首页 > 学术期刊知识库 > 人脸识别论文开题报告内容

人脸识别论文开题报告内容

发布时间:

人脸识别论文开题报告内容

我倒是见过matlab基于pca法的人脸面部表情识别,个人感觉很有道理,不过我没这个能力,写不出来,lz可以考虑pca法

论文开题报告怎么写如下:

1、名称要准确、规范。准确就是开题报告的名称要把开题报告研究的问题是什么,研究的对象是什么交待清楚。

开题报告的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确的把研究的对象、问题概括出来。

2、名称要简洁,不能太长。不管是论文或者开题报告,名称都不能太长,能不要的字就尽量不要,最长一般不要超过20字。

3、研究的目的、意义,研究的目的、意义也就是为什么要研究、研究它有什么价值,研究背景是什么。

这一般可以先从现实需要方面去论述,指出现实中存在这个问题,需要去研究,去解决,本开题报告的研究有什么实际作用。然后,再写开题报告的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。

4、研究的指导思想,开题报告研究的指导思想就是在宏观上应坚持什么方向,符合什么要求等。这个方向或要求可能是哲学、数学、自然科学、政治理论,也可以是科学发展规划。

5、研究的目标和假设,研究目标和假设要具体,不能笼统地讲,必须清楚地写出来。只有目标明确、假设具体,才能明确工作的具体方向是什么,才能了解研究的重点是什么,思路就不会被各种因素所干扰。

6、研究的基本内容,我们有了开题报告的研究目标和假设,就要根据目标和假设来确定我们这个开题报告具体要研究的内容。

7、研究的步骤和进度,开题报告研究的步骤和进度,也就是开题报告研究在时间和顺序上的安排。

8、研究方法和资料获取途径,开题报告研究的方法很多,包括历史研究法、调查研究法、实验研究法、比较研究法、理论研究法等。

在研究性学习中的开题报告研究方法用得最多的是社会调查法和受控对比实验法。一个大的专题往往需要多种方法,小的专题可以主要采用一种方法,同时兼用其他方法。

9、研究的成果形式,开题报告研究的成果形式包括报告、论文、发明、软件、课件等多种形式。

10、研究的组织机构和人员分工,在集体开题报告研究方案中,要写出专题组组长、副组长,专题组成员以及分工。专题组组长就是本专题的负责人。

开题报告的内容一般包括:题目、立论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)等。

1、题目是毕业论文中心思想的高度概括,要求:

①准确、规范。要将研究的问题准确地概括出来,反映出研究的深度和广度,反映出研究的性质,反映出实验研究的基本要求——处理因素、受试对象及实验效应等。用词造句要科学、规范。

②简洁。要用尽可能少的文字表达,一般不得超过20个汉字。

2、立论依据开题报告中要考虑:

① 选题目的与意义,即回答为什么要研究,交代研究的价值及需要背景。一般先谈现实需要——由存在的问题导出研究的实际意义,然后再谈理论及学术价值,要求具体、客观,且具有针对性,注重资料分析基础,注重时代、地区或单位发展的需要,切忌空洞无物的口号。

② 国内外研究现状,即文献综述,要以查阅文献为前提,所查阅的文献应与研究问题相关,但又不能过于局限。与问题无关则流散无穷;过于局限又违背了学科交叉、渗透原则,使视野狭隘,思维窒息。

所谓综述的“综”即综合,综合某一学科领域在一定时期内的研究概况;“述”更多的并不是叙述,而是评述与述评,即要有作者自己的独特见解。

要注重分析研究,善于发现问题,突出选题在当前研究中的位置、优势及突破点;要摒弃偏见,不引用与导师及本人观点相悖的观点是一个明显的错误。综述的对象,除观点外,还可以是材料与方法等。

此外,文献综述所引用的主要参考文献应予著录,一方面可以反映作者立论的真实依据,另一方面也是对原著者创造性劳动的尊重。

3、研究方案开题报告中要考虑:

①研究的过程。整个研究在时间及顺序上的安排,要分阶段进行,对每一阶段的起止时间、相应的研究内容及成果均要有明确的规定,阶段之间不能间断,以保证研究进程的连续性。

②拟解决的关键问题。对可能遇到的最主要的、最根本的关键性困难与问题要有准确、科学的估计和判断,并采取可行的解决方法和措施。

4、条件分析突出仪器设备等物质条件的优势。明确协作单位及分工,分工要合理,明确各自的工作及职责,同时又要注意全体人员的密切合作。提倡成立导师组,导师组成员的选择要充分考虑课题研究的实际需要,要以知识结构的互补为依据。

扩展资料:

开题报告撰写注意事项:

1、审定课题名称。一是看名称表述是否准确、规范。准确就是课题的名称要把课题研究的问题是什么,研究的对象是什么交待清楚。规范就是所用的词语、句型要规范、科学,似是而非的词不能用,口号式、结论式的句型不要用。二要看名称是否简洁,不能太长,能不要的字就尽量不要。

2、寻找研究依据。政策依据、理论依据、实践依据,充分、贴切、准确。

3、分析研究背景现实背景、历史背景要清楚,符合实际。

4、查新研究现状单位的研究现状及问题点评;国内的研究现状;国外的研究现状。用书检和网检的方法。

5、论证研究的价值理论价值;实践价值;应用价值;科学价值;改革价值。

6、阐述研究的意义有现实意义;有历史意义;有实践意义;有方法论意义。

7、界定核心概念。就是对关键词、关联词的概念、意义、本质、联系进行阐述。

8、完善研究设计。确定研究程序;提出研究假设;确定研究目标;提出研究措施;落实研究内容;提供研究方法;划分研究阶段;落实研究人员;预测研究成果效应;建立研究组织;规划研究管理;分析规划研究的保障。

参考资料:百度百科-开题报告

先看中文论文,再看英文论文

人脸识别论文题目

学生进教室后自动识别个人信息,系统自动签到签退,全程监控学生上课听讲情况,就连发呆、打瞌睡和玩手机等行为都能被识别出来……近日,位于江苏南京的中国药科大学在部分教室“试水”安装了人脸识别系统,引起社会的广泛关注。 国内已有很多学校安装了人脸识别系统,其引发争议的一个共同问题是,是否侵犯隐私?首先要承认,对于被监控的学生来讲,恐怕普遍会有种不适感,因为自己多低一会儿头,可能就会被“记录在案”,这无形中是一种压力。人脸识别的第二个问题是,是否对学习有帮助?根据学校方面的调研,人脸识别技术不仅可以高效率地进行考勤,还可以发现和捕捉学生的学习情况,有助于激励和鞭策学生将主要精力放在学习上。有人则认为这不是必然结果,如果课堂总是很“水”,即便能留住学生的人,也未必能留住学生的心,甚至还会让学生对学习产生反感。 梳理这些争议,其实跟两种思维有关。一种是“管理思维”,一种是“教育思维”。持“管理思维”的人,对于人性缺乏信任,认为充分的自由未必能转化为学习的自律,因此对有利于提高工作效率、减轻工作强度的措施情有独钟。而持“教育思维”的人,总是相信人性的魅力,认为只要课程足够好,学生就自然喜爱,不必采取人为干预。这两种看法都有道理。现在外界的诱惑太多了,有些学生对学习提不起兴趣,当然需要严管厚爱;但众多“逃课族”“低头族”的出现,也说明了教学乏善可陈,呼唤更多“金课”。

好的。。。。。给你。。。代劳

写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现

学术堂整理了十五个好写的计算机软件毕业论文题目,供大家进行参考:1、基于西门子S7-1200电梯控制系统设计与实现2、基于ArcGIS Engine工程施工自动规划系统设计与实现3、基于云平台的光伏监控系统设计与实现4、基于移动终端的变电站导航系统设计与实现5、人造板在线同步图像采集系统设计与实现6、基于LoRa的园区能耗管理系统设计与实现7、电厂机组一次调频参数在线监测系统设计与实现8、基于组件技术的船舶导航系统设计与实现9、智能家居控制系统设计与实现10、大型地面光伏电站综合自动化系统设计与实现11、无人驾驶喷雾机电控系统设计与试验12、国产重力输液过程智能监控系统设计与临床转化应用研究13、大型医院医技检查自动预约系统的设计与应用14、高校计算机教学综合管理系统设计与实现15、基于移动物联网的智慧教室设计与实现

人脸识别系统检测论文报告

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

人脸识别法学论文题目书写:人脸识别就是通过观察比较人脸来区分和确定人的身份的.不被察觉的特点会使识别方法不令人反感,而且不容易引起人注意

人脸识别[1]技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。2014年3月,香港中文大学信息工程系主任、中国科学院深圳先进技术研究院副院长汤晓鸥领军的团队发布研究成果,基于原创的人脸识别算法,准确率达到,首次超越人眼识别能力()。[2]2019年8月17日,北京互联网法院发布《互联网技术司法应用白皮书》,该《白皮书》阐述了十大典型技术应用,其中包括人脸识别技术。人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

在回答题主的问题的时候,我觉得应该注意做『科研』和做『产品』之间的区别。论文中汇报的人脸识别技术是属于科研的行列。比如在LFW上,这种数字的意义更多是让搞研究的那个圈子里面的人更加直观的了解到一些情况,你也知道,通常来说这个准确率是非常高的了,所以我们可以说『人脸识别技术在LFW上已经很成熟了』,但是一模一样的技术,拿到真实环境下得到的准确率可能只有75%……也许会有些人觉得这是很可笑的,不,请不要笑,这是科研圈里朋友的普遍做法,不是没有苦衷的。捣腾过LFW的朋友其实心里都清楚,这并不是一个很好的数据库。图片都是从网上下载的,人脸的质量也是千差万别,有人说这样才接近真实情况……但实际上距离大部分的实际应用场景还是太远了。目前评价科研中算法的优劣的唯一方法就是找一个数据集,然后大家一起对比,数据集的不同算法得到的结果也会不同,然而……论文上通常是有报喜不报忧的恶习的,所以常常会有不公平的对比存在,随着越来越多更大的人脸数据集的慢慢增加,对于算法的评价会可能会变得稍微公平一些……即便是这样,论文里所谓的人脸识别技术,跟可用的『产品』之间的差距仍然很大。这并不是说论文的算法不好,而是『产品』的天性。大部分产品都是针对性的解决一类或几类问题,产品讲究是速度,稳定性,成本,等等,不同的产品通常可以加入不同的先验甚至额外的硬件来提升产品的可用性。这是做『产品』和做『科研』的区别。举两个容易理解的例子:某著名手机厂商想开发一个自己的人脸解锁功能,在第一次使用手机的时候,经过一个人脸注册的过程,记录下手机主人的样子,在之后的使用中如果被触发,就进行人脸验证,解锁。这里你如果上来一个几十层网络的卷积网络,这个是不行的……因为速度很重要,内存也重要,如果你一个网络模型一上来就已经几十兆几百兆了,产品经理会疯的。做产品的往往是想在保证用户体验的情况下,使用最少的资源。所以最后的产品可能是……下面是我瞎掰的……检测到人脸,检测五官的基本landmark,然后通过几何关系约束来缩小识别范围,再用简单的特征比如LBP,在一个一千张主人人脸的数据库进行验证,验证里可能有各种trick,并且这个一千张人脸的数据库也是实时更新的,比如当前识别正确了,那么就加入进去,如果识别错了,就把这个数据提取特征作为反例存起来……一个可用的产品总是包含了很多看似没有道理的trick的,但是就是这些构成了产品的核心技术。另外一个例子,做人脸识别,但是是做煤矿工的……请自行脑补一脸煤的辛苦矿工。在这个场景下面,你连人脸检测都没法弄啊……加上光照和脸上煤的干扰,论文上的算法基本上是没办法用的。如果是你,你怎么去做识别?做一个产品的时候,思路是需要很开阔的。比如人脸的检测实际上是可以通过双目视觉来做的,两个廉价摄像头,简单的算法通过三角化得到一个稀疏的深度图,利用深度信息来做人脸的检测,然后基于眼睛和嘴唇来做识别,眼睛和嘴的识别可以用卷积网络来做,但是真是的产品里面可能还会考虑身高信息,当然,在洞里还需要考虑补光的问题……

开题报告抄的别人论文的内容

1、开题报告不可以抄袭,开题报告是自己所选的课题的概况,应该根据自己的课题来进行,不能抄袭。2、开题报告包括综述、关键技术、可行性分析和时间安排等四个方面。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题写清楚。3、开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既避免遗漏;又便于评审者一目了然,把握要点。4、开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。更多关于开题报告抄了会怎么样,进入:查看更多内容

开题报告不查重,不能直接抄。

开题报告一般不检测,只需要重复最后论文全文。但是如果开题报告放在论文上,那就需要检查。正常情况下,开题报告不会放入论文。具体还是根据不同学校的不同要求,有的高校会要求检测开题报告。

虽然说开题报告不查重,但并不代表鼓励大家都去抄其他人的论文,还是要有自己的想法。开题报告要融入自己的心血,要把自己的题目研究透彻。这样,在写论文的过程中,可以避免很多尴尬的问题。比如你没有自己的想法,在写论文的过程中会没有想法,里面有很多段落或者内容,直接抄袭别人的论文,导致你的论文重复率更高。

技巧

选题是撰写学术论文的第一步,选题是否妥当,直接关系到论文的质量,甚至关系到论文的成功与否。不同于政策研究报告,学术文章聚焦理论层面、解决理论问题。

有的学生的选题不具有新颖性,内容没有创新,仅仅是对前人工作的总结,或是对前人工作的重复。在选题时要坚持先进性、科学性、实用性及可行性的原则。在提出问题时,要以“内行”看得懂的术语和明确的逻辑来表述。

人脸识别论文答辩题

不需要。预答辩是本课题组内部进行答辩,先把自己的毕业设计的PPT预演一遍,不需要人脸识别。给导师先讲一讲,在正式答辩前的预演,导师先问你几个问题,以防后面正式答辩时没有心理准备。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

  • 索引序列
  • 人脸识别论文开题报告内容
  • 人脸识别论文题目
  • 人脸识别系统检测论文报告
  • 开题报告抄的别人论文的内容
  • 人脸识别论文答辩题
  • 返回顶部