[1]叶金汉主编.岩石力学参数手册.北京:水利电力出版社,~501
[2]李华晔,黄志全,刘汉东等.岩基抗剪参数随机——模糊法和小浪底工程 C、 φ 值计算.岩石力学与工程学报,1997,16(2):155~161
[3]夏明诚.抗剪强度统计方法的现状与讨论.岩土力学,1998,19(1):90~93
[4]周维垣,杨若琼.岩石力学数学模拟的现状与发展.岩石力学与工程学报,1998,17(增):937~939
[5]尤明庆,华安增,李玉寿.缺陷岩样强度和变形特性的研究.岩土工程学报,1998,20(2):97~101
[6]尤明庆,华安增.岩石试样的强度准则及内摩擦系数.地质力学学报,2001,7(1):53~60
[7]尤明庆.岩样三轴压缩的破坏形式和Coulomb 强度准则.地质力学学报,2002,8(2):179~185
[8]尤明庆,李化敏.试验数据回归结果的评价方法.岩石力学与工程学报,2003,22(7):1191~1195
[9]尤明庆,苏承东,周英.不同煤块的强度特性及回归方法.岩石力学与工程学报,2003,22(12):2081~2085
[10]胡宣达.数理统计初步.南京:江苏人民出版社,~199
[11]黄国民,周廷振,顾士亮等.徐州矿山压力规律及控制技术.徐州:中国矿业大学出版社,~38
[12]尤明庆,苏承东.对砂岩试样室内试验结果的分析.见:中国岩石力学与工程学会第八次学术大会论文集,北京:科学出版社,~182
[13]Jaeger J failure at lower confining ,1960,189:283~284
[14]尤明庆,苏承东.具有沉积弱面试样的剪切拉伸破坏及强度分析.岩石力学与工程学报,2006,25(增2):3618~3622
[15]李银平,王元汉,肖四喜.岩石类材料中压剪裂纹的相互作用分析.岩石力学与工程学报,2003,22(4):552~555
[16]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究.岩土工程学报,2002,24(3):304~308
[17]李新平,刘金焕,彭元平,等.压应力作用下裂隙岩体的断裂模式与强度特性.岩石力学与工程学报,2002,21(增):1942~1945
[18]尤明庆.岩样三轴压缩的破坏形式和Coulomb 强度准则.地质力学学报,2002,8(2):179~185
[19]李东旭,周济元.地质力学导论.北京:地质出版社,~84
[20]钟嘉猷.实验构造地质学及其应用.北京:科学出版社,~59
[21]许江,鲜学福,王宏图.关于岩石基本力学参数关系的一些讨论.见:第六次全国岩石力学与工程学术大会论文集.北京:中国科学技术出版社,~146
[22]吴玉山,李记鼎.确定岩石强度包络线的新方法——单块法.岩土工程学报,1985,7(2):85~91
[23]苏承东,尤明庆.单一试样确定大理岩和砂岩强度参数的方法.岩石力学与工程学报,2004,23(18):3055~3058
[24]尤明庆.两种晶粒大理岩力学性质的研究.岩土力学,2005,26(1):91~96
[25]周国林,谭国焕,李启光等.剪切破坏模式下岩石的强度准则.岩石力学与工程学报,2001,20(6):753~762
[26]陈卫忠,李术才,朱维申等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用.岩石力学与工程学报,2000,19(2):131~135
[27]尤明庆.岩石非均匀变形破坏和承载能力的研究.徐州:中国矿业大学,~66
[28]尤明庆.复杂路径下岩样的强度、 变形特性.岩石力学与工程学报,2002,21(1):23~28
[29]蔡美峰.岩石力学与工程.北京:科学出版社,~230
[30]尤明庆,李化敏,纪多辙.试验数据回归结果的评价方法.岩石力学与工程学报,2003,22(7):1191~1195
[31]尤明庆,苏承东.大理岩试样的长度对三轴压缩试验的影响.见:中国岩石力学与工程学会第九次学术大会论文
集,北京:科学出版社,~337
[32]尤明庆.基于粘结和摩擦的岩石变形与破坏的研究.地质力学学报,2005,11(3):286~292
[33]刘允芳.水压致裂法三维地应力测量.见:夏熙伦编.工程岩石力学.武汉:武汉工业大学出版社,~207
[34]徐芝纶.弹性力学(上册).北京:人民教育出版社,~94
[35]蔡美峰.地应力测量原理和技术.北京:科学出版社,~46,234~244
[36]周维垣.高等岩石力学.北京:水利电力出版社,~99
[37]中华人民共和国水利部.水利水电工程岩石试验规程.北京:水利水电出版社,2001
[38]Haimson B C,Cornet F Suggested Methods for rock stress estimation—Part3:hydraulic fracturing(HF)and/or hydraulic testing of pre-existing fractures(HTPF). .,2003,40(7/8):1011~1020
[39]Lee M Y,Haimson B evaluation of hydraulic fracturing stress measurement .,1989,26(6):447~56
[40]Rutqvist J,Tsang Chin-Fu,Stephansson in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced .,2000,37:107~120
[41]Cappa F,Guglielmi F,Rutqvist J,Tsang Chin-Fu,Thoraval modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, .,2006,43:1062~1082
[42]陈群策,毛吉震,侯砚和.利用地应力实测数据讨论地形对地应力的影响.岩石力学与工程学报,2004,23(23):3990~3995
[43]谭成轩,石玲,孙炜锋等.构造应力面研究.岩石力学与工程学报,2004,23(23):3970~3978
[44]张彦山,梁国平,丁建民等.由井壁崩落估算水平主应力量值的研究.见:中国地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社,~139
[45]谢富仁,孟宪梁,祁英男.内昆线天星场至仙水段构造应力场分析.见:中国地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社,~69
[46]Pine R J,Tunbridge L W,Keakwa stress measurement in the Carmenellis test at South Crofty mine at a depth of 790 .,1983,20(2):51~62
[47]Anderson C,Christianson of hydraulic fracturing rock stress measurements and comparison of triaxial overcoring results made in the same :Katsuhiko Sugawara et :A A Balkema,~320
[48]陈颙,黄庭芳.岩石物理学.北京:北京大学出版社,~137
[49]陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析.北京:地质出版社,~105
[50]Rummel F.断裂力学应用于水压致裂应力测量.见:阿特金森 B K 编.岩石断裂力学.尹祥础,修济刚等译.北京:地震出版社,~253
[51]范天佑,断裂理论基础.北京:科学出版社,~83
[52]尤明庆.水压致裂法测量地应力方法的研究.岩土工程学报,2005,27(3):350~353
[53]Amadei B,Stephansson stress and its :Chapman & Hall,~173
[54]刘允芳.在同一钻孔中水压致裂法地应力测量与套钻孔应力解除法测量成果的比较.见:夏熙伦.工程岩石力学.武汉:武汉工业大学出版社,~221
[55]尤明庆,周少统,苏承东.岩石试样在围压下直接拉伸试验.河南理工大学学报,2006,25(4):255~261
[56]郭启良,丁立丰.岩体力学参数的原地综合测试技术与应用研究.岩石力学与工程学报,2004,23(23):3928~3931
我也学地质的马上毕业了我给你个地质方面的范文自己看着写吧~~这是我的初稿需要修改~ 一 选题的科学依据 1 研究目的、意义 (1)研究目的: ①对已发现的金矿(化)体地表利用槽探工程进行系统的追索控制,深部利用钻探工程进行控制验证,扩大矿体规模。 ②对1/5万水系沉积物异常进行揭露验证,大致了解异常区成矿地质条件及控矿因素,以期发现新的矿(化)体。 (2)意义: ******金矿是**省有色地勘局*队近年来在动昆仑多金属成矿带新发现的一个以石英脉型为主的具有大型远景的金矿床。通过近年来的勘查,矿床规模不断扩大,**省国土资源厅已将其列入“十一五“可规模开发的矿产地。 **有色地勘局*队在该区开展的包括Au、Ag、Co沟系土壤综合异常查证及地质矿产调查和主要矿(床)点的检查,均取得了显著的效果,发现了一批矿产地。 整体来看,*****矿床地质勘查基本上已经达到了普查程度,对首采地段的工程控制程度也已经较高,此次结合导师与青海有色地勘局八队的实习实践充分收集、整理前人资料,编写《**都兰县**金矿成矿规律研究》对该金矿的成因及控矿规律进行研究,并参考邻近同类矿床,简历了成矿模式,不仅有利于知道****金矿以后的深边部的找矿勘探工作,而且对于区域找矿预测工作也具有重要的实践和经济意义。 2 研究内容所属领域、研究范围 内容所属领域为自然科学,研究范围是对于矿床的研究,主要是在野外地质调查和室内综合研究的基础上,通过典型矿床研究,并结合成矿新理论和勘查新方法,运用板块构造理论,矿床成矿系统理论及区域成矿理论,坚持以点剖析、以点带面的原则,利用测试数据资料,与前人研究成果进行对比,开展矿床地球化学特征、成矿规律及矿床成因研究工作。 3 目前国内外研究现状、水平及发展趋势 1969一1971年,**地质局在东昆仑成矿区开展了1:20万 区域地质调查1:50万航磁测量,对区内的矿床和矿点作了不同程度的地质工作,初步了解了区内成矿地质背景。 1973年,提交了“加鲁河幅”区调报告; 1989一1990年,**省地矿局化探队在东昆仑地区系统开展了1:50万低密度分散流扫面工作,涉及到本区成果尚未公开; 1999年,**有色物化探公司在沟里地区(魏日一肉早果日一带)1500kmZ范围内开展了1:5万水系沉积物测量工作,圈出综合 异常26处 2001年,**省有色地勘局*队对****Au、As、Ag、c。沟系上壤综合异常进行查证时发现了*****金矿。 近几年来,为黄金专项和省地方地勘项目,**省有色地质*队在**地区进行异常查证,通过对该区多个矿脉所进行的不同类型的工程的控制,对本区矿体的厚度、产状、品位有了一定的认识,掌握了矿体赋存的一些基本规律。同时发现了本区具有工业价值的矿石并不局限于石英脉型的矿石,黄铁矿化较强的蚀变闪长岩、千枚岩、绿泥石英千枚岩及含炭质千枚岩都含矿,局部也可以构成工业矿体。 在对矿区控矿、含矿构造的规律分析总结中,也有新的认识。发现矿体不仅仅局限于东西向构造带中,北西、北北西的以及东西向断裂的次级断裂(近南北向)构造也是含矿构造之一。 通过对矿床的成矿地质条件、矿床地质特征,成矿机理的分析和研究,认为该矿床由早期形成的热水沉积建造提供主要成矿物质来源,在后期动力挤压、变形、变质作用下,成矿物质富集,形成含金石英脉型、构造蚀变岩型,具有典型的韧性剪切带型金矿床的特点。 ***普查区位于东昆仑成矿带东段,***金矿西北约10km处,周边大小矿点多处,如果**金矿、**金矿、**金矿等,是东昆仑东段重要的金矿富集区。 1:5万、1:万水系沉积物异常、1:1土壤异常显示该区找矿前景广阔。以往异常检查工作中发现的多条金矿体处于异常区边缘,主异常区内因第四纪坡积物覆盖厚,受工作量所限,未能进行系统的查证。2008年度所开展1:万水系沉积物测量、1:1土壤测量与现有的金矿(化)体极其吻合,异常显示出较好的找矿前景,经对1:万水系沉积物S-2异常进行检查,发现AuⅠ、AuⅡ矿带,成为按纳格地区最有效的找矿方法之一。从水系异常、土壤异常的分布特征分析,存在较大的找矿空间。 从目前工作程度看,***地区所发现的5处矿群、10多条金矿体,1条含金蚀变岩带、1条金矿化蚀变岩带,只有对少数地段进行了地表和浅部控制,且控制程度很低。2007年初步对ⅡAu用硐探工程验证时,矿体向深部有一定延深,且相对稳定,2008年对主矿体进行地表追索控制,矿体在走向上也有延伸,说明在主矿区地表和深部具有较好的找矿潜力。以上地质现象表明,按纳格地区找矿空间大,前景好,具有形成中大型金矿床的潜力。 二 研究的主要内容和重点要解决的问题 (1)研究内容 结合课题研究的需要,综合前人研究的基础以及研究存在的问题,主要的研究内容有以下几点: 1、 选取一个贯穿果洛按纳格地区底层的剖面进行现场实测,采集一套具有代表性的标本进行分析,用于对矿区现在具有争议性的地层时代的确定。 2、 对果洛按纳格及其外围狂点已有坑道、探槽及钻孔岩心进行详细的地质观测,并拍摄照片,采集样品;重点分析小构造的成矿规律,查明其活动次序力学性质、充填特征及地层、岩体和其他构造的关系:研究矿体延伸规律和侧伏规律,包括矿体形态、产状、厚度在走向、倾向和延伸方向上的变化规律,脉体和矿体的端部变化和再现规律,控矿构造对于矿体特征的影响等:研究成矿富集规律,主要研究品位的变化趋势和控制因素,包括矿化类型,脉体形态变化,脉体产状变化,脉体于围岩之间、蚀变强度等对矿石品位的影响。 3、 通过对矿区采集样品的岩矿及单矿物地质地球化学、微量元素地球化学、稀土元素地球化学等综合分析,查明该区元素组合、富集规律:结合流体包裹体和稳定同位素对成矿大地构造背景、成矿物质来源、成矿机制和成矿时代进行分析。 4、 综合整理前人的资料,吧果洛按纳格矿床外围矿点的一些矿床地质特征于整个东昆仑造山带中其他矿床进行类比,总结矿床成因,分析成矿规律,建立成矿模式。 (2)重点要解决的问题 ① ***地区地质工作程度相对较低,目前工区内面积性工作仅做了1:5万、1:万水系沉积物测量,而1:万沟系次生晕测量和1:1万土壤测量范围较小,主异常还未控制全面。因此,要在本区加强面积性基础工作,提取更多的找矿信息,扩大找矿范围。 ②通过近几年的地质工作,虽然在本区取得了较好的成果,但限于投入的工作量及工作程度,对本区的矿质来源、控矿因素、找矿标志、矿体的赋存空间、找矿远景等认识不足,主要表现在: ***地区地质工作主要为地质草测和少量探矿工程,因区内构造发育、蚀变强烈,且控岩、控矿构造断裂带分布较多,依据断裂构造性质、蚀变特征及产出背景还不能确定出构造对控矿,控矿程度如何的评价。 目前区内矿体的工程控制程度很低,地质研究水平更低,在其成矿特征、找矿规律方面一直套用果洛龙洼金矿模式,因二者之间客观存在的差异,对指导本区找矿方面存在很大的局限性。 ③区内第四纪残坡积、冲洪积物相对发育,覆盖较厚,因此对发现的金矿体工程控制程度有限,对其产状、规模、形态、品位等及其变化情况了解不够,金矿体的地表控制程度及浅部和深部的变化控制不够,应加大追索控制力度。 ④***地区北接阿斯哈金矿,南邻***矿区,所处的区域成矿地质背景极为重要,经基础工作掌握的找矿信息和不断发现的金矿体已证实该区拥有较好的成矿条件和找矿潜力。应对本区加大地勘资金的投入力度,应用新理论、新方法、新技术,寻找突破口,扩大本区资源量已成地质勘查的当务之急。 三 研究方法及技术路线 1 拟采用的研究方法 (1)、1:1万地质草测 (2)、1:万水系沉物测量 (3)、1:1万土壤测量 (4)、1:2千岩石剖面 (5)、探槽工程 (6)、钻探 2 技术路线、技术措施、技术关键 (1)、1:1万地质草测以穿越法为主,追索法为辅,对含矿层、矿化蚀变带、构造、接触带等重要地质体沿走向进行了追索,掌握其形态、产状、规模等特征、采集化学样、快速分析样品了解其含矿性。 地质点描述内容主要突出重点和有意义地质特征,描述内容有岩性名称、结构构造、矿物成分、矿化蚀变、岩层产状及样品、标本等内容,对有意义的地质体进行素描和拍照。 技术关键:在每天进行地质草测工作后,均有路线地质小结,对当天的地质工作进行了归纳总结,加深对本区的找矿认识 (2)、1:万水系沉物测量主要流程为:底图—野外作业—样品加工—自检互检—数据处理及异常图件编制—室内资料整理 技术关键:在工作中严格按**省地质勘查标准《**省1/5万水系沉积物测量工作细则》执行。 (3)、1:1万土壤测量中主要对野外工作和样品加工的质量进行真实可靠的分析,并根据数据进行异常图件的编制。 技术关键:工作中严格按照中华人民共和国地质矿产行业标准GZ/T0145-94《土壤地球化学测量规范1:50000》和《设计书》要求执行。 (4)、1:2千岩石剖面主要布置于1: 5万和1:万水系沉积物测量异常浓集区,现完成地化剖面2Km。 技术关键:工作中遵照中华人民共和国地质矿产行业标准DZ/T0011—91《地球化学普查规范》。 (5)、探槽工程主要布置于1:5万、1:万水系沉积物测量异常区及地质草测区主要成矿带上。 技术关键:每个编录槽探工程起始点均用木桩留有标记,在化学样品采集点留有红油漆标志。槽探工程地质编录和图件清绘质量符合规范要求。 (6)、钻探依据设计要求,布置于AuⅡ矿体0线、4线、7线及15线。 技术关键:工程质量要求严格按《岩矿芯钻探规程》中的“六项指标”和相关规范要求执行,质量达到要求标准。 四 调研及前期准备工作 1、收集该区前人工作资料和区域地质资料 2、对野外设备工具进行校正和维修(GPS校正等) 五 预期要达到的成果和具体的学术或应用价值 预计达到的成果 2008年度内按纳格地区开展地质普查工作,对区内进行1:万水系沉积物测量、1:1万地质草测、1:2千地化剖面、1:1万土壤测量及钻探、槽探等地质工作。 应用价值 初步建立指导性强、工作方法有效的理论认识,对区内成矿条件,控矿因素、找矿标志、成矿规律等方面进行理论上探索研究,为该区实际找矿工作提供理论依据。 六 进度计划 为能按时文成对毕业论文的编写,计划如下; 1、2009年2月23日——2009年3月29日:毕业实习调研 2、2009年4月1日——2009年4月18日:外文翻译,调研报告及开题报告的编写并提交 3、2009年4月19日——2009年5月1日岩矿鉴定及地质图件的绘制 4、2009年5月2日——2009年5月20日论文初稿的编写 5、2009年5月20日——2009年6月20日论文的审核修改及毕业答辩
岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。20世纪初,出现了岩块三轴试验,课题内容主要集中在地下工程的围岩压力和支护方面。1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。不久,弹性力学被引入岩体力学的研究,并成为解决岩体工程问题的重要理论基础。1950~1960年,岩体力学扩大了应用范围,得到了比较全面的发展。这一时期除了地下洞室围岩稳定性研究以外,还有岩质边坡和地基岩体稳定性研究等;开始利用深孔应力解除法,实测岩体中的天然应力;岩体的空隙性,特别是岩体的裂隙空隙性、岩体中的不连续面,以及岩体力学性质的各向异性和不连续性的研究,被提到重要地位;逐渐发展了原位岩体性质的各项测试技术和试验研究;在预测和评价岩体稳定性方面,发展了图解分析法,以及块体极限平衡理论分析法;在加固和稳定岩体措施方面,提出了效果良好的锚喷法。这一时期形成了著名的奥地利学派,他们认为岩体力学属不连续介质力学,岩体的强度和变形特性,主要受岩体结构内部单元岩块之间的联结力以及岩块之间的相对位移所控制。他们的研究成果,促进了岩体力学的发展。1957年,法国的J.塔洛布尔(曾译J.塔罗勃)著《岩石力学》,从岩体概念出发,较全面系统地介绍了岩体力学的理论和试验研究方法及其在水电工程上的应用。至50年代末期,岩体力学形成了一门独立的学科。60年代以来,岩体力学的发展进入了一个新的历史时期,研究内容和应用范围不断扩大,对不连续面力学效应和岩体性能进行了研究,取得了成果和发展;有限元法、边界元法、离散元法先后被引入,岩体中天然应力量测的加强与其分布规律不断被揭示。在中国,系统地研究岩体力学始于50年代初期。1952年出版了《矿内地压与顶板管理论文专集》。1956年开始开展了原位岩体力学性质的试验研究。1965年明确提出了岩体结构概念,并逐渐形成了岩体力学性质和岩体稳定性主要受岩体结构控制的“岩体结构控制论”,为岩体力学的发展作出了贡献。 形成历史 发展前沿 1951年,在奥地利创建了地质力学研究组,并形成了独具一格的奥地利学派。¬同年,国际大坝会议设立了岩石力学分会。¬1956年,美国召开了第一次岩石力学讨论会。¬1957年,第一本《岩石力学》专著出版。¬1959年,法国马尔帕塞坝溃决,引起岩体力学工作者的关注和研究。¬1962年,成立国际岩石力学学会(ISRM)。¬1966年,第一届国际岩石力学大会在葡萄牙的里斯本召开。 岩体结构与结构面的仿真模拟、力学表述及其力学机理问题裂隙化岩体的强度、破坏机理及破坏判据问题岩体与工程结构的相互作用与稳定性评价问题软岩的力学特性及其岩体力学问题水-岩-应力耦合作用及岩体工程稳定性问题高地应力岩体力学问题岩体结构整体综合仿真反馈系统与优化技术岩体动力学、水力学与热力学问题岩体流变与长期强度问题岩体工程计算机辅助设计与图像自动生成处理。
游振东
[中国地质大学(武汉)]
1999年,庆祝新中国成立50周年之际,笔者曾著文回顾50年来的中国变质岩石学的进展[1]。进入21世纪,传统的地质学正在转向以“地球系统科学”为核心内容的现代地质学。在全球地质一体化的[2]形势下,中国地质调查局不仅在内地开展了新一轮的1:25万区域地质调查,而且大力在西部地区青藏、新疆等地,开展 1:25万 区域地质调查,对西部一些重要的变质地区,如藏南、昆仑、天山等地区进行了详细的填图,获得了许多珍贵的第一手资料,为我国变质岩石学和变质地质学的研究打下了坚实的基础[3]。本文拟从岩石学学科发展的角度来观察变质岩石学的成就和展望。
一、极端条件下的变质作用
如若从变质岩石学自身发展来看,近10年来极端条件下的变质作用(metamorphism under extreme conditions)研究逐渐受到研究者的重视。所谓“极端条件”是指变质温度、压力等外部因素有异于常规变质作用的范围(即t=250~800℃,p= 1~ GPa)。超高压变质作用、超高温变质作用甚低级变质作用以及冲击变质作用等极端条件下的变质作用,近年来在国内都得到长足的发展。
1.超高压变质作用
在变质地质学中,人们习惯用变质的地温梯度(geothermal gradient)来划分变质作用的类型,超高压变质作用是指地温梯度很低(小于10℃/km)、变质压力大于以上的变质作用,以致在石榴子石、锆石等矿物中能够出现柯石英、金刚石等通常变质岩石中不可能出现的高压矿物。
20世纪80年代以来,在大别山—苏鲁一带发现的超高压变质作用,便是一种极端条件下的变质作用。它以榴辉岩及与之共生的片麻岩中普遍发现超高压标志性矿物——金刚石和柯石英的微细包裹体为特征,成为世界上出露条件最好、规模最大的超高压变质带,引起国内外学者的注意。近10年来的研究证明,此类岩石具区域性分布,西起天山,东延至阿尔金—祁连、东秦岭—大别山—苏鲁,构成横跨中国的“中央构造带”。超高压变质岩石的存在,揭示了陆壳物质可以深俯冲于地幔的深度。为了探索此类不寻常的造山带的深部构造,中国地质科学院地质研究所在国土资源部支持下,自2001年起,在江苏东海实施第一口中国大陆科学钻探(科钻一井),历时4年,终孔深度5000余米。全岩心钻进,加以地球物理等多学科交叉研究,获得了如下成果:大别-苏鲁汇聚板块边界的三维构造、组成及地球物理性质;探索超高压变质作用的性质与年代;探索超高压变质岩形成、折返过程中的地壳动力学与壳幔相互作用;研究地壳和地幔流体循环过程和矿化作用;建立研究地壳动力学和深部大陆地壳演化的长期观测实验室[4]。
超高压变质作用已经成为国际地质科学研究的热点,当前已发现的各个超高压变质地区研究日益深入,不断有新成果涌现;通过实验岩石学等手段探索岩石圈板块俯冲的深度;壳幔相互关系及流体循环等重大科学问题的研究都在深入开展。
2.超高温变质作用(ultrahigh temperature metamorphism)
属于麻粒岩相变质范畴,但不同于一般的麻粒岩的是变质温度大于800℃。以出现假蓝宝石(saphirine)、大隅石(osumilite)等高温矿物为特征。目前在南极、印度等地已有发现,国内仅黑龙江麻山群中有过假蓝宝石的报道。近年来,北京大学与日本Koshi大学 Santosh 合作,对内蒙古孔兹岩带重新进行研究,通过变质矿物组合、流体包裹体特征、独居石、锆石同位素年代学等方面,确定在原先认识的麻粒岩相岩石组合中,发现了如下超高温矿物组合:
假蓝宝石+石英;低Zn/Fe3+尖晶石+石英;高铝斜方辉石+矽线石+石英以及 高温中条纹长石。运用常规矿物温压计,据最新研究假剖面作相平衡模拟,查明该区变质作用的温度可达 1000℃,变质压力约 GPa。峰期变质之后继以近等压冷却过程 而后折返,形成近等温减压的途径。镜下显微构造、矿物反应和相平衡模拟说明岩石经历了逆时针的pT轨迹。
超高温变质矿物中保存有古流体,成分为 CO2,这与岩石中广泛出现无水矿物组合相一致。据独居石、锆石单矿物样品所作的化学和同位素年代学定年,超高温事件年龄为,属于古元古代的高温变质作用,并且发现从西部到东部,超高温变质事件年龄从 变到,显然有变新的趋势。据此,作者推测:内蒙古缝合带中的超高温变质事件,是古元古时期华北克拉通焊合进入哥伦比亚超大陆时,南面的鄂尔多斯陆块与北面的阴山陆块作斜向碰撞和剪刀式的闭合所引起的[5]。
内蒙古超高温变质带的确定,是我国变质地质学的一大进展。
3.甚低级变质作用(very low grade metamorphism)
甚低级变质作用,是指变质温度条件介于成岩作用与低级变质之间的变质作用。利用沸石、黏土矿物、绿泥石等低温变质矿物及其矿物组合,可以填绘出甚低级变质的等变线从而揭示其热构造,这对于碳氢资源远景预测可以起一定作用,因为一般认为:如果地温达到变质作用的范畴,碳氢资源的远景就要大大降低了。
在甚低级变质地区,因为变质温度低,矿物结晶粒度很细,一般岩石显微镜都很难辨识。伊利石结晶度是在甚低级变质地区定量划分岩石变质程度的重要方法,X射线衍射分析是测量伊利石结晶度最有效的方法。1962年以来,西方文献出现了不同的伊利石结晶度指数,如Weaver指数、Weber指数和Kubler指数等。北京大学王河锦,从X射线理论角度,确定出这些指数之间的关系式,改善了伊利石结晶度的测定方法和精度。
我国甚低级变质作用研究薄弱,20世纪90年代末索书田等曾运用甚低级变质的方法[6]研究广西右江的低温金矿床。进入21世纪,我国甚低级变质研究逐渐与油气地质研究相结合,有了显著进展。毕先梅等曾论述极低级变质作用与成矿作用的关系[7]。王河锦、朱明新以层状硅酸盐的结构变化与变质温压条件的关系,如伊利石、绿泥石结晶度,伊利石多型、结晶轴b0。值及应变特征等,分析研究了湖南广泛分布的板溪群及其上的下古生界页岩及川西北三叠系复理石的甚低级变质[8,9]。其中湖南湘东、湘西等地 4个剖面垂直面理应变沿剖面变化,同时用与国际可对比的伊利石结晶度等数据资料,确定中新元古界—下古生界的区域低温甚低级变质温度为250~400 ℃,但变质压力因时代不同而异,中元古界为中压型,新元古界—下古生界为中低压型。这些都加深了地质界对扬子地台这些古老岩石的认知水平。
4.冲击变质作用(impact metamorphism)
陨石撞击地球或其他天体,造成陨石坑,其周围岩石在极高的应变速率(106~109S-1)、瞬时高温(1000~10000℃)、动态高压(10~100 GPa)下产生的变质作用为冲击变质作用。从嫦娥1号等发回的数据解译出的照片可知,月球表面布满了大大小小的陨石坑,地球不同于月球和其他天体,在于其表面有厚约1000km的大气层,所以陨击地球的较小天体,进入大气层后因强烈摩擦而烧毁。所以地球上保留的陨石坑较少,据统计,全球已知的陨石坑有160多个。不少大型陨石坑是世界著名金属矿床的所在地,如加拿大的Sudbury,大多数小型陨石坑被开发成为旅游胜地,如德国南部的Ries、美国亚利桑那州的Meteor Crater[10]。
因为地表沉积物的覆盖,一个陨石坑的确定,需要做大量的研究工作。目前,我国已确定的陨石坑有海南的白沙,是1997年公开报道的[11];辽宁岫岩陨石坑,20世纪70年代就已发现,曾被认为是个旋转构造。经过40年反复研究,最近广州地球化学研究所与辽宁冶金地质公司合作,实施深达307m的科学钻探,在107~149m深度发现了一系列冲击波所产生的冲击效应:石英击变面状页理、含熔体玻璃的多相角砾岩和陨击玻璃等,陨击构造的性质得以确定。该成果 2009年公开发表[12],是我国在冲击变质方面的一大进展。
二、变质岩石学的教学
由于变质岩石学各个领域都获得了长足的进步,我国变质岩石学教学也有很大的进展。表现在:①不少中国学者的研究成果已被国外领先的变质岩石学教科书所采用;②中国地质大学(武汉)率先进行了《变质岩石学》英语教学试点,获得成功。
1.不少国内学者变质岩石学研究成果进入国外的教科书
长期以来国外学者对我国国内研究现状了解甚少,以致在国外出版的《变质岩石学》教科书中引用的普遍是国外学者的成果。近年来随着改革开放的步伐加大,中西方学术交流频繁。现在我国学者的成果渐渐在国外出版的教科书中出现了。
以 2011年Springer-Verlag 出版的 Kurt Bucher 和Rodney Grapes 合作编写的“Petro-genesis of Metamorphic Rocks”(8thed.)为例,就引用了12篇国内学者的成果。
1)吴春明教授2004~2007关于高级变质岩中地质温压计方面的论文有4篇被该书第4章“Metamorphic Grade”所引用。
2)张立飞教授(2003)发表了关于西天山超高压变质岩系深俯冲达150km发生极低地温梯度的组合,白云石反应生成菱镁矿+文石,属于变质岩中的“禁区”。该文被多次引用,该书第3章“变质作用过程”将其作为指定参考文献供读者阅读,在第6章“白云岩和石灰岩的变质”则被列为“Cited Reference”。
3)在第9章“变质基性岩”中还引用了7篇中国学者关于超高压变质的论文。在此就不一一列举。
2.《变质岩石学》的英语教学
国内《变质岩岩石学》的教学一向是作为《岩石学》的一个部分进行的,讲课时数高时达40学时,2001年以后《岩石学》从220学时减至150学时,变质岩更要相应缩减。为了加快我国高等教育与国际接轨,加快专业人才国际化培养,中国地质大学(武汉)地球科学学院,对理科基地班的《变质岩岩石学》课程进行了双语教学的改革,10年来,在桑隆康教授等的努力下,很好地发挥了英国岩石学家Roger Mason的作用,进行英语《变质岩岩石学》教学,克服重重困难,取得良好的成绩,在教育部理科教学评估中得到充分肯定[13]。
Roger Mason教授在教学中除了介绍我国国内典型变质岩产地之外,还详细介绍英国苏格兰的巴罗带、挪威sulitjelma 变质带、英国skidaw花岗岩接触带的接触变质等,极大开阔了学生的视野,深入了解掌握了变质地质学的工作方法。桑隆康与 Roger Mason 合作编著的《变质地质学》也于2007年作为中国地质大学“十一五”规划教材出版,并获得2009年度湖北省教学成果二等奖[14]。
《变质地质学》的问世,《变质岩石学》双语教学的成果,为今后《变质岩岩石学》的教学质量的提高,奠定了良好的基础。
回顾近10年来变质岩石学研究的进展,可以发现:①与解决社会经济发展重大问题相结合,在生产实际中发现问题、解决问题,是变质岩石学进一步发展的原动力;②密切注意学科发展前沿,抓住热点问题,投入研究力量,是提高学科理论水平的必由之路;③加强国际学术交流,开阔研究视野,是保证学科水平、提升国际竞争力的必要手段。
当前我国地质研究正从地质大国向地质强国迈进,加强变质岩石学、结晶岩岩石学、变质地质学的研究,是我国地质科学发展的关键之一。
参考文献
[1]游振东.五十年来中国的变质岩石学.见:王鸿祯主编.中国地质科学五十年.武汉:中国地质大学出版社,1999,144~152
[2]游振东.地质一体化——区域地质研究的新纪元.见:中国地质学会地质学史专业委员会第20 届学术年会论文汇编,2008,70~72
[3]孟宪来.在青藏高原空白区1:25万区域地质调查成果报告会暨“十一五”工作重点研讨会开幕式上的讲话.地质通报,2006,(2)
[4]Zhiqin Xu,Jingsui drilling in the Dabie-Sulu Ultrhigh pressure metamorphic belt,China EOS,Transactions,AGU 22th ,86(8):77~78
[5]Santosh S Tet ultrahigh-temperaturemetamorphism granulites in North China craton:implications for tectonic models on extreme crustal Research,2011
[6]索书田,毕先梅,周汉文.极低级变质作用:以右江中生代构造带为例.北京:地质出版社,1999
[7]毕先梅,莫宣学.成岩-极低级变质-低级变质作用及有关矿产.地学前缘,2004,11(4)
[8]Wang H,Rahn M,Tao X F et and metamorphism of Triassic flysch along Northwest Sichuan, Geologica Sinica 2008,82:17~926
[9]朱明新,王和锦.长沙-醴陵-浏阳一带冷家溪群及板溪群的甚低级变质作用.岩石学报,2001,17(2)
[10]游振东,刘嵘.陨石撞击构造作用的研究现状与前景.地质力学学报,2008,14(1):22~36
[11]王道经.海南白沙陨石坑.海口:海南出版社,1997
[12]陈鸣,肖万生,谢先德.岫岩陨石坑的证实.科学通报,2009,54:2777~2780
[13]杨坤光,龚一鸣,桑隆康,等.中国地质大学地质学专业主干课程建设与人才培养.武汉:中国地质大学出版社,2012
[14]Roger Mason,Sang Longkang.变质地质学(英文版).Wuhan:China University of Geosciences Press,2007
【预习内容】
区域变质作用的概念、区域变质岩的类型及特征、不同变质相的主要岩石类型。
【实验目的及要求】
1.掌握区域变质岩常见岩石的基本特征、物质组合及结构构造特征。
2.掌握各类岩石的分类命名原则与定名方法。
3.了解区域变质岩的原岩建造。
【实验内容】
1.肉眼识别主要的变质成因矿物:沸石、绿泥石、绿帘石、石榴子石、蓝晶石、硬柱石、矽线石、透闪石、硬绿泥石等。
2.熟悉埋藏变质岩、造山变质岩、混合变质岩类中主要的岩石类型———板岩、千枚岩、片岩、片麻岩、变粒岩、大理岩、混合岩的基本特征。
3.区域变质岩的分类命名方法。
【实验指导】
一、区域变质岩的分类和命名
与化学分类和物理分类不同,岩相学分类是基于岩石的矿物成分、结构构造等岩相学特征把岩石划分成不同类型,不同岩石类型有不同的基本名称。与火成岩和沉积岩的岩相学分类不同,在变质岩分类中,常可找到一些名称是基于岩石构造的,如片岩;而另一些则基于矿物成分,如大理岩。这是地质学家约定俗成的结果。一些教科书中,仅以简单的列表介绍变质岩岩石名称。
变质岩岩相学分类方案有两类:一类建立在矿物成分基础上称为矿物学分类,通常限于结晶质的区域变质岩,用矿物含量在双三角形分类图解上的投影点位置得出岩石的基本名称,称为矿物学分类,最著名的是Winkler(1976)的分类;另一类主要考虑结构构造,用岩石最显著的结构构造等特征划分岩石的基本类型,称为结构分类,Best(1982)的分类和Raymond(1995)的分类是结构分类的代表。由于矿物学分类基本名称采用片岩、片麻岩等结构构造名称,会出现岩石名称与岩石构造不符合的问题。而结构分类中岩石的基本名称与结构构造等最显著的特征一致,容易掌握,便于野外工作。近十年来国外岩石学教材均采用变质岩的结构分类,已成为变质岩岩相学分类的主流,因而我们亦采用变质岩的结构分类。所有分类在命名岩石时都遵循以下两个原则:①“以矿物名称+基本名称命名岩石,基本名称前矿物以含量多少为序排列,含量高的矿物靠近基本名称”的原则,基本名称前不同矿物之间在英文文献中通常用连字符“-”隔开,如Gt-Ch-Ms-Qschist(石榴子石-绿泥石-白云母-石英片岩);②当岩石的变余结构构造非常发育,原岩十分清楚时,则以“变质(meta-)××岩”命名之,其中“××岩”是原岩名称,如变质长石砂岩、变质砾岩、变质玄武岩、变质辉长岩等。
我们建议的变质岩岩相学分类是在Best(1982)和Raymond(1995)的分类基础上拟定的。把变质岩分为面理化和无面理至弱面理化两大类。进一步按结构构造和矿物成分特征划分基本类型。该分类像Raymond分类一样,力图最大限度地反映基本岩石类型的岩相学特征,同时又像Best分类一样,避免使用不常用的岩石名称。分类中保持了板岩、千枚岩、片岩、片麻岩等基本名称的构造定义,也保持了大理岩、石英岩、蛇纹岩、榴辉岩等基本名称的矿物成分定义。一些岩石类型如片岩、角岩中,列出了一些有特殊定义的亚类名称,如绿片岩、蓝片岩、钙硅酸盐角岩、钠长-绿帘角岩等。值得特别指出的是,粒岩或××岩岩类的定义范围较宽,其中具花岗变晶结构者称粒岩,具其他结构者称××岩。前者相当于Raymond的“花岗变晶岩”,后者相当于他的“横交变晶岩”。粒岩或××岩的这个宽松的定义的方便之处是使我们可以用它来命名其他基本名称不好命名的岩石。如由蓝晶石、绿泥石、白云母组成的无面理岩石,叫蓝晶石-绿泥石-白云母片岩显然不合适,可叫做蓝晶石-绿泥石-白云母岩。由刚玉、正长石组成的具花岗变晶结构的岩石,可称为刚玉-正长石粒岩等。
区域变质岩是由区域变质作用形成的一大类岩石,是变质岩中分布最广、成因复杂、岩石类型繁多的一类变质岩。
对区域变质岩的分类,从不同的研究角度有不同的分类方案。从岩石学的角度则是以体现变质程度的变质构造为前提的分类,即由板状-片麻状构造所体现的变质程度由浅到深进行分类,详见表16-1。
表16-1 区域变质岩的分类简表
区域变质岩的命名是在以构造所体现的基本岩类的基础上按主要组分或组合矿物的种属及其含量比,遵循“少前多后”的基本原则来命名。在命名中,一般矿物(非特殊矿物)当其含量大于20%则参与命名,小于10%则不参与命名,对具有特殊意义(如成矿、变质相的典型指示相矿物等)的矿物(如石墨、蓝闪石等),尽管其含量小于10%甚至5%,均应视研究的需要参与命名。
二、区域变质岩主要影响因素
区域变质岩是温度和压力共同作用于区域岩石而变质形成的,典型的、代表特定温度和压力条件的矿物种类和构造、结构(对混合岩尤其)是确定岩类的重要标志,是分析岩石成因—大地构造条件—乃至成矿条件的重要依据。
三、常见区域变质岩的类型及主要特征
板岩 多具变余结构、变余构造及板状构造。它主要由页岩、粉砂岩及凝灰岩经非常低级的变质作用而成,矿物成分只有部分重结晶,极细粒,肉眼难以鉴别;岩石具完好的平面面理,面理主要由极细粒绿泥石,或云母等片状矿物平行排列而成,几乎无光泽,与页岩比较具有明显的“粗糙”感和“坚硬”特征。
千枚岩 具细粒鳞片变晶结构,千枚状构造,与板岩相比,千枚岩中矿物如云母和绿泥石等颗粒加粗,片理面上显示丝绢光泽。主要由细小的绢云母、绿泥石、黑云母、钠长石及石英组成。
片岩 岩石中片柱状矿物含量较多,片柱状矿物定向排列组成显著面理。片岩中片状和柱状矿物之和一般大于15%,而长石含量一般小于25%。且岩石中常常发育有线理,粒度比板岩、千枚岩粗,因此单个矿物颗粒能用肉眼鉴定,可与千枚岩相区别(千枚岩中矿物不能用肉眼鉴定)。
蓝片岩 含蓝闪石片岩的总称。一般具细粒鳞片变晶结构或纤状变晶结构,片状构造。主要由蓝闪石、硬柱石、硬玉及文石等高压低温矿物组成,可含绿纤石、红帘石、硬绿泥石、阳起石、绿帘石、钠长石、石英等。
片麻岩 是一种长英质变质岩,具有断续的面理即片麻状构造,颗粒较粗(一般大于1mm),长石含量>25%,含片状、柱状矿物较少,片状、柱状矿物定向排列。
大理岩 岩石一般为无色,粒柱状变晶结构,块状构造,主要由方解石、白云石等矿物组成,含量大于50%。原岩是石灰岩或白云岩,如果原岩成分不纯,则变质形成的大理岩中可含少量镁橄榄石、钙铝榴石、透辉石等硅酸盐矿物,这种大理岩可称斑花大理岩。如果硅酸盐矿物含量很大,超过了碳酸盐的含量,则属钙硅酸盐粒岩类。
大理岩 多半为块状构造,但可承袭原岩的层理而具有条带状构造。
石英岩粒状变晶结构,块状构造。是石英砂岩或燧石重结晶的产物,主要由石英所组成,含量大于85%。颗粒细而均匀的石英岩俗称“油石”,可做高级磨料;不纯的石英岩常常含有白云母、绿泥石和少量不透明矿物如镜铁矿、磁铁矿等。多数石英岩为块状构造,但如变质过程中有应力参与时,则具片状构造的,可称片状石英岩。
绿岩 为细粒低级变质的镁铁质岩石,绿色,具块状构造、变余枕状构造或变余杏仁构造,片理不发育。主要由钠长石、绿帘石、阳起石和绿泥石组成。其原岩主要为基性火成岩。
角闪岩 岩石一般为深色,多具柱状变晶结构,块状构造、片状构造、片麻状构造或条带状构造,主要由普通角闪石和斜长石组成,一般情况下两类矿物含量大致相等,称为斜长角闪岩。如果岩石中斜长石含量很少或不存在,主要由角闪石构成的,称角闪石岩;如果片理发育,线理显著,则可称角闪片岩;反之,如果斜长石含量超过角闪石而岩石中又含显著的石英,且具片麻状构造者,则称角闪斜长片麻岩,无石英者,可称浅色斜长角闪岩。
麻粒岩 麻粒岩是指经受了麻粒岩相变质作用的长英质、镁铁质及超镁铁质变质岩。一般为细粒—中粒粒状变晶结构,块状或片麻状构造,主要由长石及铁镁矿物(紫苏辉石、透辉石及石榴子石)组成,含或不含石英。麻粒岩中常含有透镜状石英颗粒集合体(即所谓“圆盘状石英”)。
榴辉岩 岩石主要呈深红色,粒柱状变晶结构,主要由绿辉石和石榴子石两种矿物所组成的高压基性变质岩。榴辉岩中还可以出现石英、蓝晶石、斜方辉石、金红石及柯石英等。
榴辉岩 可依据其中出现的特征原生矿物进一步命名,如柯石英榴辉岩、蓝晶石榴辉岩和斜方辉石榴辉岩等。
变粒岩 主要为中细粒等粒变晶结构,块状构造,有时具有不显著的面理或弱的片麻状构造。是一种主要由长石、石英所组成的岩石,其中长石含量一般大于石英含量,暗色矿物含量小于30%,又称长英粒岩。暗色矿物小于10%者称为浅粒岩,对于其中有紫苏辉石或石榴子石等矿物者,其变质程度已达麻粒岩相,应称麻粒岩。
紫苏花岗岩 紫苏花岗岩是含紫苏辉石的中酸性岩石,它们有和麻粒岩一样的矿物成分,却有和岩浆岩一样的结构、构造和外貌,有时甚至有岩浆岩的产状。常具有花岗结构、片麻状构造,主要由紫苏辉石、石榴子石、角闪石、黑云母、微斜长石、条纹长石、斜长石及石英组成。紫苏花岗岩经常与麻粒岩相变质岩紧密伴生,是深部地壳重要的组成部分。
混合岩 混合岩是变质岩向岩浆岩过渡的一种岩石类型,混合岩由基体和脉体或新成体和古成体两个基本组成部分构成。基体是角闪岩相或麻粒岩相变质岩,代表混合岩原岩,脉体是长英质或花岗质物质,代表混合岩中新生的部分。基体与脉体的空间排布方式决定了混合岩构造特点。最常见的混合岩有角砾状混合岩、眼球状混合岩、条带状混合岩和云染状混合岩(云染岩)等4类。
四、区域变质岩中常出现的变质矿物的鉴定特征
尖晶石 MgAl2O4等轴晶系
肉眼下鉴定特征:绿色、蓝色、黑色、褐色,{111}不完全解理。
偏光镜下鉴定特征:单偏镜下无色,淡绿或淡褐色,极高正突起(n=~),糙面显著,无解理,均质体,在钙镁质变质岩中与透辉石、金云母等共生。
石榴子石 M2+3R3+2[SiO4]3M(Ca2+,Mg2+,Fe2+,Mn2+)
R(Al3+,Fe3+,Cr3+)等轴晶系
肉眼下鉴定特征:颜色变化较大,常呈红褐色、玫瑰色、黄绿色及黑色,常呈菱形十二面体、四角三八面体。断口为油脂光泽,无解理,硬度大。
偏光镜下鉴定特征:单偏镜下无色,粉红色或黄褐色,等轴粒状或不规则粒状,极高正突起(n=~),糙面显著,无解理,具裂纹,通常为均质体。含钙石榴子石常见光性异常,可见Ⅰ级灰干涉色、锥状双晶和由不同干涉色交替组成的同心环带状构造。二轴晶,2V一般比较小。钙质石榴子石多产于大理岩和矽卡岩中。铁铝、镁铝榴石多见于区域变质岩中,常呈筛状变晶,含有大量包裹体。
方柱石 (Na,Ca)4[Al(Al,Si)Si2O8]3(Cl,CO3,SO4)四方晶系
肉眼下鉴定特征:无色,灰色,少数呈天蓝色和浅红色,晶体呈柱状。集合体为不规则粒状,{100}解理完全,{110}解理中等。
偏光镜下鉴定特征:柱状或粒状晶体,单偏镜下无色或混浊状,低中正突起,柱面解理,平行消光,负延性,双折率随成分而异:最高干涉色Ⅰ级灰白(钠柱石)-Ⅱ级顶部(钙柱石,随钙柱石成分增加而干涉色增高),有时可见斑点状干涉色。横断面呈正方形(晶形完好),其中{100}两组正交解理较完全,但也可见{110}的解理。在该切面上可测得一轴晶负光性。
符山石 Ca10(Mg,Fe)2Al4[SiO4]5[Si2O7]2(OH,F)4四方晶系
肉眼下鉴定特征:黄褐色或淡绿色,而红色或蓝色很少见,柱状、粒状或放射状集合体。
偏光镜下鉴定特征:单偏镜下无色,浅绿、淡棕色,具有多色性,高正突起,干涉色极低,常见褐色或蓝色异常干涉色,同一切面有时干涉色也并不均匀,有时见环带构造。一轴晶负光性,有时见光性异常变为二轴晶负光性或正光性。
刚玉 Al2O3三方晶系
肉眼下鉴定特征:黄色、红色、绿色、紫色、蓝色、棕色及黑色。桶状、柱状、锥状及腰鼓状。晶面上常见有斜的或横的条纹。
偏光镜下鉴定特征:单偏镜下无色或浅蓝色,无解理,有裂开,高正突起,Ⅰ级灰干涉色,但由于硬度大,薄片不易磨薄,可达Ⅱ级蓝干涉色,一轴晶负光性,常见于SiO2不足的岩石中。
绿泥石 (Mg,Fe)4Al2[AlSi3O10](OH)8单斜晶系
肉眼下鉴定特征:绿色、暗绿色,片状、鳞片状集合体,{001}解理完全,硬度小。
偏光镜下鉴定特征:片状或鳞片状集合体,单偏光镜下不同程度的浅绿色,有弱多色性,低正突起,片状,一组解理完全。有两种不同的切面:一种切面正交或斜交{001}解理,呈长条状,具明显的绿-浅黄色多色性和一组完全解理;另一种切面与{001}平行,绿色,多色性不明显,无解理。2V较小,近平行消光,二轴晶光性正负都有,延性与光性符号相反。斜绿泥石干涉色Ⅰ级灰-黄,经常可见聚片双晶;叶绿泥石有墨水蓝或锈褐色异常干涉色。
硬绿泥石 (Mg,Fe)2(Al,Fe3+)Al3O2[SiO4]2(OH)4单斜晶系
肉眼下鉴定特征:呈暗绿色,晶体为板状,几何体呈束状、放射状,断面呈六边形及菱形,{001}解理完全,硬度5~6,接近或稍大于小刀。
偏光镜下鉴定特征:单偏镜下呈片状或蒿束状集合体,灰蓝色至暗绿色,有多色性,晶体中有时有石英及炭质包裹物构成砂钟构造。高正突起,纵切面呈板条状,一组完全解理,最高干涉色Ⅰ级橙红,斜消光,消光角a∧Np=3°~30°,负延性。经常具有简单双晶或聚片双晶。横断面六边形或菱形,干涉色Ⅰ级暗灰,无解理。二轴正晶,2V=36°~60°。
黑硬绿泥石 K(Al,Fe3+,Fe2+,Mg)4[Si4O10](OH)2·2H2O单斜晶系
肉眼下鉴定特征:呈暗褐色,片状,集合体呈束状和放射状。
偏光镜下鉴定特征:片状集合体,单偏镜下暗褐至亮黄强多色性,(-)2V小,这些都与黑云母极其相似,区别是:黑硬绿泥石底面解理较差,还有一组{001}相垂直的断断续续{010}解理;(-)2V=0°~40°,变化范围大于黑云母;黑硬绿泥石突起比黑云母高,为中-高正突起。
绿帘石 Ca2Fe3+Al2[Si2O7][SiO4]O(OH)单斜晶系
肉眼下鉴定特征:草绿色及暗绿色,沿b轴延长呈柱状,晶面有纵纹,集合体呈放射状及粒状,{001}解理完全,{100}解理次之。
偏光镜下鉴定特征:单偏镜下浅黄-黄绿色,多色性显著,极正高突起,垂直柱面方向晶形完好时呈六边形,两组解理夹角65°。Ⅱ-Ⅲ级鲜艳干涉色,在同一切面上干涉色不均匀,有时呈环带状,干涉色为Ⅰ级时,经常出现灰蓝、姜黄等异常干涉色。柱状切面平行消光,延性正负不定,其他切面斜消光,消光角a∧Ng=25°~30°。二轴晶负光性,(-)2V大。
黝帘石和斜黝帘石 Ca2Al3[SiO4][Si2O7]O(OH)斜方晶系/单斜晶系
肉眼下鉴定特征:呈浅灰色或灰绿色,其他特征与绿帘石相近。
偏光镜下鉴定特征:单偏镜下均无色,高正突起,Ⅰ级干涉色,α-黝帘石Ⅰ级灰,β-黝帘石Ⅰ级灰白-Ⅰ级黄,斜黝帘石不超过Ⅰ级黄,这几种黝帘石均有异常干涉色。黝帘石与斜黝帘石区别在于:①黝帘石为平行消光,斜黝帘石为斜消光;②黝帘石2V较小,斜黝帘石2V较大。
蓝晶石 Al2SiO5三斜晶系
肉眼下鉴定特征:浅蓝色,风化后呈灰白色,长柱状或长板状,解理{100}完全、{010}中等。硬度因方向而异,在解理最发育的{100}面上平行晶体延长方向为(小于小刀),垂直晶体延长方向则为6(大于小刀)。上述特征为肉眼鉴别蓝晶石的重要标志。
偏光镜下鉴定特征:无色,有时略呈淡蓝色,高正突起,沿c轴延长柱状集合体柱面有(001)横裂开,c∧Ng≈30°,底面上,Np几乎⊥(100)解理,因此呈近平行消光(不像红柱石、透闪石那样呈对称消光),干涉色Ⅰ级顶部,(-)2V大,正延性。
矽线石 Al2SiO5斜方晶系
肉眼下鉴定特征:浅黄色,浅褐色,风化面灰白色。个体较大者呈细长柱状、针状,但多为纤维状或毛发状集合体。﹛010﹜解理完全,在柱状晶面上可见到纵纹。
偏光镜下鉴定特征:单偏镜下无色,常呈纤维状,束状集合体,{010}柱状切面无解理,{001}裂开发育,使晶体呈“竹节”状,干涉色Ⅰ级紫红-Ⅱ级蓝绿,正延性;⊥c轴横切面近方形,具特征的对角线方向解理,Ⅰ级灰干涉色。中正突起,平行消光,二轴晶正光性,(+)2V<30°。
阳起石 Ca2(Mg,Fe)5[Si8O22](OH)2单斜晶系
肉眼下鉴定特征:浅绿色、暗绿色,长柱状、针状,集合体为放射状。
偏光镜下鉴定特征:单偏镜下浅绿色-无色多色性,柱状、纤维状或放射状集合体,中正突起,横断面具角闪石式解理。最高干涉色Ⅰ级顶部-Ⅱ级中部,斜消光,c∧Ng=11°~15°。正延性,有时具双晶。二轴晶负光性,2V较大。
透闪石 Ca2Mg5[Si8O22](OH)2单斜晶系
肉眼下鉴定特征:白色或浅灰色,晶体呈长柱状、针状,集合体为放射状、纤维状。
偏光镜下鉴定特征:单偏镜下无色,柱状或放射状集合体,中正突起,c∧Ng=16°~21°。其他特征与角闪石类矿物一致。
蓝闪石 Na2(Mg,Fe)3Al2[Si4O11]2(OH)2单斜晶系
肉眼下鉴定特征:蓝闪石和青铝闪石以其颜色呈暗蓝色与其他角闪石相区别。
偏光镜下鉴定特征:多色性特殊:Ng—深蓝色,Nm—红紫色,Np—无色或浅黄绿色,正吸收。干涉色Ⅰ级,常因自身颜色影响而不易判别。消光角小:c∧Ng=4°~14°。正延性,二轴晶负光性,(-)2V较小,为12°~65°。
十字石 (Mg,Fe2+)2(Al,Fe3+)6O6[SiO4]4(O,OH)2斜方晶系
肉眼下鉴定特征:褐色,短柱状,{010}解理不完全,经常具有正交(十字)或斜交双晶。
偏光镜下鉴定特征:柱状或粒状晶体,常含大量包裹物,筛状变晶,单偏镜下呈亮黄色,有明显的金黄-浅黄多色性,高正突起,柱状切面平行消光,正延性,Ⅰ级橙黄干涉色。横断面呈菱形或六边形,对称消光。有{010}解理,有时可见十字形穿插双晶。二轴晶正光性,(+)2V很大。
绿纤石 Ca2(Al,Mg,Fe)3[SiO4][Si2O7]O(OH)·H2O斜方晶系
绿纤石是绿帘石的变种,成分上Al显著超过Mg,Fe2+,Fe3+趋近于斜黝帘石,含水量高,常沿b轴延长呈纤维状、针状、放射状集合体,显微镜下无色-浅黄绿色多色性,Nm具特征的亮绿色或蓝绿色,吸收性Nm>Ng>Np,延性可正可负,(+)2V≈26°~85°。与绿帘石区别在于:①绿纤石干涉色较低,在Ⅰ级顶部和Ⅱ级底部;②绿纤石为正光性。
红帘石 Ca2(Mn,Fe,Al)2Al[SiO4][Si2O7]O(OH)单斜晶系
肉眼下鉴定特征:红褐色、红黑色、黑色,含MnO2达15%,晶形与绿帘石相似,柱状或粒状。{001}解理完全,{100}解理不完全。
偏光镜下鉴定特征:单偏镜下Ng—鲜红色,Nm—玫瑰红色,Np—橙黄色。平行于b轴切面平行消光,{010}面上Ng∧{001}≈30°,延性可正可负,(+)2V=64°~85°。
天蓝石 (Mg,Fe)Al2[PO4](OH)2单斜晶系
肉眼下鉴定特征:蓝色、靛蓝色,尖锥状、粒状及不规则状。解理{110}及{101}中等。
偏光镜下鉴定特征:单偏镜下无色-天蓝色,吸收性Ng>Nm>Np,常呈他形晶,b∥Nm,a∧Ng=12°,c∧Np=9~10°,2V=61~70°,常见于富铝岩石中。
五、变质岩观察与描述
(一)手标本观察和描述
(标本编号:×××;产地:×××)
1.岩石的颜色
指岩石的总体颜色,描述时不仅要描述颜色种类,还须描述岩石的深浅,如暗黑色,浅肉红色。有时岩石新鲜面和风化面的颜色需分别描述。
2.矿物成分
可分为特征变质矿物、主要矿物和次要矿物。特征变质矿物应描述其晶形、颜色、光泽、解理、硬度、大小和含量。对主要矿物则简要描述其主要特征、大小和含量。矿物颗粒大小是指矿物平均粒度大小,也可指矿物粒度变化范围;对于斑状变晶结构的岩石,变斑晶与基质特征分开描述并估计其含量。
3.结构构造
根据岩石中矿物颗粒大小和形态特征,确定岩石的结构;根据岩石中矿物空间排列的特征,确定岩石的构造。观察变质岩构造特点时要注意岩石有无定向性、有无条带或细脉等。
4.其他特征
如岩石中矿物次生蚀变等。
5.岩石定名
(二)显微镜下观察和描述
(薄片编号:×××)
1.矿物成分
每种矿物分别描述各自的最主要鉴定特征、形态、大小、百分含量、与其他矿物的关系及次生变化等。
对薄片中特征变质矿物或未知矿物应作系统的光学特征的描述,其内容是:
单偏光:晶形、颜色(多色性和吸收性)、突起、解理(几组、解理完全程度)及解理夹角。
正交偏光:最高干涉色级和色序、消光类型、消光角数值(只能在定向切面上测得,并应在锥光系统下检查该切面是否是定向切面,应写明是哪个结晶轴与哪个光学主轴之间的夹角),如蓝晶石的消光角c∧Ng=30°(是在锐角等分线的切面上测得)、延性符号和双晶特征。
锥光:轴性、光性符号、2V大小。
对岩石中常见的矿物成分,则描述其最主要的光性特征,一般不需要描述锥光系统的光学特征。
用显微镜的目镜微尺测量矿物颗粒大小,估计岩石中矿物含量。
2.结构构造
根据岩石中矿物颗粒大小及其形态特征定出主要结构,详细描述矿物之间的相互关系和矿物受应力作用影响而呈现的局部结构等特征。描述岩石中矿物空间排列分布的特征以反映岩石的构造。
变晶结构的观察:
(1)变晶结构以矿物颗粒的生长为特征,变晶结构的观察与描述应从不同的角度(如变晶粒度的绝对大小、相对大小,变晶的形态、自形程度,变晶间的相互关系等)进行。为了与岩浆岩类似结构的区别,应在变质岩的“结构”二字之前加“变晶”二字。
(2)变晶结构一般按照下列原则进行:
矿物颗粒均匀的岩石:矿物粒度+(变晶自形程度)+变晶形态+“变晶结构”。例如:细粒鳞片变晶结构、细粒他形粒状变晶结构。
如果岩石中既有粒状矿物,又有片状矿物,则按照多者在后,少者在前的原则参加命名。矿物颗粒大小悬殊(有变斑晶)的岩石:变基质结构+“的斑状变晶结构”。如:基质具细粒鳞片变晶结构的斑状变晶结构。
矿物的相互关系、某些岩石中矿物的自形程度属于局部性的结构,应在描述该矿物的特征时来描述。
3.其他特征
有关退化变质、叠加变质等现象。
4.岩石的详细定名
5.成因分析
(1)根据重结晶程度、矿物共生组合、特征变质矿物等分析变质相条件。
(2)根据可能存在的变余结构构造特征、矿物共生组合的化学类型、特征变质矿物的化学成分来判断可能的原岩类型。
6.岩石素描图
素描图共有两种,一种是局部素描,重点表示矿物之间的关系,或足够特殊的特征;另一种是显微镜下岩石素描图。绘图时应注意选择有意义和有代表性的局部视域;应显示出矿物的基本而明显的镜下特征,如突起、晶形、解理、双晶等,并注明矿物代号;矿物之间的接触关系;矿物的含量比例;单偏光和正交偏光的选择。在素描图下应说明岩石名称、图中反映的问题、偏光情况、视域直径、产地(资料来源)等。
六、鉴定变质岩应注意的问题
变质岩是不同原岩经各种变质作用后形成的产物。同一原岩经受不同的变质作用可形成不同的变质岩;同时,在相同的变质条件下,由于原岩不同也可形成不同的变质岩。这些都对变质岩的准确定名带来困难。尽管如此,在变质岩鉴定中,还是有一些准则可以遵循的,只要掌握其变化规律,对变质岩的鉴定是很有帮助的。
(1)首先应该掌握各大类变质岩的主要特征(包括矿物成分、含量、结构、构造和定名原则),这是鉴定变质岩的基础。
(2)在变质岩命名时,首先应该鉴定岩石中主要矿物成分。对大多数变质岩来说,主要矿物不外乎石英、长石、云母、角闪石、辉石、碳酸盐矿物等。确定了岩石的主要矿物成分和含量,也就等于确定了变质岩的基本名称(即岩石大类)。
(3)遇到不认识的特征变质矿物时,可利用矿物共生组合的规律,判断可能出现哪些变质矿物,尽量缩小要鉴定矿物的范围。如原岩为富铝系列变质岩时其特征变质矿物可能有红柱石、蓝晶石、矽线石、十字石、石榴子石、堇青石、硬绿泥石等。然后,根据岩石的变质程度和矿物共生组合规律,再进一步鉴别。如低级变质岩石中可能有硬绿泥石、石榴子石;中级变质岩石中低压条件下可能有红柱石、堇青石;中压条件下应有蓝晶石、十字石和石榴子石等矿物;高级变质岩石中可能有矽线石、堇青石、石榴子石和紫苏辉石等。
(4)岩石的定名原则:变质岩石定名原则主要是:次要(特征变质)矿物+主要矿物+基本名称。而对于有些特殊的定名原则,如麻粒岩中暗色和浅色麻粒岩的含义和区别,应与其他岩石的定名原则区分开来。
(5)除了准确鉴定和命名变质岩以外,在显微镜下还应注意矿物之间的关系。矿物之间平衡和不平衡关系对划分变质作用期次,确定平衡矿物共生组合具有非常重要的意义。
总之,鉴定变质岩,必须多观察,多实践,多思考,不断总结其主要鉴定特征。
【编写实验报告】
按照变质岩鉴定描述方法及要求来鉴定描述以下岩石的标本及薄片:
1.手标本:千枚状板岩、千枚岩、角闪片岩、十字石榴云母片岩、蓝晶石片岩、蓝闪石片岩、白云母片岩、绿片岩、角闪斜长片麻岩、暗色麻粒岩、变粒岩、榴辉岩、次生石英岩、斜长角闪岩、条带状混合岩、条痕状混合岩、眼球状混合岩、混合岩化花岗岩、混合岩。
2.薄片:千枚状板岩、蓝晶石片岩、蓝闪石片岩、白云母片岩、角闪片岩、十字石榴云母片岩、暗色麻粒岩、变粒岩、榴辉岩、斜长角闪岩、眼球状混合岩、混合岩。
每次实习选2~3块标本系统观察描述手标本及薄片特征并编写实验报告。
一、地质实习报告
(一)地质实习报告编写要求
在野外填图工作结束以后,就转入室内整理阶段。
首先要整理野外的所有原始资料,完成野外实际材料图;审阅野外记录本;清理和核对标本;对化石标本详细研究,准确确定地层的时代;整理各项鉴定、化验成果等。其次要清绘地质图,对图面进行整饰,出露不好的推测地段用虚线表示。图面上的界线、符号、数据都要清绘得整洁、美观、匀称。画好图廓,写好图名、图例、比例尺等。
最终成果整理的一项重要工作就是编写报告。编写实习报告是对实习期间所观察到的各种地质现象进行分析、归纳、综合,并以简练流畅的文字表达出来的过程,是系统化地认识实习内容的过程,也是进行地质思维训练、熟悉地质研究成果及科研报告编写程序的过程。实习报告内容要真实、丰富,图文并茂,有理有据。因此衡量地质报告质量的标准就是地质报告的完整性、报告中资料的真实性、精确性以及报告组织的合理性和流畅性等。具体要求如下:
(1)每位同学编写一份,归纳、分析观察到的地质现象,综合成文;
(2)资料应主要来自野外观察,内容符合实际情况。可参考教师讲课及实习指导书上的内容;
(3)使用地质术语,重点突出,有理有据,概念正确,条理清楚,文字通顺,字迹工整。
(4)文字叙述与图件相配合。图件要求:内容正确,结构合理,整洁美观,要素齐全。
(5)字数要求在5000~10000字之间。报告要有封面、目录和章节。
(二)地质实习报告内容
地质报告的主要章节有:前言;地层;岩石;构造;矿产;区域地质发展史;结束语。根据工作任务和工作手段可增加一些专门性的章节,如水文地质、地震地质等。各章节的一般内容简述如下:
1.前言
实习区的地理位置和行政区划,图幅编号、名称、范围和总面积;自然地理特征,山川形势,地形的特征,山岭及河谷的绝对标高和相对标高,露头情况,植被覆盖程度,气候特征等。
实习区的经济和交通概况,工业、农业的发展情况,人口密度,资源开发及交通路线等。
实习区所处大地构造位置,地质构造的最主要特征,以往地质研究的历史及研究程度简述及评价。
本次实习的性质、目的、任务,主要解决哪些地质问题,实习的组织情况,实习时间的安排,实习中主要采用的方法、手段,最终提交的成果等。
最好附有“测区交通位置图”、“地质研究程度图”和“大地构造位置图”等。
2.地层
概述实习区地层发育情况,所有地层时代,主要岩性特征,古生物化石的概貌等,然后应该根据地层时代的新老关系,由老至新详细叙述地层各组、段的分布特征,出露情况,岩性特征,所含化石的种属、时代划分及其依据、接触关系、厚度等。
这一部分的内容主要根据实测剖面及实测填图时的野外记录综合叙述,并附上实测或路线地质剖面图、素描图等。
3.岩石
叙述实习区出现的岩石类型,详细描述其特征和分布规律。可按照岩浆岩、沉积岩、变质岩的顺序分别叙述,说明各类岩石的成分、结构、构造、产状、成因、地质时代等。
对于岩浆岩的叙述首先应该进行分类,按照基性、中性、酸性,或者按照侵入岩、喷发岩,或按岩体的大小进行分类命名。综述区内的岩浆岩发育的特征之后,应该逐一描述该区出露的各个岩体的特征,包括岩体出露的位置、规模,所处的构造部位,岩体的形状,与围岩接触关系及产状特征,岩体内的分相情况,岩石类型及名称,岩体内外接触带的蚀变特征等。然后要叙述岩石的物质组成,包括岩石的矿物成分和化学成分、岩石的结构构造特征,岩石所经受变化及改造等。说明岩石类型、形成时代,与围岩的关系、含矿性等。
沉积岩主要按照物质来源分为外源沉积岩和内源沉积岩。外源沉积岩主要包括陆源碎屑岩和火山碎屑岩,以前者为主;内源沉积岩在实习区主要是碳酸盐岩。分别就各类岩石的岩性特征及其产状、成因、形成过程等进行分析、描述。
变质岩在实习区出露较少,可简单描述。
岩石学的研究除在野外详细收集第一手资料外,还需进行镜下鉴定及各种化学分析测试工作。通过这些资料的深入研究,寻找其内在的规律性。
4.构造
首先概述实习区构造的总体面貌及所处大地构造位置,然后分别描述具体的构造单元。
对于褶皱的描述要根据所收集的资料,先叙述褶皱构造的位置、范围、规模,后叙述组成褶皱的地层,包括褶曲核部的地层时代、岩性,褶曲翼部的地层时代、岩性、层序等。进一步应该详细地描述褶皱的形态,如褶皱轴的方向、褶皱轴面和枢纽的产状,将褶皱进行形态分类,讨论褶皱形成时期,褶皱的形成机制等。
对于断裂构造要侧重区域性断裂的描述。如断层的位置、规模(一般用断层所经过的两个或几个地名来命名);断层面的走向、倾向和倾角;断层两盘的地层时代、岩性以及构造变动。断层的构造现象,如构造角砾、片理化、断层泥、透镜体、拖曳褶皱、伴生节理、地层的牵引现象;断层面的形态变化、断面上的擦痕及其产状。推测断层形成及发展演化的历史,断层产生的力学机制等。
构造分析,要将褶皱、断裂作为一个统一的整体,根据不同时期分析它们的形变特征,推断地壳活动的规律性。更重要的是论述构造与矿产、工程地质、水文地质及地震地质的关系。
构造形态特征和空间关系往往用图能够更明确和直观地表达,因此要尽量用各种图件帮助叙述,如各种比例尺的剖面图、素描图、照片、录像等。
5.区域地质发展史
根据地层、岩石、构造等综合分析,反映出当时古地理、古气候、古生物,以及沉积演化、构造演化、岩浆活动、地壳运动等地质变迁过程,恢复实习区地质发展历史。简明扼要地、由老到新地按地质时代连续陈述各地质时期所发生的各种地质事件。本区太古界以后地史时期中地层缺失O2、O3、S、D、C1、T1、T2、T3、K及R。出现4次角度不整合(不考虑孙家梁组与第四系之间的角度不整合),3个平行不整合,1个沉积不整合接触关系。这些是重要的讨论线索。可按这些基本地质事实恢复该区的地质发展史,进而了解华北地区的地质演化史。
6.矿产
从最主要矿产开始,说明矿产所在位置、矿种、矿床类型、规模,各种化验分析数据,矿物组合,地球化学特征,各种工程揭露的实际资料,各种经济指标,找矿标志及矿床成因等。目的是为进一步找矿勘探提供依据。
分别叙述金属矿产(如铁、铜、铅、锌等)和非金属矿产,尤其是煤和石油等。根据区内地质特征的综合分析,提出找矿远景和找矿方向。
地质报告中除以上必不可少的章节外,还可有些专门性章节内容,如“地貌-第四纪地质”、“水文地质”、“地震地质”等,但要经过专门性工作之后,才能单独列章节。
7.结束语
结束语是对整个地质测量工作的结论和评价,要明确而简练。概括性地肯定工作的主要成果,新的发现,新的认识等;简明叙述工作中存在的问题和不足,有哪些问题需待解决;对进一步的工作提出建议。
结语要实事求是,对工作要正确评价,认真负责。地质测量工作的质量反映在全部工作的成果中,而不在于结论写得冠冕堂皇。也不必过于谦虚,埋没成绩。对于存在的问题和今后工作的建议要准确而中肯。
需要指出的是,工作中所使用的地质符号与图例应符合国土资源部门规定的图式图例。本次实习可用实习指导书中所提供的图例和符号。
二、实习成绩评定
实习成绩的评定应综合考虑学生的学习态度,分析实际问题的能力,遵守纪律的情况及所编写实习报告的质量。实习总成绩应包括平时成绩、小测验成绩和实习报告成绩三部分。
平时成绩侧重于学生在野外和室内学习的认真程度,野外记录簿记录的质量,遵守纪律的情况等。
小测验成绩包含野外现场提问,室内讲课提问和室内考核,目的在于检查学生掌握地质基础知识的程度及分析实际问题的能力。
实习报告成绩应考虑资料选用、章节安排、内容取舍、专业术语的应用等是否得当,论述是否有据、合理,图件内容、要素是否齐全,文笔是否通顺等。
实习总成绩采用五级制:优秀、良好、中等、及格、不及格。
有《岩石力学学报》么?我只知道《岩石力学与工程学报》哦,它与《岩土工程学报》都为EI检索,且均不是SCI。。。。前者基本是关于岩的文章,后者岩、土皆有,侧重于岩
岩石力学与工程学报总编审定录用的概率不大。根据查询相关公开信息显示,《岩石力学与工程学报》由中国科学技术协会主管、中国岩石力学与工程学会主办,是1982年在国际著名岩石力学专家陈宗基先生倡导下创办的科技期刊,审定录用非常严格,正刊录用率百分之十四到十五,增刊录用率百分之十四到十六,岩石力学与工程学报总编审定录用的概率不大。
相对来说 ,两者中《岩石力学与工程学报》更好一些哦, 但这个领域更好的是综合性的《岩石学报》,属于SCI收录。 应该是:《岩石力学与工程学报》属于EI收录Chinese Journal of Rock Mechanics and Engineering学报是中国岩石力学与工程学会主办的国内物理力学与工程类影响因子最高的国家矿业工程、建筑科学与水利工程类核心期刊;2006~今为月刊,为中文核心期刊,现被EI和国内外较多收录机构收录。本刊收录在: 中文核心期刊要目总览(2011年版) 提示: 排序:建筑科学类 - 第1位 《岩土工程学报》也属于EI收录是由中国科学技术协会主管,由中国水利学会、中国土木工程学会、中国力学学会、中国建筑学会、中国水力发电工程学会、中国振动工程学会六个全国性学会联合主办的学术性科技期刊。《岩土工程学报》创办于1979年,在江苏南京登记,由南京水利科学研究院承办《岩土工程学报》已是我国岩土工程领域中具有重要影响的学术期刊,是岩土工程理论和实践的重要论坛,是我国从事水利、建筑和交通事业的勘测、设计、施工、研究和教学人员发表学术观点、交流实践经验的重要园地。《岩土工程学报》为我国培养了一大批水利、建筑和交通事业战线上岩土工程学科的带头人,为我国的基础性工程设施建设事业,特别是水利工程建设事业做出了贡献。本刊收录在: 中文核心期刊要目总览(2011年版) 提示: 排序:建筑科学类 - 第2位
《岩石力学与工程学报》和《岩土工程学报》(包括《岩土力学》)是岩土界的3大王牌期刊。据我投稿经验:录用难易程度《岩土力学》<《岩石力学与工程学报》<《岩土工程学报》;《岩土工程学报》是本行业最权威的学报。
《岩土工程学报》是ei检索,但不属于sci检索。两种学报各有所长,关键是根据自己需要。
《岩石力学与工程学报》和《岩土工程学报》(包括《岩土力学》)是岩土界的3大王牌期刊。据我投稿经验:录用难易程度《岩土力学》<《岩石力学与工程学报》<《岩土工程学报》;《岩土工程学报》是本行业最权威的学报。
目前还不是啊,只不过质量很高,还在冲EI,现在只被Scopes收录
《岩石力学与工程学报》和《岩土工程学报》均为EI收录期刊,但没有被SCI收录。Journal of Rock Mechanics and Geotechnical Engineering (JRMGE) 和《岩石力学与工程学报》、《岩土力学》为中科院武汉岩土所三大期刊,而且JRMGE于2019年2月已经被SCI收录。
《岩土工程学报》是ei检索,但不属于sci检索。两种学报各有所长,关键是根据自己需要。
这个学报增刊ei一般100%收录。但是与正刊相比,文章质量相对要差一些。
目前还不是啊,只不过质量很高,还在冲EI,现在只被Scopes收录
这个需要等影响力上来以后,才能被EI收录,需要时间的积累。