Xiaolong Dang1, Yonghong Wu1, Bing Zhang1,2,*, Dandan Zhao1, Tonghua Wang2. Preparation and characterization of phenolic resin-based carbon membranes. PO-1-00945. The 10th International congress on membranes and membrane processes. ICOM2014, July 20-25, 2014, Suzhou,) 吴永红,张兵*,石毅,王同华. 炭/炭杂化膜的制备及气体分离性能研究. 2013年10月25~27日,“第八届全国膜与膜过程学术报告会”,大连,口头报告。2) B Zhang*, Y SHI, Y Wu, D Zhao, X Dang, T Wang. Preparation and characterization of carbon molecular sieving membranes made from BTDA-ODA type polyimide. 2013年7月16~19日,“亚太膜学会第八届会议(The 8th Conference of Aseanian Membrane Society , AMS8)”,西安,墙报展示。(P2-A-60)3) 张兵*, 于智学, 石毅, 吴永红. 催化炭膜的制备及强化甲醇制氢研究. 第十六届全国催化会议, 沈阳, 2012年10月(全国会议)4) 于智学, 张兵*, 石毅, 吴永红. 酚醛树脂基微滤炭膜的制备及在甲醇制氢的应用. 第十六届全国催化会议, 沈阳, 2012年10月.5) B. Zhang, * Y. Wu, Y. Shi, T. Wang, J. Qiu. Preparation and characterization of carbon molecular sieving membranes made from Polyetherimide. International Carbon Conference, 2011年7月25-29,华东理工大学. ) F. Meng, B. Zhang*, Z. Yu, Y. Wu, T. Xu, C. Fu. Controlled fabrication of ordered nanoporous carbon membranes by preoxidation. International Carbon Conference, 2011, July, 25-29, ) 张兵*, 吴永红, 于智学, 石毅, 王同华. 沸石杂化炭膜的制备及气体分离性能. 第七届全国膜与膜过程学术报告会,2011年11月4-7日, 杭州8) 孟繁妍; 于智学; 吴永红; 张兵*. 支撑有序孔炭膜的制备及气体分离性能. 第四届全国传质与分离工程学术会议(全国会议)(墙报)2011/11/18-2011/11/21, 天津9) B. Zhang*, Y. Wu, T. Wang, J., T. Xu, X. Sun. Effects of curing method on the gas separation performance of phenolic resin/poly(vinyl alcohol)-based carbon membrane materials. The 7th International Forum on Advanced Material Science and Technology, 26-28 June 2010, Dalian, ) Zhang B*, Fu C, Zhao H, Wu Y, Zhang D. Hydrogen production from methanol steam reforming via a plate carbon membrane reactor. International Symposium on Sustainable Energy: Challenges and Opportunities, 2010, Feb 5-8, ) 孟繁妍, 张兵*, 吴永红, 徐铁军, 孙秀华. ZSM-5杂化PR/PVA炭膜的制备及透气性. 第四届中国膜科学与技术报告会. 2010年10月16-18日, 北京, ) 张兵*, 吴永红, 孟繁妍,徐铁军, 朱静, 孙明珠. 模板法有序纳米孔炭材料的制备及表征. 2010中国材料研讨会, 2010年6月19-21日, 长沙, ) 张兵*, 孟繁妍, 吴永红, 王同华. 软模板法酚醛树脂基有序纳米孔炭膜的制备. 第六届全国化学工程与生物化工年会, 2010, 10月 29-31日, 长沙.14) 张兵,吴永红,王同华,等. 酚醛树脂/聚乙烯醇基炭膜的制备及气体渗透性.中国工程院化工、冶金与材料工程学部第七届学术会议,2009,11月,天津,) B. Zhang, . Wang, . Zhang, . Qiu, The structural characterization of carbon membranes derived from poly(phthalazinone ether sulfone ketone)s, Carbon’05 inKorea, 2005. ) B. Zhang, . Wang, . Zhang, . Qiu, Effect of sulfone/ketone of poly(phthalazinone ether sulfone ketone) on gas permeation of carbon membranes. China/USA/Japan joint chemical engineering conference, Beijing,China, 2005. ) B. Zhang, T. Wang, S. Liu, J. Qiu, X. Jian, Preparation and characterization of carbon membranes derived from sulfonated poly (phthalazinone ether sulfone ketone), Carbon’06 in United Kingdom, ) B. Zhang, T. Wang, Q. Liu, S. Liu, S. Zhang, J. Qiu, Improvement in gas permeation of carbon membranes derived from PPESK by adding additives. Carbon’06 inUnited Kingdom, ) L. Hu, B. Zhang, T. Wang, S. Liu, S. Zhang, J. Qiu, Preparation and gas permeation of carbon membranes derived from HQDPA-ODA polyimide, The Third Conference of Aseanian Membrane Society, 2006. Beijing,) Q. Liu, T. Wang, B. Zhang, J. Qiu, C. Liang, Y. cao. Nanostructured carbon/zeolite composite membrane for gas separation. Am. Chem. Soc., Div. Fuel Chem. “Chemistry of Carbon Materials and Nanomaterials”,231st ACS National Meeting, Atlanta, GA,USA, March 26-30,) Q. Liu, T. Wang, B. Zhang, H. Zhang, J. Qiu, C. Liang. A self-supporting composite carbon membrane prepared by pyrolysis poly (amic acid) /carbon nanotuble. Carbon 2006, The International Carbon Conference Aberdeen,UK, 2006, July 16-21. (SCI)22) Q. Liu, T. Wang, Q. Liu, B. Zhang, S. Liu, L. Wang, C. Liang, J. Qiu, Y. Cao. Rational Design and synthesis of novel carbon-metal Composite membrane with controlled porosity through Metal-Catalyzed Decomposition of Surrounding Third Conference of Aseanian Membrane Society. July 19-21, 2006, Beijing,) 张兵,王同华,邱介山等,一种用于制备气体分离炭膜的新型聚合物材料, 第七届全国新型炭材料学术研讨会, 西宁, ) 张兵,王同华,邱介山等,聚酰亚胺基炭分子筛膜的制备及表征, 第二届中国膜科学与技术报告会, 北京, ) 张兵,王同华,邱介山等,前驱体化学结构对炭膜气体分离性能的影响, 第二届全国化学工程与生物化工年会, 北京, 2005. ) 张兵,王同华,邱介山等,聚醚砜酮基气体分离炭膜的制备及表征, 2005年全国博士生学术论坛, 上海复旦大学, 2005. ) 刘庆岭,王同华,张兵,等,新型/沸石纳米复合膜气体分离炭膜的制备与表征, 第二届中国膜科学与技术报告会, 北京, ) 刘庆岭, 王同华, 刘勤华, 张兵, 邱介山, 曹义鸣. 新型C/TiO2 纳米复合膜制备及其气体分离性能研究. 第二届全国膜技术在冶金中应用研讨会. 南京, 2006年5月27~28日.(2)教学改革论文1) 教改论文《化工热力学课程中“教-学-用”三位一体关系的探讨与实践》张兵,沈国良,李素君,吴永红,闫金城,徐铁军,班玉凤《化学工程与装备》,2013,(6):) 教改论文《基于实践教学培养创新型化工类人才改革的探讨》张兵,吴永红,沈国良,朱静,孙明珠《中国科教创新导刊》,2011,(29):) 教改论文《石油加工生产技术专业应用型人才培养的探讨》朱静,沈国良,赵文凯,孙明珠,班玉凤,张兵《化工高等教育》,2010,(05):) 教改论文《在有机化学实验中培养低碳意识》胡志泉,张兵《学习月刊》,2010,(12):1315) 教改论文《浅析化工专业英语教学方法》张兵,吴永红《化学工程与装备》,2008,(01):98-100(3)专利申请[1] 张兵, 吴永红, 刘红宇. 一种调控聚丙烯腈纳滤膜截留率的预氧化方法. 发明专利申请号[2] 虞琦; 张兵; 徐铁军; 张航. 一种用于油水分离的炭膜的制备方法.发明专利申请号[3] 张兵;吴永红;傅承碧;徐铁军. 一种炭膜反应器及其使用方法. 发明专利授权号ZL201010118376,授权日[4] 张兵;吴永红;傅承碧;徐铁军. 一种2,4-二羟基二苯砜的合成精制方法, 申请号200910188206[5] 张兵;吴永红;孟繁妍;于智学;石毅. 一种制备有序多孔炭膜的基质诱导法,发明专利授权号,授权日[6] 张兵;吴永红,朱静,孙明珠,于智学,石毅. 一种制备催化炭膜的共混热解法. 发明专利申请号2012101815829[7] 张兵, 吴永红, 石毅,赵丹丹, 党晓龙. 一种用于调控炭膜气体分离性能的磁场干预成膜方法. 发明专利申请号2012104962336[8] 张兵, 王同华, 吴永红, 李琳. 一种用于调控炭膜气体分离性能的磁场装置, 授权号ZL ,授权日[9] 王同华,张兵,邱介山,一种气体分离膜渗透仪的改进方法,授权号ZL2005102007928,授权日[10] 王同华,张兵,邱介山, 蹇锡高. 聚醚砜酮基气体分离炭膜的制备方法,授权号ZL20051020079327,授权日
沥青结合剂 pitch binder 1 iqing jieheji 沥青结合剂(piteh binder)一种有机胶结 材料。它是煤焦油或石油经过燕馏处理或催化裂化提 取沸点不同的各种馏分后的残留物,是以芳香族和脂 肪族结构为主体的混合物,呈棕黑色,不溶于水,组成 和性能随原料来源、蒸馏方法和加工处理方法不同而 异.在耐火材料工业中作非水性结合剂,主要用作含碳 耐火材料的结合剂,既可单独作结合剂,又可与焦油或 酚醛树脂等配合作结合剂。 分类耐火材料工业用的沥青结合剂是按沥青软 化点来分。软化点小于的℃的,称低温沥青(又称软 沥青)结合剂;软化点60~135℃,称为中温沥青(又 称中软沥青)结合剂;软化点大于135℃,称为高温沥 青(又称硬沥青)结合剂。 化学组成沥青组成很复杂,通常是用不同溶剂 对沥青进行分离萃取把沥青分为若干具有相似化学物 理性质的“组分”。常用的溶剂有甲苯、二甲苯、乙醚、 酒精、丙酮、四抓化碳、毗吮、三抓甲烷、乙烷、氛仿、 喳琳等。不同的溶剂也可搭配使用。如用苯和石油醚搭 配作为溶剂时,把沥青分离为3种组分,分别为a、凡 y。而a组分(苯不溶物)又可分为两种组分:a;组分 一喳嗽和甲苯不溶物;a:组分一喳啡可溶而甲苯不溶 物。一般苯可溶组分的平均分子量小于500,其碳与氢 元素含量之比为C/H~。苯不溶喳嗽可溶 组分平均分子量为300~2000,C/H一。座琳 不溶物组分平均分子量大于9000,C/H<。增加溶 剂的种类可相应增加组分的种类。表1为用不同溶剂 处理不同软化点(tp)的煤沥青(沥青:溶剂=1: 100)时,其不溶物的含量。 表1不同溶剂处理后的煤沥青中不溶物含皿(%) 韶针操停朱 沥青中含有的化学元素有C、H、S、N和0等。沥 青及其组分的元素组成特点是,碳含量高,而氢含量 低。a,组分的碳含量最高,说明它的芳香化结构最高, 这种组分和口:组分、夕组分一样,比原沥青含氧量高。 随着软化点的提高,无论是沥青中的碳含量,还是各组 分中的碳含量都有所增加。(表2) 表2不同软化点(tp)沥青的元素组成(%) 介甘喻 沥青的组分及元素组成在一定程度上反映出沥青 的化学组成。但它们没能提供有关化合物的确切类型、 性质和含量,以及和碳原子相连的杂原子键的特性等。 根据对中温沥青的质谱分析结果可以揭示出沥青中所 含的化合物类型,见表3。而根据色谱分析可显示出沥 青在低分子区域的一系列化合物,如I一萤葱;I一嵌二蔡嵌苯;呱一二蔡品(并)苯;呱一晕苯;卜苯并 二蔡;班一苯并联笨撑硫;W一蕙;V一苯并萤葱;vI一晕苯等,其煤沥青的色谱图如图1所示。 表3中温沥青质谱分析结果 一耳 注:括号中数字为分子量。 一一…污 物理性能沥青无固定的熔化温度,因此用软化沥青的闪点为200一250℃;高温沥青的闪点为360一 点来表示其固态转变为液态时的温度。沥青的主要物400℃。沥青的导热性不大,其热导率见表4。 理性能还有密度、粘度、表面张力、润湿性等。沥青的 密度随软化点的升高而提高,(图2)沥青的密度又随:’“。厂一—一,一—丈二7刁 加热温度的提高而降低·(图3)县}//} 沥青的粘度与温度的关系呈指数关系,在19甲一f卿‘.““「//} 一二一止-----,·-、、-一爪一,、一侧}/} (1/丁)的线性关系式上有拐点出现,这是由于粘性流厉}//} 动的活化能条件改变的缘故。图4为不同软化点(曲线1·30卜//} 所标示出的数字)的沥青粘度与加热温度的关系。软化嗽厂一一谕一一,渝一一二甜 点为65一90acgh沥青在80一_1护“间为_塑性流动物软化点/℃ 质,高于此温度时转变为牛顿液体状态,其流动性取决-一’ 千姑彦一沥音中加入黝。$lI.如精醛、煤浦、甲茉、油图2沥青密度与软化点的关系 L24,,.表4沥,的热导率 典卜_83℃~、‘、〔l软化点75℃甲笨不溶物含童的沥青 ,1·16卜,,、~~、、~I闪‘恤仄,,*11”·”一l“·口11‘。·。一‘。‘·二 侧165℃~、、福亡I热导家/W。(m。K)一11 1 已向刁0右8 却卜12L二1 .1 IJ一 150 220 260 300 340 370软化点160℃甲苯不溶物写的沥裔 加热沮度/℃测定温度/℃’{}168.。}: 1 270。 ~__一二,,‘,,t、,_,..,、.,、一二一~热导率/W·(m·K)一勺 1 1 1 0 1697 图3不同软化点(曲线标出的)的沥青密度八、;叼一‘”、一‘“’一’‘一‘一l一‘一一}一’‘一”l一‘~’ 与加热沮度的关系 沥青的破化作耐火材料的结合剂,要求沥青中 甲80,·,·,~「‘一,护“,·,,,‘z~一J,,”礴~曰,,砚~一刁,~内 日1}固定碳越高越好,也即要求沥青中挥发分越少越好。固 260卜、__1今禅粉育‘甘麒仆甚的仕八书角扮捉图,‘据.苗. 只,。口、、(、、l化率(固定碳含蛋)与结合力的姜系。但沥,的礴钦率 米一!夕、、、、、l、.一一“一‘二‘一‘一 画价亏℃、、、、~、%~I主要取决于沥青中高分子芳香族组成分的含量。如果 解2。瑞犷一节赫一一命一一翁厂一瑞。用碳/氢比来表示芳香度,则碳化率(固定碳)与芳香 加热盆度/℃度的关系如图8所示,说明芳香度越大固定碳含童越 图4不同软化点(曲线所标出的)的沥青粘度高。 与加热温度的关系 30尸.一一.一一一一尸J工,洲 1400r~--~~-‘卜,,-----}}l丫l 1000卜、\}‘。卜--一一一门~一一一了下月一一 云6oor、65℃\洲83℃\,‘;。}宝4}」笋0 11 拐20。卜、、\、\<屯二i}舌}}丫}{ ,坛尸一,浩于==冬舟=早书共书=姗20卜一一一一朴八一丫乙+一一习一半一一一叫 。。。。。。。。。。‘v拐!l/0 1 11 加热妞度/℃}l/l}} 图5不同软化点(曲线上标出的)的沥青的表面__}/l}!I 张力与加热温度的关系阿{}1{ ~42 46 50 54 60 二our一一-一人尸一一一一一一一门 }\\{ _}\_、}图7沥青的固定碳(F,C)含盆与结合力的关系 ‘4U…\又} 里‘o0r助长{55厂一下一门.一丁,丁歹犷门 嫂}、。、否L一日}}}}。.2】l 哨}、侧11}峨/、}l 蜓60卜\!_}}1。击/!} !、}、。50卜-----朴-~--州卜‘‘‘份肉庵奋一一‘一-耘一~ }己\}之}}}声犷丫几‘。X空落协! }\、}肠}}}Z尸。}一,}} 知L)心}侧}}少/}}} 一}‘\\_}阿_}」Z}}} _L一一一一J--一丛己J 45t-一什于卜叶一一十-一十一一州 。·生402艺·3。。I/l{11 ’嫌麒厂c}/}}}}} 图6沥青润湿角(6)与加热温度的关系40卜曰一一一,二,一一丰‘一一井一一一一七一‘一习 ..艺.。 l一甲胜劝骨(介76℃);2一高退沥青 ,,。,_、芳香度(c/H) 、‘p IOD峪声 176图8固定碳一芳香度相关图 和浇注料、转炉和电炉以及炉外精炼炉用的镁一碳砖、 铝镁碳砖、镁钙碳砖等的结合剂.使用时可根据条件不 同,有的可与焦油调配使用,有的可与酚醛树脂调配使 用。并可采用一些外加剂来改性以适合使用要求. 沥青加热过程中的变化见图9,大约在240℃开 》卜召又… 口「一、、,户产产‘l 钵‘才 十1; 梢{方2! 子l_厂 1口行卜~~口~~叭自、.尸~~~~-厂{ 试{、l ’:匕_一__又 扫20白400占口08台叮) 温度,/( 图9煤沥青(1)和未垠烧沥青焦(2)的差热分析谱线 通一盈热曲线,B一质t报失邃度.C一失t曲线 始出现质量损失,随温度升高失重增加,在530℃达到 最大值,达到640℃后又迅速降低。差热曲线表明: 40。℃以下出现的吸热效应为沥青分解并逸出轻馏分 的效应。在530℃的放热峰为以稠环芳烃及其缩合物 的自由基为主缩聚反应。在640℃的放热反应为芳香 缩合物网状堆积层成长并脱氢效应,在此过程中芳香 高缩合物分子密集堆砌,结果形成半焦碳化。 沥青的碳化呈两种结构:一种是所谓的镶嵌结构, 另一种是所谓的流动结构.这两种不同结构的产生是 由于不同的碳化机理造成的.沥青的碳化是经过液相 碳化。在碳化过程中、沥青先熔化,产生中间相小球体, 小球体不断长大和粗化,发展到一定程度互相熔合而 形成中间相.这种中间相是任意取向的各向异性的小 块(<1。阳)组成的。这就是所谓的镶嵌结构。如果 粗化后的中间相在一定条件下变形而产生某种程度的 择优取向,形成纤维状结构.这就是所谓的流动结构。 沥青的组成对结构有影响,苯不溶而毗旋溶的沥青所 得到的碳多呈流动结构,而毗吮不溶的沥青所得到的 多呈多孔薄壁碳,其结构为细镶嵌结构. 应用用作高炉炉缸的碳砖、错一碳砖、铝一碳化 硅一碳砖、高炉出铁沟用的铝一碳化硅一碳质捣打料 ...... 中间包镁质干式料用结合剂的研究 Binders of magnesia based dry vibration mix for tundish 首先将电熔镁砂(≤ mm)分别与低温结合剂(分别为沥青、蔗糖、石蜡、松香、酚醛树脂)和中温结合剂(分别为三聚磷酸钠、九水硅酸钠、六水氯化镁、硼酸、十水硼砂和硼酸盐玻璃)按95:5的质量比混练均匀,以120 MPa的压力干压成型为φ36 mm×36 mm的试样,分别在300℃2 h、1 000℃3 h、1 450℃3 h、1 500℃3 h和1 600℃3 h条件下热处理后测量其显气孔率、体积密度和耐压强度,以评价这些结合剂的结合性能和促烧结性能,并评价了其环保性;然后,在上述试验的基础上分别采用沥青-硼酸盐玻璃、松香-硼酸盐玻璃和酚醛树脂-硼酸盐玻璃3种复合结合剂按镁质干式料的配方制备成镁质干式料试样,分别在200℃2 h、1 100℃3 h和1 500℃3 h条件下热处理,测量试样热处理后的永久线变化率、显气孔率、体积密度和耐压强度等常温物理性能.结果表明:采用酚醛树脂、沥青和松香为结合剂时,镁质材料300℃2 h热处理后的耐压强度较高;而采用硼酸、十水硼砂和硼酸盐玻璃为结合剂时,镁质材料1 000℃3 h热处理后的耐压强度较高,硼酸和硼酸盐玻璃能明显促进镁质材料的高温烧结;使用5%松香-4%硼酸盐玻璃作为复合结合剂制备的镁质干式料具有较好的常温物理性能和环境友好性.沥青粉相关用途如下:磺化沥青粉含有磺酸基,水化作用很强,当吸附在页岩界面上时,可阻止页岩颗粒的水化分散起到防塌作用。同时,不溶于水的部分又能填充孔喉和裂缝起到封堵作用,并可覆盖在页岩界面,改善泥饼质量;磺化沥青在钻井液中还起润滑和降低高温高压滤失量的作用,是一种堵漏、防塌、润滑、减阻、抑制等多功能的有机钻井液处理剂。推荐加量1-4%。超高温沥青粉(镁碳砖特种沥青结合剂)主要用于耐火材料中的补炉剂和镁碳砖中的固体结合剂。
高。酚醛树脂是很好的原料,但是做硬碳成本没有优势。酚醛树脂最便宜的价格也要1万/吨,因为含碳量是40%,硬碳是指难以被石墨化的碳,是高分子聚合物的热分解。
沈万慈 李新禄 邹麟 康飞宇 郑永平
(清华大学材料科学与工程系,新型炭材料研究室,北京 100084)
摘要 中国具有丰富的天然石墨资源,对天然石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。对高纯微晶石墨进行了整形和表面包覆碳膜的处理,首次循环效率提高至,循环稳定性也得到了明显改善。试验表明,表面包覆的微晶石墨是一种优良的锂离子二次电池复合负极材料。采用H2SO4-GIC石墨层间化合物技术对鳞片石墨进行预膨胀处理,在石墨颗粒内形成亚微米-纳米空隙,提高了石墨制品的放电容量、快速充放电能力及循环寿命,特别适用于高能锂离子电池的发展要求[1~11]。
关键词 天然石墨;表面包覆;预膨胀;负极材料;锂离子电池。
第一作者简介:沈万慈,清华大学材料科学与工程系教授,长期从事石墨和新碳材料的研究和开发。E-mail:。
一、前言
中国石墨产品可分为鳞片石墨和微晶石墨两大类,鳞片石墨是指石墨晶质大于1μm,层片结构发达,但原矿品位低,一般含碳量在10%以下;微晶石墨又称为无定形石墨、隐晶石墨、土状石墨,晶质小于1μm,其特点在于由小晶粒团聚而成为聚晶体,原矿品位高,一般含碳量在50%以上,郴州鲁塘矿矿石含碳量达到80%以上。
微晶石墨用作锂离子电池的负极材料具有较高的嵌锂容量和循环稳定性,并且资源丰富、价格低廉,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。同样,鳞片石墨也可以用于锂离子电池的负极材料,但是必须要解决石墨在储电过程中的胀缩问题,否则它会直接影响电池的使用寿命。
二、微晶石墨的整形
微晶石墨颗粒内部是由许许多多取向无序的晶粒组成的,因此在微晶石墨球形化的过程中,极易产生粉碎现象,大多数颗粒被粉碎成10μm以下的细小颗粒。这些细小颗粒对石墨的负极性能是不利的。锂离子电池用天然石墨要求比表面积小、振实密度高、颗粒均匀,以提高其负极性能,这就要求颗粒粒度分布窄、表面光洁、球形度高。天然石墨必须经过粉体深加工,使其达到锂离子电池的使用要求,然而,通过普通机械粉碎方式很难达到这些要求。本文以化学法提纯后的微晶石墨为原料(其纯度C≥),对搅拌磨系统的微晶石墨整形效果进行了研究。表1是本研究中使用的微晶石墨的碳含量和粒度。
表1 试验中使用的微晶石墨
搅拌磨为无锡市鑫达粉体机械有效公司生产的SX-8型小型搅拌球磨机。搅拌桶容积8L,标准处理量3L。
(一)天然微晶石墨的整形加工
采用湿法搅拌磨整形:球形氧化锆磨球,直径3mm;料浆浓度20%;球料比为20∶1(质量比);填充率为1/2;添加聚丙烯酸铵(或六偏磷酸钠)作为助磨剂,比例为(相对于石墨的质量)。实验采用不同的技术参数,如表2所示。
表2 天然微晶石墨球形化处理实验条件参数
表3 整形前后微晶石墨的比表面积和粒度
(二)整形实验结果
从表3中可以看到,研磨后的微晶石墨比表面积有所下降,这是经搅拌磨整形后,微晶石墨颗粒形状更接近于球形,在相同的情况下,球形颗粒的比表面积更小。同时经搅拌磨整形后的石墨颗粒粒径有所下降,这说明搅拌磨在整形过程中有一定的粉碎作用。
(三)电化学性能
将制备好的石墨分别与聚二氟乙烯(PVDF)(质量百分数10%)混合均匀后用二甲基吡咯烷酮(NMP)溶解调成糊状均匀涂覆在铜箔上,烘干轧制后得到100μm左右厚度的膜。取直径为12mm的膜作为实验电极。电极膜片经过150℃真空干燥24 h后,在氩气手套箱中组装成实验纽扣电池(型号2025)。电解液为1 mol/L—LiPF6/EC-DEC(1∶1)(Merck Co.),隔膜为Celgard#2500。以锂片为对电极,采用恒电流充放电方法测试电化学性能,采用从到1C不等的放电速度,放电截止电压为0V,充电截止电压为3V。电池测试系统为兰电 CT2001A。
搅拌磨整形后的微晶石墨首次嵌锂容量和可逆容量分别由370 mA·h/g、284 mA·h/g增加到386 mA·h/g、308 mA·h/g,首次效率提高到。由此可见,微晶石墨的可逆容量并不算高,较鳞片石墨平均320 mA·h/g略低,但是微晶石墨有各向异性的结构特征,在重复充放电过程中显示了良好的循环性能,因此微晶石墨作为锂离子二次电池将更有优势,关键是提高首次循环效率。
三、微晶石墨的表面包覆
从机理上说,表面修饰主要是减少了石墨表面的活性点,降低了SEI形成的库仑消耗,优化了SEI膜的性能,从而降低了不可逆容量损失。同时预先在石墨表面形成一层碳膜,有利于防止电解液在石墨表面的分解,提高石墨负极的稳定性。但是表面碳膜的致密程度直接影响到改性的效果,致密均匀的碳膜就能有效地阻挡溶剂化离子的共插入,同时在炭化的过程中还能生成一些纳米级的孔,为锂离子的插入提供了更多的通道。
(一)微晶石墨的表面包覆工艺
包覆石墨制备工艺采用浸渍法,即将球形鳞片石墨与酚醛树脂按一定的配比混合均匀,加入乙醇溶剂调节黏度,得到符合分散工艺要求的浆料。经搅拌、过滤、烘干等工序后在石墨颗粒表面包覆上一层酚醛树脂,包覆后仍然为分散的椭球或球形的颗粒。再经过高温炭化后,制备出树脂炭包覆鳞片石墨。
包覆用的酚醛树脂采用液态线性酚醛树脂,型号为917(北京福润达树脂厂),固含量。去除乙醇溶剂后做热失重分析(热重分析仪 STA 409C)。实验表明,在1000℃时,树脂失重为61%,得到39%的热解炭。包覆用的石墨为搅拌磨整形和PCS系统球形化后的天然微晶石墨。
表4 微晶石墨在不同包覆量下的循环性能比较
图1 微晶石墨在不同包覆量下的循环容量曲线
(二)表面包覆的实验结果与讨论
表4列出了不同包覆量的循环性能比较。可以看出,在微晶石墨表面包覆树脂并经1000℃炭化后,其首次循环效率有所提高,循环稳定性也得到了改善。
从图1可以看出,表面包覆是对微晶石墨的电化学性能的有效改性方法,不仅能够提高首次效率,同时包覆后的微晶石墨显示了更好的循环性能,说明表面包覆的微晶石墨是一种良好的锂离子二次电池复合负极材料。
图2 GICs处理后循环性能
四、鳞片石墨用于锂离子电池负极材料
项目组在研究将天然鳞片石墨用作负极材料时,发现天然石墨由于石墨化程度高,其充放电容量要比人工制造的中间相炭微球(MCMB)高。MCMB容量在300 mA·h左右,而鳞片石墨为340 mA·h左右。但考虑循环性能时,鳞片石墨负极要差,多次充放电后,容量损失大。究其原因,主要是充放电时石墨晶体有10% 左右的涨缩量,鳞片石墨集中在一个方向上的多次涨缩使得负极膜损坏,造成性能下降。针对这一问题,本研究提出用石墨层间化合物(GICs)原理处理,在石墨颗粒内形成微米-纳米空隙,预制晶格涨缩空间,以提高循环性能。此项技术的关键在于缓慢有序的脱插,使插入物气体的逸出只在石墨内造成微米-纳米级的孔隙,而不能发生明显的体积膨胀,通常采用H2SO4-GIC、MClx-GICs或其他受主型GICs,在100~300℃低温的条件下经12~72 h的缓和脱插处理,而后对脱插后的石墨微粉进行微粒表面改性,包覆处理,制成负极材料。这样制得的负极材料既有鳞片石墨的高容量,又具有良好的循环性能(图2)。目前产品在电池上已进行产品性能检测。
五、总结与展望
我国锂离子电池产业仍将保持年平均30%以上的增长速度,2005年国内小型锂离子电池全年产量超过10亿只,石墨负极材料年需求量为5000~10000 t,世界需求量在2×104t左右,而目前供应量缺口很大。随着电动汽车的迅速发展,锂电池负极材料的需求将更加旺盛。
鉴于天然石墨资源丰富、价格低廉,并且具有较高的嵌锂容量,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是国内石墨产业升级的有效途径之一。综合考虑造价和性能,在锂离子电池负极材料中天然石墨最具发展潜力,但是石墨存在着一些有待解决的问题,如首次循环的不可逆容量损失、循环稳定性等问题。天然石墨改性技术的不断发展,包括球形化处理、表面包覆树脂、插层/脱插的微膨化处理等,提高了石墨制品的放电容量、快速充放电能力、循环寿命等,改性天然石墨将成为高能锂离子电池负极的首选材料。
参考文献和资料
[1]何明,盖国胜,沈万慈,等.制粉工艺对天然微晶石墨锂离子阳极材料结构与性能的影响.电池,2002,32(4):197-200
[2]何明,陈湘彪,康飞宇,等.树脂炭包覆微晶石墨的制备及其电化学性能.电池,2003,33(5):281-284
[3]陈湘彪,刘旋,沈万慈.包覆鳞片石墨嵌锂行为的研究.电池,2004,34(6):394-396
[4]张静,郑永平,沈万慈,等.GICs技术改性天然石墨作为锂离子电池负极材料的研究.电池,2006,36(4):257-259
[5]沈万慈,等.一种锂离子电池石墨阳极膜制品及其制备方法和应用.专利号:ZL 97 1
[6]沈万慈,等.炭包覆石墨微粉的制备方法.专利号:ZL
[7]Andersson A M,Abraham D P,Haasch R,et characterization of electrodes from high power lithium-ion .,2002,149(10):A1358-1369
[8]Broussely developments on lithium ion batteries at Sources,1999,81/82:140-143
[9]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59
[10]张世超.锂离子电池关键材料产业技术现状与发展趋势新材料产业.新材料产业,2006,3:32-36
[11]董建,周伟,刘旋,等.微晶石墨作为阳极材料对二次锂离子电池电化学性能的影响.炭素技术,1999,(1):1-6
An Investigation on Natural Graphite Used as an Anode Materials for Lithium-ion Batteries
Shen Wanci,Li Xinlu,Zou Lin,Kang Feiyu,Zheng Yongping
(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)
Abstract:The resource of natural graphite is rich in will be an effective way to upgrade national graphite industry if natural graphite after modification may be used in lithium ion the research,microcrystalline graphite with high purity was sphericalized and coated with a carbon film on the initial cycle efficiency was improved to be and the cycle stability was remarkably experi ments proved that microcrystalline graphite with carbon coating was an excellent anode material for lithium-ion addition,H2SO4-GIC technique was used to prepare the natural flake graphite powder with was found that sub-micro and nano pores formed in the graphite samples,that improved the reversible capacity,rate capacity and cycle product meet well the requirement of lithium-ion battery.
Key word:natural graphite,surface coating,mild-exfoliation,anode material,lithium-ion battery.
我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。
网上现在也有很多论文的范本可以选择,你可以去国内大的文库上找相关的资料,并结合自己的知识就可以写出一篇原创论文了,但是现在文库上的资料很多都是PDF格式的,目前国内有免费pdf转word的文库,像转转大师之类的,你可以上网查询一下,希望我的回答对你有帮助
无污染水性涂料论文关键词:丙烯稀丁酯苯乙烯乳液聚合预乳液乳化剂引发剂 论文摘要 :本文叙述了,苯乙烯和丙烯酸丁酯在乳化剂:十二烷基硫酸钠,引发剂:过硫酸铵,存在的情况下利用连续滴加预乳液的聚合工艺,合成苯丙乳液的过程。并通过几组平行实验确定反应温度、搅拌速度、预乳液的滴速及不同时期反应时间对乳液合成及其性能的影响。通过观察反应现象及利用测定实验产物的数据,不断对实验进行改进,尽量减小不良因素对产物性能的影响。试验表明:温度在82-84℃,预乳液在两小时左右滴完,预乳液发生聚合的现象明显。温度50℃,强力搅拌一小时制得的预乳液的质量较好。引发剂的量应小于,用量过大乳液会发生破乳。Abstract :This text has been narrated, styrene and acrylic acid cube ester are in the emulsifier : 12 alkyl sulphuric acid sodium, initiator: Pass sulphuric acid ammonium , is it is it add craft of getting together of the cream in advance to drip in succession to utilize under the situation that exist, formate the course of third cream of benzene. And parallel experiment confirm temperature of reacting , mix speed, cream drip speed and react time impact on the cream is formated and performance with period in advance through several group. Through observing the phenomenon of reacting and utilizing determining the data which test the result , are improving the experiment constantly, try one's best to reduce the impact on performance of the result of the bad factor. The test shows : Temperature, in 82-84 degrees Centigrade, the cream is dripped in about two hours in advance, the phenomenon that the cream gets together is obvious in advance. 50 of temperature, brute force mix make one hour the quality of the cream is better in advance. The quantity of the initiator should be smaller than , the broken milk happens in the too big cream of consumption .Keywords: Propylene rare cube ester Styrene The cream getting together The cream in advance Emulsifier Initiator 第一章 绪论 建筑涂料的发展方向是无毒安全、节约资源、有利于环境保护的水性涂料和无公害低污染涂料。不断提高水性涂料的质量,开发新的品种,是巩固和发展水性建筑涂料的重要环节之一。国外对建筑物的外墙面装饰非常重视,,经常有计划地涂装建筑物外墙,有的国家高达90%。在我国,相当一部分建筑仍然采用面砖或幕墙进行装饰,而用涂料进行装饰的还不足10%。目前使用的外墙涂料品种主要为乳胶涂料和溶剂型涂料,前者大多为苯丙、纯丙薄质乳胶涂料及厚质复层涂料;后者使用较少,但随着最近推出的低毒溶剂型丙烯酸涂料的出现,使用量有所增加。因此,大力发展超耐候性及高性能外墙涂料来满足市场的需求是当务之急。 苯丙乳液是胶体分散体系,具有明显的胶体化学性质,当苯丙乳液与水泥或其他颜料混合均匀后,苯丙乳粒子向浆体内分散,被吸附在其他颜料、水泥凝胶及未水化的水泥粒子的表面上。聚合物粒子封闭了水泥凝胶及未水化水泥粒子的微孔和毛细管孔,水泥进一步水化由于聚合物粒子被吸附在水泥凝胶表面上,使水泥浆体内存在足够的水分,防止了水泥的结块现象,因此苯丙乳液水泥漆具有一定的贮存稳定性。苯丙乳液实际上是由苯乙烯和丙烯酸酯类单体共聚而成,本文从最终产品的性能比考虑,选定由苯乙烯和丙烯酸酯共聚体系,并加入少量丙烯酸作为交联剂。反应过程按自由基加成方式聚合。在施工后形成涂膜时,由于基材吸收了一定的水分和水分的蒸发,涂膜发生了物理机理干燥,分散于水相中的苯丙乳液水泥等复合物粒子就慢慢接近,以至相互接触。水的毛细管压力能够把分散的复合物粒子挤在一起,排列愈紧、压力就愈大,水分挥发愈快,复合物中的苯丙乳液树脂包围的水泥和填料同时呈在干硬的膜之中,构成一个三维空间,牢固结合密实的整体。 苯丙乳液聚合机理 乳液聚合的机理HarKins首先做了定性的描述了。他认为,当乳化剂溶于水时,若其浓度超过临界胶束浓度时,则乳化剂分子聚焦在一起形成乳化剂胶束。在乳化剂溶液中加入难溶于水的单体并进行搅拌时,单体大部分分散成液滴,部分单体则增溶于乳化剂胶束中。当水溶性的引发剂加入后,引发剂在水中生成自由基并扩散到胶束中去,并在那里引发聚合反应。 HarKins将理想乳液聚合机理分为三个阶段:第一阶段: 乳胶粒生成期从诱导期结束到胶束耗尽这一期间为聚合第一阶段。在此阶段中,由于水相中引发剂分解出的自由基不断的扩散到胶束中,并在那里引发聚合反应,生成单体、聚合物粒子,既乳胶粒,随着反应的不断进行,新乳胶粒不断产生,使聚合反应进行一个加速期。另一方面,随着放映的进行,乳胶粒的体积渐渐的增大,其表面积也随之增加,这样越来越多的乳化剂分子从水相被吸附到乳剂粒表面上,因而破坏了乳化剂与胶束间的平衡。胶束中的乳化剂分子不断补充入水相,直到转化率达到一定程度后,水相中的乳化剂浓度下降到临界胶束浓度以下,胶束即告消失。此时,不再有新的乳胶粒生成,聚合体系中的乳胶粒不再变化,至此反应转入第二阶段。第二阶段:反应恒速期从胶束消失到单体液滴消失这一期间为第二阶段。此阶段由于胶束的消失,体系中不再有新的乳胶粒生成,总的乳胶粒数目保持不变。且随着聚合反应的进行,单体液滴中的单体不断扩散入乳胶粒中,使粒子中的单体浓度不变,所以此阶段聚合速率保持不变,直至单体液滴消失,聚合速率下降,反应转入第三阶段。第三阶段:降速期从单体液滴消失至聚合反应结束为第三阶段。此阶段由于单体液滴的消失,不再有单体经水相扩散进入乳胶粒,故乳胶粒中进行的聚合反应只能靠消耗粒子中贮存的单体来维持,使聚合速率不断下降,直至乳胶粒中的单体耗尽,聚合反应也就停止。 乳液聚合工艺 生产聚合物乳液和乳液聚合物有多种工艺可供选择。如间歇工艺、半连续工艺、连续工艺补加乳化剂工艺及种子乳液聚合工艺等。对同种单体来说,若所采用的生产工艺不同,则所制造的产品质量、生产效率及成本各不相同,因此具体应用中可根据对产品的性能要求和不同生产工艺的不同特点,来合理选择可行的生产工艺。 预乳化工艺 在进行连续或半连续乳液聚合中,常常采用单体的预乳化工艺。将去离子水投入预乳化罐中,加入乳化剂,搅拌、溶解,再将单体缓缓加入,在规定的时间内充分搅拌,得到稳定的单体乳状液。该工艺可使单体、乳化剂分散均匀,使以后的聚合过程中体系的稳定性提高,乳胶粒尺寸分布较均匀,共聚物组成均一。 种子乳液聚合 种子乳液聚合即先制取种子乳液,然后在种子的基础上进一步进行聚合,最终得到所需的乳液。种子乳液是在种子釜中制成的,其过程为:先向种子釜中加入水、乳化剂、水溶性引发剂和单体,再于一定温度下进行成核与聚合,生成数目足够大、粒度足够小的乳胶粒。然后,取一定量的种子乳液投入聚合釜中,还要加入去离子水、乳化剂、水溶性或油溶性引发剂及单体,以种子乳液的乳胶粒为核心,进行聚合反应,使乳胶粒不断增大。在聚合时,要严格控制乳化剂的补加速度,以免生成新的乳胶粒。采用种子乳液聚合工艺,可以克服连续乳液聚合过程中的不稳定瞬态现象,减小了聚合过程的波动。同时,用种子乳液聚合方法可以有效的控制乳胶粒直径及其分布。在单体量不变的情况下,增加种子乳液的用量,可使粒径减小;而减少种子乳液的用量,则可使粒径增大。由于种子乳液中的乳胶粒直经很小,年龄分布和粒径分布都很窄,这有利于改善乳液的流变性能。另外,采用种子乳液聚合方法可以生产出具有异形结构的乳胶粒的聚合物乳液,这将赋予聚合物乳液特殊的功能和优异的性能。 课题的意义 以上的文献综合了关于乳液聚合的机理、聚合工艺,从中我们可看出,尽管乳液聚合技术的开发始于本世纪早期,在许多聚合物的生产中己经成为主要的方法之一,每年世界上通过这种方法生产的聚合物以千万吨计,有着如此大的经济意义,如此悠久的生产发展历史工艺上也已经比较成熟,但是由于乳液聚合体系众多的影响因素,且各因素间复杂的互动效果,致使其定量的详尽的内部规律还没有完全被人们所掌握,乳液聚合的机理和动力学理论还远远落后于实践。在某种情况下提出来的数学模型,常常不能用于另一种条件和其他单体,不然就会出现很大误差。因此,对于不同的聚合体系、不同的生产操作条件都必须详细的考察各种影响因素和相互关系以求对该体系的特点进行准确的把握,以达到对生产过程和产品质量的有效控制。目前对于各种乳液共聚体系的实验性研究已多有报道,在国内也有多家生产企业,虽然各种乳液的聚合有许多相似之处,但想用类似的工艺制备出性能良好的不同乳液是不可能的。若想制备一种性能良好的乳液,就必须对它的合成工艺做具体详细的研究。苯丙乳液具有色彩丰富、美观大方、施工简便、工期短、工效高;特别具有保色性;耐污染性的优点。适用外墙涂料、彩色涂料、复层花纹涂料、内墙涂料、防水涂料等建筑装饰领域。本文对苯丙乳液的聚合机理、合成工艺、影响因素及产物的性能检测作了详细的介绍。这对于制备出高质量的苯丙乳胶涂料具有很大的科学和经济意义。第二章 苯丙乳液的合成 原料 表1 各种原料名称 级别 生产厂家 单体 苯乙烯 分析纯 沈阳试剂一厂 丙烯酸丁酯 分析纯 北京市兴京化工厂 丙烯酸 分析纯 天津市华东试剂厂 乳化剂 聚乙二醇辛基苯基醚(OP-10) 化学纯 沈阳合富化学试剂厂 十二烷基硫酸钠(SDS) 分析纯 沈阳市化玻站试剂厂 引发剂 过硫酸铵 分析纯 沈阳试剂一厂 缓冲剂 碳酸氢钠 分析纯 沈阳试剂厂 pH调节剂 氨水 分析纯 沈阳市试剂三厂 合成工艺 预乳化阶段 将十二烷基硫酸钠、乳化剂OP-10、24g苯乙烯、24g丙烯酸丁酯在一定量水中快速搅拌混合,使之预乳,得到预乳化液。 主反应阶段 把聚乙烯醇(PVA)、过硫酸钾、十二烷基硫酸钠、乳化剂OP-10与一定量的水混合溶解,装到有搅拌器、回流冷凝管、温度计和两个滴液漏斗的多口烧瓶中,搅拌升温至75℃。加入1/3的预乳化液,控制温度在73~76℃,保温至液体呈蓝光。剩余的2/3的预乳化液和过硫酸钾、碳酸氢钠水溶液分别从两个滴液漏斗中缓慢滴入,在慢速搅拌下于1h内滴完,并在此温度下反应1h。 后处理阶段 升温至86~88℃,保温至无单体回流。降温至30~40℃,调pH值为8~9,过滤出料,即得苯丙共聚乳液。 实验产物性质测定 乳液固含量的测定 在己恒重的称量瓶中,取试样(准确至),放在105-110℃恒温干燥箱连续干燥3h时,取出称量瓶,盖上盖子,放入干燥器中冷却至室温,称重。平行测定三个样品求其平均值。计算公式如下:含固量= G1一称量瓶重(g)G2一称量瓶加试样重(g)G3一称量瓶加恒温干燥后试样重(g)凝聚率和乳液聚合稳定性 乳液的聚合稳定性用凝聚率MC来表示,凝聚率山称重法获得,反应结束后,称量体系产生的凝聚物,放入烘箱烘至恒重,MC越小说明聚合过程的稳定性越好。乳液聚合结束后,用100目丝网过滤乳液,滤渣用水仔细洗涤后烘干至恒重,称其质量为W,聚合用单体及乳化剂总量为W0,计算凝聚物生成量百分比。则MC由下式计算:MC= (W/W0) × 100%乳液粘度的测定 采用涂-4杯,测试温度:25℃第三章 结果与讨论 纯丙乳液聚合共进行三种聚合工艺 单体全滴加法将所有的水、乳化剂、引发剂、助剂等全部投人三颈瓶中,搅拌、升温,将称好的单体混合后倒人滴加漏斗中,当温度升高到聚合温度时,滴加漏斗中的单体,在3h内滴定,然后恒温至转化率>98%,降温调节pH值出料。 种子聚合法将水、乳化剂、助剂,5%单体投人三颈瓶中,搅拌,升温至聚合温度,反应一lh后,再分别滴加剩余单体、引发剂3h滴完,恒温至转化率>98%,降温调节pH值出料。 预乳化法取4/5的水、乳化剂、引发剂、助剂全部单体投人三颈瓶中,在室温下快速搅拌乳化30min,然后将1/3的预乳化液和1/5的水投人另一个三颈瓶中搅拌,升温至聚合温度,反应一lh后滴加余下的预乳化液,在3h内滴完,恒温至转化率>98%,降温调节pH值出料。通过比较,我们认为:方法(1)在反应后期转化率上升缓慢,方法(2)滴加时,引发剂与单体较难控制同步,方法(3)操作方便,后期反应较快,转化率都达到98%以上。 反应温度的影响 表2 反应温度的影响温度/℃ 凝胶量 乳液外观 转化率/% 离心稳定性 65-75 无 乳白蓝光 <80 稳定 75-85 无 乳白蓝光 80-90 稳定 85-95 大凝 乳白色 >95 破乳由表2可看出,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢,形成的活性自由基少,反应速率慢,转化率低;反应温度过高时,反应速率过快,体系不稳定易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。综合考虑,本实验分两阶段,采用不同温度聚合。前期滴加单体阶段,保持温度75-850C,使反应体系稳定;滴加完单体后再升温到85-900C进行保温,加快反应速率,缩短聚合完全的时间。当反应温度升高时,乳胶粒布朗运动加剧,使乳胶粒之间进行撞击而发生聚结的速率增大,故导致乳液稳定性降低;同时,温度升高会导致乳液稳定性下降,因为非离子型乳化剂遇水时将同水分子发生缔合形成水化乳化剂分子,可使其很好的溶解在水中形成透明溶液,并在乳胶粒周围形成很厚的水化层,但在反应温度升高时,水分子热运动加剧,水和乳化剂分子间缔合力减弱,会使乳胶粒表面上的水化层减薄,当达到某一温度时,水化层大幅度减薄,使乳化剂分子在水中的溶解度减小,以至于使之从水中沉析出来,溶液浊度突然升高,这一温度就是非离子乳化剂的浊点,此时乳化剂就失去了稳定作用,导致破乳。 搅拌强度的影响 表4 搅拌速度对乳液质量的影响搅拌速度 前期 中期(升温反应期) 保温期 慢速 乳白 乳白 蓝光充足 中速 微蓝 微蓝 蓝光充足 较快速 微蓝 蓝光充足 乳白 快速 蓝光充足 微蓝 乳白在乳液聚合过程中,搅拌的一个重要的作用是把单体分散成单体珠滴,并有利于传质和传热。但搅拌强度又不宜过大,否则会使乳胶粒数目减少,乳胶粒直径增大及聚合反应速率降低,同时会使乳液产生凝胶,甚至招致破乳。因此对乳液聚合来说,应采用适度的搅拌。第四章 结论 根据多组平行实验得出预乳液制备的好坏将直接影响乳液质量和性能。制备预乳液时,应在反应器中先加入引发剂、乳化剂再加入单体。这样反应器中就先具备了乳液发生聚合的条件,防止单体间自聚,并在50OC 强力搅拌(大约350转/分)40分,制得的预乳液比较理想。温度对乳液的聚合影响也很大,如果控制不好将出现破乳或凝聚。由实验得出乳液聚合的最佳温度为82 OC-84 OC,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢, 形成的活性自由基少,反应速率慢,转化率低 ;反应温度过高时,反应速率过快,体系不稳定 ,易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。预乳液的滴加速度对聚合也有影响,如果滴加过慢乳液可能会破乳,过快预乳液反应不完全,可能发生自聚。在不同时期玻璃棒的搅拌速度一定要控制恰当, 预乳化阶段和主反应阶段较快(大约350转/分) ,后处理阶段较慢(大约150转/分).本实验中乳化剂的用量控制在左右 ,引发剂控制在,但每次制得乳液的质量都不太理想,可见乳化剂和引发剂的用量乳液聚合影响存在.乳液中的,酸性或碱性过强,或反应温度过高会破坏乳液体系的稳定性,产生凝胶,因此应严格控制乳液的 pH值和温度。本实验中一是加人适量的NaHCO3控制乳液的 pH值。苯丙乳液在制备过程中,内部反应及其复杂,如果反应过程中控制不当或选用的工艺、配方不合适等因素均可导致凝聚现象发生,凝聚的形态有多种,如产生一些粗粒子,或者可能在整个反应器内凝成一团。可见影响乳液质量的因素是多种多样的。
性能上没有太大区别。1 煤焦油沥青漆-----是指环氧树脂和焦油沥青按一定比例并添加功能填料和助剂经专用设备混合至均质制。2 环氧沥青漆-----是指环氧树脂和石油沥青按一定比例并添加功能填料和助剂经专用设备混合至均质。欢迎探讨。
我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。
丙烯酸树脂广泛的应用到很多的领域,比如现在的一些油漆涂料都会有这样的一种成分,因为丙烯酸树脂具有很好的耐腐蚀性,耐潮湿的功效,所以丙烯酸树脂是很多商业领域都会用到的涂料,但是有些朋友不知道很了解丙烯酸树脂的相关知识,尤其是丙烯酸树脂的应用不是很清楚,下面就针对丙烯酸树脂的定义以及应用范围进行一些相关的介绍。什么是丙烯酸树脂要说丙烯酸树脂是什么,我们先要了解一些丙烯酸树脂的组成,丙烯酸树脂是由丙烯酸酯类和甲基丙酸酯类以及其他的烯属单体共聚制成的树脂,我们可以选用不同的树脂结构、不同的配方以及生产工艺和溶剂等组成,可以合成不同类型的、不同性能的和不同应用场合的丙烯酸树脂,而且丙烯酸树脂根据结构和成膜机理的差异又可以分为热塑性丙烯酸树脂和热固性丙烯酸树脂两种.丙烯酸树脂的应用现今我们用丙烯酸酯和甲基丙烯酸酯单体共聚合成的丙烯酸树脂在对光的主吸收峰处于太阳光谱范围之外,所以制得的丙烯酸树脂漆具有优异的耐光性及抗户外老化性能.而一般丙烯酸树脂应用的领域是很多,丝网印刷油墨、各种普通塑料底材涂料及油墨、金属船舶涂料、纸张木材涂料等,一般丙烯酸树脂制成的油漆主要被用于汽车涂料、金属涂料、维修涂料、木材涂料、商业机器涂料等.我们将丙烯酸树脂用作油漆使用时我们可以当做木材的涂料,用于家具和橱柜中板材等,它的抗黏着性和抗洗涤性、耐磨性以及抗木纹翘起等功能都很不错.而我们将丙烯酸树脂作用金属涂料方面,它的耐腐蚀性、耐潮湿、耐化学药品等能力也很出色.而热固性丙烯酸树脂除了丙烯酸树脂的耐热性、耐水性、耐溶剂型等特征外,还具有了本体浇铸材料,溶液型、乳液型、水基型等多种形态,主要用作皮革、织物、纸张的处理剂、工业用漆、以及建筑涂料等.而热塑性丙烯酸树脂结合氨基树脂配合制成的氨基-丙烯酸烤漆,目前在汽车、摩托车、自行车、灯产品上应用的十分广泛.以上详细的介绍了丙烯酸树脂是什么,同时在它的应用领域也是很广泛的,就是因为有了这样的丙烯酸树脂的知识了解,让很多的朋友对于这个材料有了深入的了解了,因此大家平时如果不懂的丙烯酸树脂是怎么回事的时候,可以看看上面的文章介绍,就是因为应用领域很广泛,是很多的商业领域中很重要的涂料成分,以后大家就知道现在的油漆里面有什么重要的成分了。
热固性丙烯酸树脂(英文名称thermosetting acrylic resin)是指以丙烯酸酯系单体(丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯和甲基丙烯酸甲酯、甲基丙烯酸正丁酯等)为基本成分,经交联成网络结构的不溶、不熔丙烯酸系聚合物。也称交联型或反应型丙烯酸树脂,热固性丙烯酸树脂中带有一定的官能团,在制漆时通过加入的三聚氰胺树脂、环氧树脂、聚氨酯等众的官能团反应,最终形成网络结构。达到不溶不熔的效果。它克服了热塑性丙烯酸树脂的缺点,使涂膜的机械性能、耐化学品性能大大提高。热固性丙烯酸树脂相对分子量在10000~20000之间,除具有丙烯酸树脂的一般性能以外。通过高固体树脂的合成工艺,树脂的相对分子量一般低至2000,因此在施工粘度下,涂料的固体成分可到30~70%,其优越的丰满度、光泽、硬度、在高温烘烤不变色,不泛黄。耐热性、耐水性、耐溶剂性、耐磨、耐划性更优良。有本体浇铸造材料、溶液型、乳液型、水基型等多种形态。
化学化工环境1.喜树发根培养及培养基中次生代谢产物的研究2.虾下脚料制备多功能叶面肥的研究3.缩合型有机硅电子灌封材料交联体系研究4.棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5.酶法双甘酯的制备6.硅酸锆的提纯毕业论文7.腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8.羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9.铝合金阳极氧化及封闭处理10.贝氏体白口耐磨铸铁磨球的研究等离子喷涂设备的调试与工艺试验高温旋风除尘器开发设计13.玻纤增强材料注塑成型工艺特点的研究14.年处理30万吨铜选矿厂设计15.年处理60万吨铁选厂毕业设计16.广东省韶关市大宝山铜铁矿井下开采设计17.日处理1750吨铅锌选矿厂设计聚氯乙烯乙炔工段初步工艺设计19.年产50万吨焦炉鼓冷工段工艺设计20.年产25万吨合成氨铜洗工段工艺设计装置异构化单元反应器进行自动控制系统设计装置异构化单元脱庚烷塔自动控制系统设计23.金属纳米催化剂的制备及其对环己烷氧化性能的影响24.高温高压条件下浆态鼓泡床气液传质特性的研究25.新型纳米电子材料的特性、发展及应用26.发达国家安全生产监督管理体制的研究27.工伤保险与事故预防28.氯气生产与储存过程中危险性分析及其预防29.无公害农产品的发展与检测30.环氧乙烷工业设计31.年产21000吨乙醇水精馏装置工艺设计32.年产26000吨乙醇精馏装置设计33.高层大厦首层至屋面消防给水工程设计34.某市航空发动机组试车车间噪声控制设计35.一株源于厌氧除磷反应器NL菌的鉴定及活性研究36.一株新的短程反硝化聚磷菌的鉴定及活性研究37.广州地区酸雨特征及其与气象条件的关系38.超声协同硝酸提取城市污泥重金属的研究39.脱氨剂和铁碳法处理稀土废水氨氮的研究40.稀土超磁致伸缩材料扬声器研制41.纳米氧化铋的发展42.海泡石TiO2光敏催化剂的制备及其研究43.超磁致伸缩复合材料的制备44.钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文法在硅基板上制备硅化钛纳米线46.浅层地热能在热水系统中的利用初探及其工程设计47.输配管网的软件开发