首页 > 学术期刊知识库 > 精馏技术的研究与发展论文

精馏技术的研究与发展论文

发布时间:

精馏技术的研究与发展论文

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。它的应用面广、量大。据统计,塔设备无论其投资费还是所有消耗的钢材重量,在整个过程装备中所占的比例都相当高,表1-1所示为几个典型的实例。[4]图1-1 塔设备的投资及重量在过程设备中所占得比例装置名称 塔设备投资的比例% 装置名称 塔设备投资的比例%化工及石油化工 60万t,120万t/a催化裂化 煤油及煤化工 30万t/a乙烯 化纤 万t/a丁二烯 54

随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。

《 化学工程中计算流体力学应用分析 》

摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。

针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。

通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。

Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。

Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).

《 能源化学工程专业化工热力学教学思考 》

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。

武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。

目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。

由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。

首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

有关化学工程应用毕业论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化工毕业论文范文大全

4. 化学毕业论文范例

5. 化学毕业论文范文

6. 化工毕业设计论文范文

电子技术的发展研究论文

《数字电子技术》是电子、电气和信息类专业的专业基础核心课程,是后续专业课程学习的基础。下面是我为大家精心推荐的数字电子技术论文,希望能够对您有所帮助。 数字电子技术论文篇一 浅谈《数字电子技术》课程改革 摘要:本文阐述了《数字电子技术》课程改革的理念和思路,罗列了项目驱动的模块教学内容,以及每个模块的教学方法和手段,并在课程资源,课程考核方面作了改革。 关键词:理念和思路;项目驱动;教学方法和手段 《数字电子技术》是电子、电气和信息类专业的专业基础核心课程,是后续专业课程学习的基础。在整个课程体系中处于重要地位。该课程具有较强的理论性、应用性和实践性。特别是在职业院校中,课程的应用性、实践性更应凸显,本文针对课程自身的特点和规律,结合我校该课程的教改推行,就以下几方面浅谈如下: 1 改变教学理念和思路 传统的数字电子技术教学方法,一直沿用以理论教学为主的模式。教师按照传统的“一支粉笔、一块黑板”模式讲授,最多再在数码箱上验证书本上的理论知识。针对教材内容和实际应用联系不够,职业岗位技能没有得到真正提高等问题,我们提出的思路是: (1)自编适合高职院校特点的教材,把课程所需的知识点融进实际任务中,以任务引领教学。 (2)在教学过程中,采用理论和实践相结合的原则,把教、学、做、验、仿融为一体。 (3)提高学生学习兴趣,由被动学习转变为主动学习。 (4)改变考核方式,注重过程考核,课程成绩的评定由学生的作品、平时的表现、知识点考核、职业技能等多方面组成。 2 优化教学内容 本课程主要以数字逻辑基础模块、逻辑门电路模块、组合逻辑电路模块、时序逻辑电路模块、综合模块为基本内容展开学习,这些模块涵盖了数电的主要内容,并自行设计贴近实际又主要涵盖课程内容的工作任务,以工作任务为职业知识的载体,尽可能将相关知识点分解在各个任务中,强调了工作任务和知识点的联系,工作任务和实际应用的联系,工作任务和职业技能的联系。具体内容安排如右上表: 3 改进教学方法和手段 在教学方法和手段上,我们根据具体内容的特点,由课堂教学为主的;由制作实物任务驱动的;由在数码箱上验证任务知识点的;由通过EWB软件仿真综合任务的,真正把教、学、做、验、仿融到了整个教学中。具体情况如右下表: 4 建立立体化教学资源 在教学资源方面,除了传统的教材外,我们有对学生开放的实验实训室、机房,学生可以在课外自己去实验实训室完成课题任务。还有更多的资源在本课程的天空网站,它包括电子教材、PPT、电子教案、课程标准、单元实施方案、考核方法和结构、题库、试卷库等,特别还专门开辟了师生网上互动,学生可以在网上提问,和老师作在线交流互动,学生可以随时上网,为他们的自主学习提供了一个很好的平台。网上资源界面如下: 5 注重过程考核 对于该课程的考核,我们打破了常规的考核方式,不是以期末考试成绩为主,而是注重过程考核。以往学生总觉得平时不认真学习不要紧,只要期末复习时用功一下就行。现在在这种考核方式下,学生对于整个的学习过程都会很重视,而且也不再是理论卷面成绩好,本课程就学得好,它包括了很多方面,如作业、出勤、理论考核、实践操作过程、任务完成效果、职业素养、团队合作、自主解决问题能力等。这种从各个方面考核学生的学习情况,对于培养学生的职业技能起到了一个很好的促进作用。 通过把工作任务融入到教材中;采用教、学、做、验、仿融为一体的教学方法;丰富教材资源,构建师生互动平台;注重过程考核等改革,大大激发了学生的学习兴趣,学生经常主动去实验室制作调试自己的作品,很好地提高了他们的职业技能,从学生反馈的情况看,教学效果也明显好于非教改的班级,达到了“教师主导、学生主学”的教学目的。当然,在教学改革中,我们也发现一些需要完善的地方。例如,在焊接技能方面如何和电工电子实践初步这门课程横向联系起来;在课题选择方面如何和模电等课程联系起来;有了实物制作的过程,那么课时应该安排多少比较合适;如何将课题不断和新技术结合等等。总之,课程改革应该是持续的,与时俱进的,我们将不断总结,不断提高,真正成为受学生青睐的课程。 数字电子技术论文篇二 《数字电子技术》课程教学设计初探 教学设计也称教学系统设计。它是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程。教学系统是由教师、学生、教学条件三个基本要素构成的,因此教学设计是一个系统化的过程,包括如何定位教学目标、如何进行任务分析、如何制定教学策略和正确选择教学媒体、如何编制教学评价标准等。 现代 教学设计吸收了先进的 教育 教学理念,教学过程围绕各个实际问题展开,这些问题可以由教师提出,也可以由学生提出,学生主动参与教学过程的各个环节,体现为既发挥教师主导作用又充分体现学生认知主体作用的"主导-主体"教育模式,既注意教又注重学,称为"以教学问题为中心的教学系统设计"。如何把现代教学设计的思想 应用到《数字 电子 技术》课程教学中? 第一,教学内容的设计要注重学生能力与综合素质的培养。 职业教育的培养目标是造就出适应生产、建设、 管理、服务第一线需要的高等技术应用型专门人才,它要求受教育者最终应"具备较快适应生产、建设、管理、服务第一线岗位需要的实际 工作能力。"职业教育教学要强调针对性、实用性、和先进性,删除陈旧过时、偏多偏深而又不实用的内容。 1.从课程的教学目标出发,选择教学内容,把握理论上的度。 《数字电子技术》是应用电子技术、信息工程、电子设备运行与管理等电子类专业的主干技术基础课程,其教学目标是通过本课程的学习使学生掌握数字电子技术的基础知识、基本理论、基本分析和设计方法,训练学生数字应用电路制作与调试的基本技能;培养学生严谨的 科学 态度、科学思维方式以及创新意识和创新能力。为学习后续课程提供必要的理论基础知识和 实践技能,为今后可能从事的职业打好基础。因此,基于本课程的教学目标和高职教育的培养目标,我们在教学内容的选择上突出了基本理论,基本分析方法和知识的应用,回避了繁锁的集成电路内部分析和数学推导。着重外部逻辑功能的描述、分析和应用。强调外特性和主要参数。 2、从培养能力出发,将理论教学与实践教学融为一体。 由于《数字电子技术》是一门应用性很强的技术基础课,其基本理论与实践技能是许多后续课程的基础,理论与实践的密切结合,在本门课程中显得尤为重要。因此,我们在各章都设置了相应的实践训练环节--技能训练。它包括基本性技能训练和设计性技能训练两部分。"基本性技能训练"所涉及的内容与课堂教学内容紧密相关,充分体现课程的实践性。"设计性技能训练"是根据给出的实际问题,由学生自己设计实现逻辑功能的电路、选用芯片、进行安装调试、排除故障。同时还设置了理论与实践综合课程--课程设计内容,将理论教学与实践教学紧密结合。通过理论课程的学习和实训课程的实践,使学生基本掌握电子技术基础知识和基本技能,再通过相应的课程设计将理论用于实践,将设计和实现融为一体,使学生在课程设计中即能提高运用所学知识进行设计的能力,又能在这一过程中 体会到理论设计与实际实现中的距离。 第二,教学方法的设计要调动学生学习主动性,激发学生创造性。 教学改革的核心是教学方法的改革,教学方法要体现在整个课堂教学过程中。在教学方法上,基于职教学生底子薄、基础差、学习水平参差不齐的现状,我们力求避免单纯的注入式,改用启发式、讨论式、答辩式的教学方法。将课堂讲授、课内讨论、课外自学、技能训练等合理结合,把教学过程分为课题引入、设疑激学、讲练结合、精选例题、 总结 巩固等环节进行教学实践。1.由设计实例或工程实际问题引入课题。 在介绍一些重要章节前,列举一个设计实例或工程实际问题,通过分析、设计、引入相关知识和理论。例如:在学习中规模集成组合逻辑电路一节时,先让学生用已学过的SSI组合电路的设计方法"设计一个 交通 灯故障报警电路。交通灯有红、黄绿三色。只有当其中一只灯亮时为正常,其余状态为故障,要求用与非门实现。"然后提出问题,"用SSI组合电路进行设计时,是以门作为电路的基本单元,我们能否用其它逻辑部件来实现这个电路的设计呢?"在给予学生一定的思考时间后,教师可以直接给出总是的答案:"本节将要学习的内容中,译码器、数据选择器这两种中规模逻辑器件都可以完成上述电路的逻辑功能"。同时画出相应的设计电路。这样学生的兴趣马上被调动起来,并产生诸多疑问:什么是译码器、数据选择器?为什么它们也能实现上述电路设计?等等。 2.设疑激学 古人云:"学贵知疑,小疑则小进,大疑则大进,疑者觉悟之机,一番觉悟,一番长进"。只有不断提出问题,才能探究解决问题。设疑激学,就是教师用问题来启发学生思考,培养学生"生疑、质疑和释疑"的能力。提问方式的设计包括"何时提问"、"提哪些问题"、"如何提问"等等。这些问题可以是教师事先设计好的,也可以是学生提出的对学生共同感兴趣的问题。将相关知识有机地 组织起来,进行探讨,激发学生的思维活动,引导他们分析解决问题。 3.现场教学,讲练结合 将课堂讲授与技能训练合理结合,有些教学内容可以安排在实验、实训中进行。边讲边练,讲练结合。边讲边练主要用于介绍集成电路 工作原理后,由学生对电路的功能及外部特性进行测试:练讲结合则是由学生根据集成电路的功能表对电路进行测试。而后由老师和学生对测试结果进行讨论,归纳 总结 ,以加深对理论的理解。这样,将教学过程放在实验、实训中,有利于学生实现由感性到理性的 自然 过渡。在边学边练中更深刻地领会所学知识,在头脑中建立起理论与实际的 联系,使学生逐步提高学习能力和 实践技能。引导学生将基本理论、基本分析方法 应用于解决实际问题。 4.精选例题 在《数字 电子 技术》课程教学中,主张"精讲多练"的原则,"精讲"是指对重要的概念和原理及相关知识点要讲深、讲透。"多练"是指在解题思路和设计方法上要勤于练习,要学会创造性作业,学会一题多解。为此,教师必须精选具有代表性并联系工程实际的综合性和设计性例题,在课堂上多讲设计思路和方法,少讲具体知识。引导学生由求同思维"为什么这样?"转向求异思维"不这样行吗?"、"还有没有更好方法?"。着重于培养学生的综合能力和激发创造性。 看了“数字电子技术论文”的人还看: 1. 数字电路学术论文 2. 电子类论文范文 3. 趣味电子技术论文(2) 4. 电工电子技术论文发表 5. 电子信息科学论文

单片机一、总线:我们知道,一个电路总是由元器件通过电线连接而成的,在模拟电路中,连线并不成为一个问题,因为各器件间一般是串行关系,各器件之间的连线并不很多,但计算机电路却不一样,它是以微处理器为核心,各器件都要与微处理器相连,各器件之间的工作必须相互协调,所以就需要的连线就很多了,如果仍如同模拟电路一样,在各微处理器和各器件间单独连线,则线的数量将多得惊人,所以在微处理机中引入了总线的概念,各个器件共同享用连线,所有器件的8根数据线全部接到8根公用的线上,即相当于各个器件并联起来,但仅这样还不行,如果有两个器件同时送出数据,一个为0,一个为1,那么,接收方接收到的究竟是什么呢?这种情况是不允许的,所以要我有现成的论文,加我的QQ号是我的名字

摘要:文中回顾电力电子技术的发展,阐述了电力电子技术发展的趋势,论述了电力电子技 术的创新和器件开发应用,将对我国工业领域形成巨大的生产力,以此推动国民经济高速高 效可持续发展 关键词:发展趋势 技术创新器件开发 应用推广 1概述� 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台 ,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从 旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子 的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通 晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究 和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电 子技术的又一次飞跃,先后研制出,功率MOSFET等自关断全控型第二代电力电子器 件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响 应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、 功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用 渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。� 2电力电子器发展回顾� 整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复 型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。你看看吧。不知道适合不适合你。

石油馏分热力学研究发展论文

应用化学硕士授权点(一)学科概况本校应用化学学科建立于1978年。 1986取得硕士学位授权,1996年获得博士学位授权。至今有10届博士生毕业授位。2004年获得在职教师攻读硕士学位授予权。2005年获得化学工程与技术一级学科硕士学位授予权。本学科1992年被批准作为四川省首批省级重点学科建设单位,2003年获得四川省重点学科建设专项基金资助。经历了近三十的建设,已经成为以油气勘探开发工程中化学方法和化学剂的应用和相关理论作为学科方向和专业特色,研究成果和学科实力国内领先,在国际上也有一定影响的学科。(二)研究方向本学科的研究以化学剂和化学方法为基础,覆盖石油天然气工业上游和下游的各个工艺过程;在油气田勘探开发工作液体系、油气田化学品和化工材料、油气田和油气加工厂周边环境监测与治理、石油加工助剂等领域形成了有特色、有成果、在国内处于优势、国际上也有一定影响的学科。1、石油工作液化学及工作液作用机理研究方向高质量的工作液在钻井、原油增产、提高采收率等工程环节中有举足轻重的作用。抗高温抗盐深井水基泥浆研发、两性离子聚合物钻井液处理剂及其完井液体系的研发以及油基钻井液体系已经成功的完成由重大科技成果到产业化的转化,并在国内各大油田应用,取得了良好的效果。其中两性离子聚合物处理剂被国家科委列为重点推广计划。被总公司列为“九五”八大推广示范工程项目之一。开展“气井防气窜添加剂及水泥浆体系固井”攻关以来,为国内固井防气窜技术发展提供可靠技术支持,有效地遏制了高压天然气井固井气窜,在国内多个油气田推广应用,并发展出了各类油气井固井的水泥添加剂及其水泥浆体系,使我国在固井防气窜方面达到国际先进水平。水力压裂技术和酸化技术,在实践中不断提高水平,特别是通过引进技术和装备使我国的水力压裂技术和酸化技术水平大幅度提高。目前,常规的无机酸酸化不能很好的解决深部酸化的目的。大酸比、有机酸、粉状酸、多组分酸和缓速酸虽在一定程度上可以改善酸化的深度,但还存在以下问题:大酸比会在近井地带出现大的酸化孔洞,不利于地层的稳定;稠化酸会出现酸渣造成对地层的二次伤害。因此需要加强对深穿透酸液体系和工艺技术的研究。2、油气田化学品合成、开发与材料的经济化应用研究目前我国化学驱(主要包括聚合物驱和碱/表面活性剂/聚合物复合化学驱)研究中,聚合物驱技术相对较为成熟,已逐步形成了较为完整的十项配套技术,特别是大庆等油田先导性试验和工业性矿场应用的全面成功,大大推动了我国聚合物驱的发展。通过分子设计理论研制出了国产表面活性剂-强碱配方体系,性能已达到国外同类产品水平,价格下降50%以上,为复合驱工业化应用创造了条件,目前基本形成了强碱配方体系复合化学驱配套技术。但在矿场试验中,产生地层和井筒结垢等伤害严重,产出液乳化严重破乳困难,因此严重影响了强碱配方体系的大规模推广应用,其核心问题是缺乏适应弱碱/无碱复合化学驱油体系的高效驱油表面活性剂。3、环境化学与工程研究方向目前国内对钻进废液、废弃泥浆、试油废酸等处理工艺不合理、技术不成熟、设备不配套、处理剂品种单一效率低、处理成本高是目前制约油气田污染治理技术推广和应用的根本原因。总之,生态油气田的示范和建设为油气田污染治理用化学剂和工艺提供了巨大的环保产业市场。4、石油加工助剂研制与应用研究方向主要针对当前石油加工助剂和稠油开采技术中的研究热点及急待解决的关键性理论与技术问题。这方面研究对我国稠油开采技术、馏分油的环境友好脱酸技术、柴油非加氢脱硫精制技术的发展起到重要推进作用。应用化学学科的各个研究方向全部面向油田化学助剂、工作液、石油天然气钻采开发储运以及加工助剂等领域,形成了鲜明特色,在国内外具有相当大的影响力。2001年以来,承担国家级、省部级和油田协作项目127项,年均科研经费846万元;获省部级科技进步二等奖4项,三等奖2项;发表论文712篇(SCI,EI,ISTP检索141篇);出版专著10部,教材7部;获得授权发明专利13项;获得省级教学成果一等奖2项。(三)学术队伍本学科共有教授8名(其中:工程院士1名,博士生导师3名),60岁以下6名,45岁以下3名,副教授18名,讲师8名,博士学位专业人员8名,硕士学位专业人员20名。(四)研究生培养情况该学科已培养博士研究生21人、硕士研究生215人,目前在读博士研究生36人、硕士研究生89 化学工程硕士授权点(一)学科概况化学工程是化学工程与技术学科的一个重要分支,于2001年获得硕士学位授予权,目前拥有硕士、学士两级学位授予权。化学工程是以化学、物理、生物、数学的基本原理作为基础,研究化学工业和相关工业中的物质转化、设备技术、过程控制与优化以及管理的科学。该学科是以石油天然气加工、石油天然气化工为突出特色和优势。学科研究内容集中在天然气净化领域、天然气化工领域、油气环境治理、石油炼制及产品精制领域等方面,特别是在天然气加工技术研究领域。与能源、材料、医药、国防、环境等工程技术有紧密联系,并与化学工艺、工业催化、应用化学、生物化工等学科相互渗透。(二)研究方向该学科的主要研究主要从事石油天然气化学工程技术开发以及相关过程技术与装备的开发、设计等工作。在天然气净化领域、天然气化工领域、油气环境治理、石油炼制及产品精制领域等方面形成了自己的特色。1、天然气处理与加工主要研究高含硫天然气、高碳硫经天然气的净化处理技术;干法脱硫以及生物脱硫技术;天然气中H2S 的相态研究,元素硫生成条件的热力学和动力学研究;新的硫化工产品的生产工艺技术开发;天然气凝液回收技术研究、天然气液化技术研究;偏远分散气井天然气的开发与利用等方面。2、石油产品精制技术主要研究内容有石油产品脱酸脱碱技术与应用;石油产品脱硫(低硫燃料、超低硫燃料)技术;石油产品新型添加剂等。3、油气加工过程模拟技术借助计算机仿真模拟技术,研究该领域中的节能技术、仿真模拟软件开发与利用、流程模拟优化以及工艺改造等问题,保障油气加工装置高效、安全运行。(三)学术队伍化学工程二级学科学术队伍中有50岁以下省级学术后备带头人2名,教授4名。具备指导硕士生水平和能力的高级专业技术职务人员8名。知识和年龄结构合理,各层次人员配备比较齐全。学术队伍团结协作,学术思想活跃。在油气加工技术、石油天然气化工、油品精制、油气加工模拟技术等方面有4个研究方向。(四)研究生培养情况该学科已培养研究生24人,目前在读研究生32 化学工艺硕士授权点(一)学科概况化学工艺学科于1998年获得硕士学位授予权,2000年开始招收硕士研究生,现已拥有硕士、学士两级学位授予权。本学科点在石油天然气化工上游和中游领域优势明显,在国内外有一定影响。在学科发展方向上谋求油气田化学工艺,燃料化学工艺等方向的发展,在石油与天然气工程和化学工程与技术两大一级学科融合交叉领域形成新的学科增长点,使本校“化学工程与技术”一级学科硕士点具有更宽厚的基础。同时,充分发挥在职教师攻读硕士学位授权点和工程硕士授权点的作用,扩大本科的影响。(二)研究方向本学科主要从事石油天然气化工产品的研制以及相关工艺过程技术与设备的开发、设计和模拟优化等工作。主要有油气田工作液配方设计及工艺研究、油气藏化学工艺研究和石油天然气化工工艺三个研究方向。1、油气田工作液配方设计及工艺研究根据油气田开发过程的特点,从化学工艺角度提出解决油气井工作液的技术要求,并按照地层特性、作用机理、分子设计、合成、应用的技术路线,合成各类油田化学处理剂。2、油气藏化学工艺研究研究油气成藏过程中的物理化学过程,油气在化学剂作用下运移方式,岩石矿物的表面行为及化学剂对油水界面的物化作用。特别是表面活性剂、高分子化合物及催化剂等这些针对性极强的采油化学助剂对地层原油(包括稠油、超稠油以及沥青砂)作用过程中的化学工艺问题。3、石油天然气化工工艺天然气加工化学工艺的研究直接推动了甲醇、合成氨、尿素等天然气工业的工业化进程,但是,在该领域中还存在许多如设备腐蚀严重、目的产品收率不够理想等困扰工业化问题。另外,油气中的有机硫和酸性物质对油气储存设备和运输管道腐蚀严重,国内外对进入下游加工过程的原料一致认为就地就近解决有害物质不仅在经济上最为合理,在安全上考虑也最为有效,因此,如何运用化学工艺理论和方法解决石油天然气的脱硫脱羧问题,特别是与油田工程学科、材料工程学科相互渗透,研究和开发该领域中的新工艺、新过程、新产品和新设备便成了化学工艺学科新的研究热点。(三)学术队伍本学科学术队伍中有50岁以下省级学术后备带头人2名,教授4名。具备指导硕士生水平和能力的高级专业技术职务人员8名。知识和年龄结构合理,各层次人员配备比较齐全。学术队伍团结协作,学术思想活跃。在天然气加工和油气田化学工艺方面有3个特色明显的研究方向。(四)研究生培养情况该学科已培养研究生53人,目前在读研究生44人。 油气安全工程 硕士授权点 (一)学科概况油气安全工程是在石油与天然气工程一级学科下设置的二级学科博士点,于2006年获得博士学位授予权。本学科主要涉及石油天然气开发和储运过程中的安全技术,减灾防灾技术,以及救助技术等领域研究。在油气工程,安全工程与化学工程与技术学科交叉融合,形成石油天然气生产安全和劳动者安全与健康、环境安全的科学理论与工程技术研究等方向。(二)研究方向本学科从事石油天然气生产安全和劳动者安全与健康、环境安全的科学理论与工程技术研究,它既有安全科学及工程的理论基础、工程技术和管理方法,又与石油天然气工程技术相结合形成交叉的安全学科分支。主要研究高危气田建井作业过程中风险源分析与安全性评价、油气井建井材料在高危环境下的长期安全性评价方法与技术、用于油气井井下安全应急控制的特殊材料及工艺技术和高危环境下的钻完井添加剂研发。研究油气长输管道安全评估与安全设计、地质灾害对油气长输管道安全性的影响和常规作业工作液潜在安全隐患分析及防范技术,石油天然气开采工矿区的环境监测及环境影响评价和油气田污染控制技术,以及天然气在能源与交通领域中的关键安全技术。(三)学术队伍本学科学术队伍中有博士生导师6人,50岁以下省级学术后备带头人2名,教授8名。具备指导硕士生水平和能力的高级专业技术职务人员12名。学术队伍中知识和年龄以及学缘结构合理,学术思想活跃,各层次人员配备比较齐全。(四)研究生培养情况该学科目前在读博士研究生3人、硕士研究生7人。 生物化工硕士授权点(一)学科概况生物化工于2006年获得硕士学位授予权,2007年开始招收硕士研究生。本学科点主要涉及石油天然气开发过程中的生物技术,微生物技术,以及生物质能源等领域研究。在油气田生物工程,燃料生物工程等与石油天然气开发工程和化学工程与技术两大一级学科融合交叉,形成微生物提高石油采收率技术、化学仿生技术等新兴学术研究方向。(二)研究方向本学科的研究从化学工程与技术角度着眼,将地层油藏作为生化反应体系,应用石油工程和化学工程理论,侧重研究利用包括代谢工程、古微生物工程和基因工程等现代生物技术在内的各种手段,选育和激活具有各种特殊功能的微生物新菌珠,研究微生物与石油相互作用机理及代谢活动,开发利用微生物增油的新工艺、新技术。具体研究微生物石油发酵、微生物防蜡、微生物采油、生物酶采油及生物表面活性剂等方面在油藏研究中的理化行为与增油机理、微生物地层反应动力学、混合与传递过程,各物理量、化学量、生物量的检测与控制,提出生物过程在油藏环境、活性剂影响下的生物化学过程理论和优化方法。国外一些学者认为用生物学机理来研究或模拟化学工程中的一些问题是非常成功的,称为化学工程的一个分支。其中最为典型的是模拟生物体的反应和酶的功能以及仿生物信息传递及能量转换等。从而提供改进化学过程的新方法。仿生化学工程是从分子水平来模拟生物功能的一门新的边缘学科。它是生物学和化学互相渗透的学科,是模仿生物的化学反应,但又不是简单的模仿,而是模仿其机理,开发出比自然界更优秀的、在工艺上更易使用的体系。仿生化学与有机化学、无机化学、金属有机、络合化学、高分子化学等学科有着不可分割的联系。许多新的边缘学科,如生物无机化学、生物有机化学、生物电化学等等应运而牛,从而扩大和丰富了化学的研究内容。生物质能源的研究与开发已经成为世界重大热门课题之一,并受到世界各国政府与科学家的关注。我国是人口大国,21世纪必将面临经济增长和环境保护的双重压力。因此,改变能源消费方式,开发利用生物质能源等可再生的清洁能源,对建立新型能源体系具有重要意义。该方向研究主要在木质素降解、单细胞蛋白、乙醇生产与生物炼油等方面进行研究,并在微生物发酵木质素和原油过程中进行动力学及变化机理研究,用化学工程理论是解决木质素降解和微生物发酵理论。(三)学术队伍本学科学术队伍中有50岁以下省级学术后备带头人1名,教授2名。具备指导硕士生水平和能力的高级专业技术职务人员4名。知识和年龄结构合理,各层次人员配备比较齐全。学术队伍团结协作,学术思想活跃,承担国家高技术发展计划节能与新能源重大项目等课题多项。(四)研究生培养情况该学科目前在读研究生4人。 工业催化硕士授权点(一)学科概况本学科于2006年获得硕士学位授予权,2007年开始招收硕士研究生。本学科点主要涉及石油天然气开采、加工过程中的催化采油技术,脱硫技术,催化剂制备技术、催化加工工艺技术以及生物质能源等领域研究。在油气田开发工程,燃料生物工程等与工业催化学科融合交叉,形成催化采油技术、生物燃料技术等新兴学术研究方向。(二)研究方向本学科共拥有以下研究方向:催化剂合成与制备技术、催化剂与催化反应的理论计算、柴油/汽油催化氧化脱硫催化剂与工艺技术、燃料油、燃煤硝烟助燃剂技术、天然气转化制合成气技术、生物柴油合成工艺技术、稠油催化裂解采油技术、稠油注空气缓和催化氧化采油技术。本学科目前承担国家863计划项目、国家重点实验室项目、省部级项目等课题5项。(三)学术队伍本学科学术队伍中有50岁以下教授1名。具备指导硕士生水平和能力的高级专业技术职务人员3名,拥有工业催化博士学位教师2名、硕士学位教师2名。知识和年龄结构合理,各层次人员配备比较齐全。学术队伍团结协作,学术思想活跃。(四)研究生培养情况该学科目前在读研究生6人。 环境工程硕士授权点(一)学科概况环境科学与工程是运用科学理论、方法和工程技术,研究人类与自然环境的相互作用关系的规律并进行控制调整的一门新型综合性学科。环境科学与工程一级学科(0830)设置环境科学和环境工程两个二级学科。前者侧重于对生态环境问题的发生、过程、机制、调控和预防的规律和调控措施等基础和应用基础的研究。后者主要是运用、研究并开发现代工程技术和有关学科的原理和方法,保护和合理利用自然资源,防治环境污染,达到改善和提高环境质量,和谐人类与环境相互作用关系的目的。西南石油大学环境工程本科专业创办于1986年,2001年获环境工程二级学科(083002)硕士授予权。由于本专业与多种学科交叉,使得该专业点在科研和人才培养方面与应用化学及石油工程等专业点有密切的合作。在高层次人才培养方面,环境保护是本校应用化学博士点的一个研究方向。(二)研究方向本学科的研究方向与石油工程中的环境问题紧密相关,并形成自己的特色。本学科主要研究方向和特色为:1、绿色油田化学与技术研究绿色化学与技术是环境管理体系中一个关键的环节和重要组成部分,其根本目的是从节约资源和防止污染的观点,重新审视和改革传统化学,从而使我们对环境的治理从治标,转向治本。清洁化生产不仅是石油工业可持续发展的必要条件,而且对我国的环境保护具有重要意义。油田化学在石油工业生产中起到重要的作用,油田化学的绿色化,是石油开发过程中实现清洁化生产的关键技术之一。绿色油田化学与技术的主要研究内容是:开发无害化,易降解的油田化学工作液,研究其使用过程中对环境的影响及处理方法。新型油田化学工作液应能满足油气开发生产过程的要求,同时,又易于无害化处理,因此,它是油田化学和环境工程相交叉的一个新的研究领域。2、油气田开发废水处理工艺研究油气田开发废水具有多样性,多变性和排放环境的不固定等特点。主要的废水种类有钻井废水,洗井废水,酸化废水,压裂反排液,油田产出水和气田水等。主要研究方向有:废弃钻井液和钻井废水无害化治理技术研究;酸化废水治理技术研究;压裂反排液处理技术研究;油田采出水(含三采废水)处理研究;气田水治理和综和利用研究;微生物处理技术在油气田废水处理中的应用研究等。3、油气田环境监测和环境质量评价由于油气田污染物的特殊性,一些污染物的分析常需要特殊的方法,如高含盐气田水中COD值的测定、多种离子和有机添加剂干扰条件下的某些重金属的测定、天然气集输过程中天然气泄漏的快速监测、天然气燃烧产生的微量污染物的分析方法等都是重要的研究课题。石油工业污染具有分散性、复杂性和综合性的特点,使环境质量评价具有其特殊性,如多点排放的石油伴生气和天然气在大气中的扩散模式,油气田开发对局部地区和整体区域的环境影响,输气管道建设对生态环境的影响等都是主要的研究课题。(三)学术队伍本专业学科点现有教师9人,其中教授2人、副教授4人、实验师2人、助教1人。(四)研究生培养情况该学科已培养研究生18人,目前在读研究生25人。 应用化学博士授权点(一)学科概况本校应用化学学科建立于1978年。 1986取得硕士学位授权,1996年获得博士学位授权。至今有10届博士生毕业授位。2004年获得在职教师攻读硕士学位授予权。2005年获得化学工程与技术一级学科硕士学位授予权。本学科1992年被批准作为四川省首批省级重点学科建设单位,2003年获得四川省重点学科建设专项基金资助。经历了近三十的建设,已经成为以油气勘探开发工程中化学方法和化学剂的应用和相关理论作为学科方向和专业特色,研究成果和学科实力国内领先,在国际上也有一定影响的学科。(二)研究方向本学科的研究以化学剂和化学方法为基础,覆盖石油天然气工业上游和下游的各个工艺过程;在油气田勘探开发工作液体系、油气田化学品和化工材料、油气田和油气加工厂周边环境监测与治理、石油加工助剂等领域形成了有特色、有成果、在国内处于优势、国际上也有一定影响的学科。1、石油工作液化学及工作液作用机理研究方向高质量的工作液在钻井、原油增产、提高采收率等工程环节中有举足轻重的作用。抗高温抗盐深井水基泥浆研发、两性离子聚合物钻井液处理剂及其完井液体系的研发以及油基钻井液体系已经成功的完成由重大科技成果到产业化的转化,并在国内各大油田应用,取得了良好的效果。其中两性离子聚合物处理剂被国家科委列为重点推广计划。被总公司列为“九五”八大推广示范工程项目之一。开展“气井防气窜添加剂及水泥浆体系固井”攻关以来,为国内固井防气窜技术发展提供可靠技术支持,有效地遏制了高压天然气井固井气窜,在国内多个油气田推广应用,并发展出了各类油气井固井的水泥添加剂及其水泥浆体系,使我国在固井防气窜方面达到国际先进水平。水力压裂技术和酸化技术,在实践中不断提高水平,特别是通过引进技术和装备使我国的水力压裂技术和酸化技术水平大幅度提高。目前,常规的无机酸酸化不能很好的解决深部酸化的目的。大酸比、有机酸、粉状酸、多组分酸和缓速酸虽在一定程度上可以改善酸化的深度,但还存在以下问题:大酸比会在近井地带出现大的酸化孔洞,不利于地层的稳定;稠化酸会出现酸渣造成对地层的二次伤害。因此需要加强对深穿透酸液体系和工艺技术的研究。2、油气田化学品合成、开发与材料的经济化应用研究目前我国化学驱(主要包括聚合物驱和碱/表面活性剂/聚合物复合化学驱)研究中,聚合物驱技术相对较为成熟,已逐步形成了较为完整的十项配套技术,特别是大庆等油田先导性试验和工业性矿场应用的全面成功,大大推动了我国聚合物驱的发展。通过分子设计理论研制出了国产表面活性剂-强碱配方体系,性能已达到国外同类产品水平,价格下降50%以上,为复合驱工业化应用创造了条件,目前基本形成了强碱配方体系复合化学驱配套技术。但在矿场试验中,产生地层和井筒结垢等伤害严重,产出液乳化严重破乳困难,因此严重影响了强碱配方体系的大规模推广应用,其核心问题是缺乏适应弱碱/无碱复合化学驱油体系的高效驱油表面活性剂。3、环境化学与工程研究方向目前国内对钻进废液、废弃泥浆、试油废酸等处理工艺不合理、技术不成熟、设备不配套、处理剂品种单一效率低、处理成本高是目前制约油气田污染治理技术推广和应用的根本原因。总之,生态油气田的示范和建设为油气田污染治理用化学剂和工艺提供了巨大的环保产业市场。4、石油加工助剂研制与应用研究方向主要针对当前石油加工助剂和稠油开采技术中的研究热点及急待解决的关键性理论与技术问题。这方面研究对我国稠油开采技术、馏分油的环境友好脱酸技术、柴油非加氢脱硫精制技术的发展起到重要推进作用。应用化学学科的各个研究方向全部面向油田化学助剂、工作液、石油天然气钻采开发储运以及加工助剂等领域,形成了鲜明特色,在国内外具有相当大的影响力。2001年以来,承担国家级、省部级和油田协作项目127项,年均科研经费846万元;获省部级科技进步二等奖4项,三等奖2项;发表论文712篇(SCI,EI,ISTP检索141篇);出版专著10部,教材7部;获得授权发明专利13项;获得省级教学成果一等奖2项。(三)学术队伍本学科共有教授8名(其中:工程院士1名,博士生导师3名),60岁以下6名,45岁以下3名,副教授18名,讲师8名,博士学位专业人员8名,硕士学位专业人员20名。(四)研究生培养情况该学科已培养博士研究生21人、硕士研究生215人,目前在读博士研究生36人、硕士研究生89人。 油气安全工程博士授权点(一)学科概况油气安全工程是在石油与天然气工程一级学科下设置的二级学科博士点,于2006年获得博士学位授予权。本学科主要涉及石油天然气开发和储运过程中的安全技术,减灾防灾技术,以及救助技术等领域研究。在油气工程,安全工程与化学工程与技术学科交叉融合,形成石油天然气生产安全和劳动者安全与健康、环境安全的科学理论与工程技术研究等方向。(二)研究方向本学科从事石油天然气生产安全和劳动者安全与健康、环境安全的科学理论与工程技术研究,它既有安全科学及工程的理论基础、工程技术和管理方法,又与石油天然气工程技术相结合形成交叉的安全学科分支。主要研究高危气田建井作业过程中风险源分析与安全性评价、油气井建井材料在高危环境下的长期安全性评价方法与技术、用于油气井井下安全应急控制的特殊材料及工艺技术和高危环境下的钻完井添加剂研发。研究油气长输管道安全评估与安全设计、地质灾害对油气长输管道安全性的影响和常规作业工作液潜在安全隐患分析及防范技术,石油天然气开采工矿区的环境监测及环境影响评价和油气田污染控制技术,以及天然气在能源与交通领域中的关键安全技术。(三)学术队伍本学科学术队伍中有博士生导师6人,50岁以下省级学术后备带头人2名,教授8名。具备指导硕士生水平和能力的高级专业技术职务人员12名。学术队伍中知识和年龄以及学缘结构合理,学术思想活跃,各层次人员配备比较齐全。(四)研究生培养情况该学科目前在读博士研究生3人、硕士研究生7人。

化工是一个多行业、 多品种、 历史悠久的工业部门。下面是由我整理的化工 安全生产 技术论文,谢谢你的阅读。

化工生产中的安全技术探讨

摘要:化学工业是运用化学 方法 从事产品生产的工业。 它是一个多行业、 多品种、 历史悠久的工业部门。目前,化学产品在国民经济中的地位也越来越高, 发展化学工业促进工农工业、 发展国防和改善大家生活等方面都很重要。 但是, 化学工业生产本身面临着安全生产的重要难题, 随着化学工业的快速发展, 这些现象已越来越突出,本文就对化工生产过程中的安全技术进行了探讨。

关键词:化工生产;安全技术;探讨

中图分类号:C35 文献标识码: A

引言

化工行业是我国国民经济的支柱产业,然而化工生产主要是发生化学变化或者以化学处理为主,具有高温高压、易燃易爆、腐蚀性强等特点,因此,了解化学生产的过程及其常见的

安全问题,努力探讨控制危险的有效 措施 ,控制化工生产的安全技术非常重要,对人类的生命财产安全起着至关重要的作用。

一、 化工安全生产的重要意义

化工生产大多操作工艺复杂, 很多生产材料具有易燃、 易爆、 腐蚀性、 毒性等特点, 工艺流程也十分复杂, 在很大程度上增加了化工生产的危险性, 使化工生产存在一定的安全隐患。 化工企业一旦发生安全事故 (如火灾、 爆炸等) , 不但会造成经济上的巨大损失, 往往还会引起人员伤亡。 就我国目前而言, 化工企业在国民经济中居于支柱地位, 在经济发展中具有无可替代的重要作用。 因此, 化工安全生产管理是一个十分重要的领域, 不管是从经济效益出发还是从社会影响考虑, 都应当做好化工企业的安全生产工作, 保证化工企业的安全生产, 化工工人的人身安全, 社会秩序的稳定及国民经济的健康发展。

二、化工生产中常用的安全技术

化工过程具有生产工序多、操控要求高等特点,任何化工产品的生产过程都包含化学反应、热量传递、产物分离、物料输送流程等流程,在每个化工生产工艺流程中都需要针对其可能发生的危险采取相应的安全措施。

1、 加热传热

温度是化工生产过程最常见的控制指标,在化工生产过程中具有重要的意义。加热、传热过程是化工生产过程中及其重要的程序,温度升高的重要手段就是加热,然而加热过程危险较大,因此必须严格控制温度范围和升温速率 。加热过程中升温过快或温度过高都会对化工设备产生一定的损害,严重的甚至会导致化学反应失控造成爆炸事故。因此,在化工生产过程中必须严格控制温度,采取适当的传热设备。在加热过程中要防止加热设备与易燃易爆物接触或者采用惰性气体进行保护来防止爆炸。

2、冷凝冷冻

冷却、冷凝是化工生产中两种降温操作,在化工生产中冷却、冷凝过程严重影响防火安全。如果反应设备和物料未能及时得到应有的冷却或冷凝,常常会导致火灾甚至爆炸。在冷凝冷冻过程中一定要严格控制技术要求,根据被冷却物料的温度、压力、理化性质以及所要求冷却的工艺条件,正确选用冷却设备和冷却剂,并且要严格注意冷却设备的密闭性,防止物

料进入冷却剂中或冷却剂进入物料中。空气和水是化工生产中常用的冷却介质,而氟利昂和氨常被用做冷凝介质。在进行冷却操作时,冷却介质要持续供给,否则会造成积热,使系统温度、压力骤升而引起火灾或爆炸。在冷凝过程中,要特别注意冷凝器和管道的封装密封性,防止泄露爆炸现象。化工生产中,应先清除冷凝器中的积液,再通入冷却介质,最后通入高

温物料。停车时先停物料,后停冷却系统。

3、 蒸 馏

蒸馏是一种热力学的分离工艺,它利用混合液体或液 - 固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合(见图 1)。将液体沸腾产生的蒸气导入冷凝管,使之冷却凝结成液体从而达到蒸发、冷凝的作用。蒸馏是分离沸点相差较大的混合物的一种重要的操作技术,尤其是对于液体混合物的分离有重要的实用意义,它的优点是不需使用系统组分以外的 其它 溶剂,从而保证不会引入新的杂质。在常压蒸馏中应注意易燃液体的蒸馏热源不能采用明火,可采用水蒸气或过热水蒸气加热。对于高温的蒸馏系统,应防止冷却水突然漏入体系,这将会使水迅速汽化,体系

内压力突然增高而将物料冲出或发生爆炸。却水不能进入气缸,并且管道内的压力必须保持正压。

4、过 滤

过滤是通过特殊装置将流体提纯净化的过程,在生产中可以将悬浮液中的液体与悬浮固体微粒有效分离(见图 2)。过滤操作是使悬浮液中的液体在重力、真空、加压及离心力的作用下,通过多细孔物体,而将固体悬浮微粒截留进行分离的操作 。过滤过程安全操作要尽可能采用连续自动操作,使操作人员脱离与有毒物料接触。过滤的设备选材和焊接质量要可靠,设备不能超时间、超负荷运转,以免转鼓磨损或腐蚀,启动速度不能过高,否则会导致事故发生。

5、干 燥

为除去原料和粗产品中的少量水分,常需要干燥。干燥是指除去固体、液体或气体内少量水分的操作 。干燥方法可分为物理方法与化学方法两种。物理方法有吸附、共沸蒸馏、分馏、冷冻干燥、加热和真空干燥等。化学方法按去水作用的方式又可分为两类: 一类与水能可逆地结合生成水合物,如氯化钙、硫酸钠等; 一类与水会发生剧烈的化学反应,如金属钠、五氧化二磷等。为防止火灾、爆炸、中毒事故的发生,干燥过程要严格控制温度,防止局部过热,杜绝自燃点很低的物质存在。在过程中散发出来的易燃易爆气体或粉尘,不应与明火和高温表面接触,防止燃爆。

三、 化工生产中存在的危险因素

1、生产设备存在安全隐患

很多化工生产环节需要在高温、 高压的环境中进行, 对化工设备的性能有严格要求。 然而, 有不少化工企业出于经济成本等考虑, 在采购化工设备时购进了质量不合格的化工生产设备, 带来了安全隐患。 有的化工设备生产厂商缺乏责任意识、 质量意识, 生产的化工设备质量不达标, 导致化工事故时有发生。 2、化工生产人员素质不高

员工素质是实现安全生产的重要因素, 然而, 我国大部分化工企业的员工均存在素质偏低的问题, 成为引起安全事故的又一危险因素。 有的员工在生产时注意力不集中, 与其他人交头接耳, 发现异常现象时没有及时上报, 不按照正确的操作规程去处理。 还有的员工任意拆卸化工设备的零部件, 导致零部件丢失, 导致设备出现安全隐患, 极易出现异常。

3、 企业管理 水平低

安全管理制度落实不到位是引起化工安全事故的重要因素。 在化工企业的生产过程中, 安全生产管理制度是实现安全生产的重要保障,但在实际生产过程中, 有很多化工企业并没有严格落实这些制度。 再加上宣传手段的缺乏, 导致国家制定的化工生产安全法律法规、 规章制度 成为表面 文章 , 没有发挥其应有的作用。 如2012年2月发生的河北克尔化工硝酸胍爆炸事故, 导致80余人死伤, 其直接原因就在于安全管理落实不到位, 安全管理水平不高。

4、 企业扩张过快

近年来, 我国的化工行业有了飞速的发展, 行业内企业的规模有了不同程度的扩大。 在此过程中, 有些企业为了追求更大的经济效益而盲目扩张企业规模, 但在技术水平、 管理 经验 、 经济实力等方面却没有及时跟进, 导致企业不能对安全生产进行有效的监督与管理, 不能及时消除安全隐患

四、加强化工生产的安全管理措施

首先,需要建立完善设备生产 - 安全预警 - 生产管理系统,实时监控生产情况及设备运行状况,在危险设备上安装预警系统并实时刷新数据,当温度或压力达到一定值时即启动警报装置,管理人员对于收到的报警处理预案及时进行判断并处理,并在此过程中不断更新完善安全管理系统,实现化工生产高效及时的安全生产管理。其次,化工生产企业需要做好员工培训工作,加强员工的安全生产意识,定期作好 安全 教育 培训和各项安全演练活动。组织职工学习各类事故发生的原因, 总结 经验教训,使广大职工通过安全活动的学习能够更深刻的认识到安全生产是一切事物的前提,督促全体员工认真学习各项 安全知识 。

结束语

化工生产是一个存在高危险、高风险的生产过程,需要安全技术对其生产体系进行危害辨识、风险评价和风险控制,确保化工生产过程的安全管理和事故预防。化工生产过程中必须对各个操作进行严格控制,加强安全防范意识,提高安全管理的科学化、规范化、标准化水平,提升生产过程中的安全保障能力,减少或避免事故的发生。

参考文献

[1]朱超.化工生产中的安全技术探讨[J]. 《科技致富向导》,2014,(17).

[2]李廷富.化工生产中的安全技术应用研究[J].《中国化工贸易》,2013,(8).

[3]马凤仙,王磊.化工生产中安全技术的应用研究[J]. 《中国石油和化工标准与质量》,2011,(10).

点击下页还有更多>>>化工安全生产技术论文

改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。

化工类毕业论文 范文 一:化学工程学科集群分析

一、我国化学工程与技术专业学科集群现象

经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。

二、化学工程与技术专业学科集群的创新及竞争优势

本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。

三、化学工程与技术专业学科集群的协同创新模式

山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。

四、我国化学工程与技术专业集群的路径

从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。

五、结论

第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。

化工类毕业论文范文二:生物质化学人才培训思考

一、生物质化学工程人才的需求分析

能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。

二、生物质化学工程人才的知识结构

生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。

三、生物质化学工程人才培养的探索与实践

(一)组织高水平学术会议,营造人才培养氛围

2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。

(二)理论与实验课程体系

根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。

(三)实习、实践和毕业环节

生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。

dna测序技术的研究发展论文

我叫王亮哦,童鞋。哟hohoho鐧惧害鍦板浘

同学,我是你们的老师,你怎么可以在这里找答案呢?你的学号是多少?

现代遗传学概论

没有最好,只有更好

核电技术发展研究论文

核电作为一种清洁能源,对于满足中国电力需求、优化能源结构、减少环境污染、促进经济能源可持续发展具有重要战略意义。我为大家整理的,希望你们喜欢。 篇一 中国核电发展浅析 摘要:核电作为一种清洁能源,对于满足中国电力需求、优化能源结构、减少环境污染、促进经济能源可持续发展具有重要战略意义。首先陈述了中国核电发展现状,并提出其发展过程中存在的问题,然后结合中国的实际情况提出了核能发展的战略措施。 关键词:中国;核电;战略措施 中图分类号:F12 文献标志码: A 文章编号:1673-291X***2011***07-0200-02 引言 中国长期以来,以煤炭为主的能源结构不仅已无法适应经济的快速发展,也造成了较严重的社会能源、环境问题。能源发面,煤炭可供人类使用的时间为二百至二百二十年[1],中国面临煤炭枯竭的严峻形势不言而喻;环境发面,燃用各种化石燃料将向大气中排放大量的温室气体二氧化碳,硫氧化物和氮氧化物等有害气体以及大量的烟尘,对环境造成极其严重的破坏。因此,中国有必要积极改善能源利用结构和实现能源的多元化供给。目前,由于有枯水期和丰水期的分别,造成水电电力不够稳定;而太阳能和风能在短期内又不可能在总电力装机容量中占有较大的份额。所以,核能是目前唯一达到工业应用、可以大规模替代化石燃料的能源[2]。因此,本文从中国发展核电的必要性出发,结合核电产业在中国的现状和存在的问题,提了出中国核电发展战略措施。 一、中国核电发展的现状 截至2008年底,中国共有11台核电机组投入商业执行,核电装机容量达到910万千瓦,占中国电力装机容量的[3],并且中国已形成广东、浙江、江苏三个核电基地。其中,秦山二期是中国自主设计、采购、建设、运营的核电机组,55项大型关键装置中,47项实现了国产化,标志著中国具有自主建设核电厂的能力[4]。同时,中国跨入了核电站出口国行列,巴基斯坦恰希玛核电站是中国第一座按国际安全标准自主设计、生产制造的核电站。中国在核电的科研、设计、建设、执行等方面还培养锻炼了一批专业人才,具有相对完整的核电人才队伍。 经过各个部门的努力,中国核电已形成规模化批量化发展格局 [5]。二代改进型压水堆核电技术路线―CPR1000已在核电站专案中得到应用,在积累二代技术储备和执行经验的基础上,中国还积极吸收安全性和经济性更高的三代核电技术。装置制造能力的提升,先进技术的引进以及核电建设取得的成就和经验的积累,为中国核电的进一步发展奠定了基础。预计到2020年中国电力装机总容量约为亿~亿kW,考虑到煤炭资源、运输能力、环境容量等承受力的制约,中国燃煤电厂总装机容量的比例将由目前的70%下降到61%,而核电在全国发电装机容量中的比重到2020年将达到4%,核电投运规模将达到4 000万千瓦,核电年发电量达到2 600亿~2 800亿千瓦时。 二、中国核电发展存在的问题 核电在中国发展近三十年中,减少了近1亿多吨煤炭的生产及其运输,对国民经济的发展和环境的保护起到了不可磨灭的作用。但是,仍然存在着组织模式不清、标准体系落后、技术创新不足等各种问题。 1.核电发展缺乏长远和总体性规划,这也直接导致了中国核电标准化体系较低。核电产业的发展涉及国家的长期能源战略,对于正处于工业化程序中的中国,核电在国民经济发展中的重要作用更加凸显。而目前中国核电多国引进、多种堆型、多种技术、多类标准的现状难以确保中国核电产业的可持续发展。 2.核电发展经济性较低。核电站平均建成价比投资为1 742美元/千瓦,燃煤电站平均建成价比投资为889美元/千瓦,核电与煤电平均建成价比投资为[3]。此外,与煤电相比,核电的上网电价也较高,这势必会减弱核电在电力市场中的竞争力。 3.核电自主化、国产化程序有待提高。由于中国核电起步较晚,关键的核心技术尚未实现实质性突破,没有完全实现百万级大容量核电机组,工程设计、制造的自主化。而且,近三十年来,未能形成一个统一的、实际可行的核能战略目标、发展规划和与其相适应的产业政策,在已建的专案上形成多种堆型、多国引进,客观上不利于核电国产化局面。 4.核电人才不足,缺乏技术创新。中国核电人才存在缺乏、断档现象。人才数量不足,人才专业结构比例失衡,核电人才流失、老化,而且中国高校培养能力有限。技术方面,具有自主产权和国际领先水平的核心技术研发能力明显落后于国外核电发达国家。虽然核电装置国产化取得了一定进展,但关键核电装置以及装置的关键部件国内仍无法制造。 5.天然铀缺乏,放射性废物管理欠佳。中国已经探明的铀资源量不足,且天然生产能力较低;此外,随着核电的发展,如何处理放射性废物也需要妥善解决。 三、中国核电发展的战略措施 1.完善核电产业总体性、长远性规划。中国应尽快制定出符合中国核电发展的中长期规划,努力做到统一堆型,统一标准,并将核电建设纳入电力的总体规划。同时,借鉴美国“小业主”型、法国“大业主”型、日本“供应商”式、韩国“一体化”等诸多核电产业组织模式型别,找到适合中国国情的核电产业发展模式,从而保证中国核电建设的布局更合理,保证核电的可持续发展。 2.提高核电经济性,加大核电的资金投入。核电与煤电经济性相比,具有建成价比投资高的特点;与国内电网电价相比也没有优势。因此,实现核电标准化、批量化生产,努力控制核电站工程造价,提高核电厂负荷因子,在电价中体现环保折价,使核电站在经济发达、能源短缺和运输紧张的地区与煤电相竞争,这是中国核电发展的根本出路。此外,资金不足是制约中国核电发展的主要因素之一,所以,中国必须加大对核电发展的资金投入,以保证中国核电事业的可持续发展。 3.加速核电国产化和自主化程序。提高中国核电自主化、国产化,必须坚持先进科技引进与消化、吸收、创新相结合。引进百万千万级压水堆,时刻关注国际上最先进的技术,在第二代核电技术完善和成熟的基础上启动第三、四代核电技术。不断提高核电的国产化水平,促进中国核电产业的优化升级,从而保障核工业的可持续发展。 4.培养核电人才,加强核电技术创新。为了早日实现中国核电产业的腾飞,我们必须抓紧培养一批高阶核电技术人才,完善人才激励政策。同时,重视职工的在岗职位培训,努力建造一支懂技术、善管理的核电人才队伍。在技术创新方面:第一,要提高机组的安全性、经济性;第二,改进核废物处理技术,防止核扩散,努力实现核燃料回圈;第三,开发新的堆型,坚持采用热堆―快堆―聚变堆的三步方针,在保证新堆型安全性、经济性的基础上,争取使新堆型稳步发展并逐步形成中国的核能主力,同时加快核电自主化、国产化程序。 5.保证天然铀可持续供应,妥善处理放射性废物。足够的天然铀是核电可持续发展的前提,必须积极探明中国天然铀储量,确保天然铀的可持续供应。同时,加强技术创新,以防止放射性废物的泄露甚至实现废物再利用。 结语 经过长期的发展,核能已在中国初具规模。作为解决能源短缺、减轻环境污染的替代能源,核电已与火电、水电形成了中国电力的三大支柱。尽管如此,核电发展过程中的问题也急需解决。为此我们要充分吸收总结核电产业三十年中的发展经验和不足,统筹规划核电的发展,加速自主化国有化程序,培育核电人才,加强技术创新,提高核电的经济性,以保证中国核电事业的健康可持续发展。 参考文献: [1]景继强,栾洪为.世界核电发展历程与中国核电发展之路[J].东北电力技术,2008,***2***. [2]杨旭红,叶建华,钱虹,薛阳.中国核电产业的现状及发展初探[J].上海电力,2007,***6***. [3]邹树梁.中国核电经济性分析[J].南华大学学报:社会科学版,2009,***2***. [4]祁恩兰.中国核电发展的问题研究[J].中国电力,2005,***4***. [5]叶奇蓁.中国核电发展战略研究[J].电网与清洁能源,2010,***1***. [6]杜国功,杜国用.中国核电产业发展的战略思考[J].山东经济,2009,***3***.[责任编辑 安世友] 篇二 核电工程物资管理 摘要核电工程物资占到总投资55%左右,价值高,数台机组的物资采购价格高达百亿人民币;***1***种类繁杂,数量庞大,产生海量物资交易记录资料;***2***安全、质保等级分类复杂,过程控制严格,追溯性要求高,标准、规范要求严格;***3***管理周期长达5年多;***4***储存保养要求严格,恒温恒溼、清洁度等控制要求高。由于核电物资的特殊性,物资管理是核电工程专案管理的重要内容。对现场施工进度起着重要的后勤保障。作为核电工程物资本文针对核电工程物资的分散式管理中存在的问题进行分析,提出建议。 关键词 核电 仓储 物资管理 一、核电工程物资的管理模式 当前核电工程物资现场仓储管理模式主要分为两类,一是分散式管理,即仓储管理工作由各岛安装承包商分别管理;这种管理模式在以前建设核电用的比较多,工程结束后,很多物项丢失的比较严重,特别是消耗性材料和备品备件,由于总承包商无法对下面的安装单位做好监控管理的职责,安装单位在使用过程中浪费和丢失的比较严重,比之前预算的用量要多,使工程物料的成本增大,再次购买也增加了采购周期,影响了工程进度。不能及时检视物项的到货出库动态,也不能和现场施工进度紧密的联络起来。二是集中式管理,即总包方承担了所有的仓库业务,这种管理方式避免了安装单位随意浪费和丢失物资的现象,同时也带来了不好统一管理和成本增加问题。由于仓库人员种类繁多,各人员要求的技能、文化水平要求不同,不便于统一管理,增加管理成本。这种管理方式避免了安装单位随意浪费和丢失物资的现象,这种管理模式也有不足之处,总承包商不能有效的监管物项,核电在不断探讨核电的工程物项管理的模式,也不但在实际工作中改进和创新管理模式。海南核电在工程物资管理的方面开拓创新,有效有避免了前两种的管理方式的不足之处,合理的利用人和机具的利用,首次采用总承包再分包管理模式,仓储具体作业由一家承包商或专业的物流公司来操作,总承包商只到建立建一支较小的物项管理团队,负责管理、监督承包商的日常工作,负责协调各个安装承包商物资部门,以确保甲供物项各项工作顺利进行。 二、工程物资的几个控制和管理方面的建议 整个工程物资的管理包括计划、设计、采购、仓库的建设主要几个方面。 设计、采购、计划问题。在实际建设过程中,施工图纸的出版进度往往难以满足采购进度的需要,因此无法及时提供图纸材料清单作为采购的依据。在此情况下,采购工作依据历史参考电站的装置材料采购清单进行采购,但由于不同专案存在设计变更、现场变更,造成一定程度上采购遗漏、材料短缺或剩余浪费。供货计划根据三级采购进度计划和采购合同编制,条目比较粗,安装需求计划根据四级计划编制,两个计划在细节程度上的匹配度不高,一方面造成工程物资提前到货积压仓库,导致库容不足,有些物项到货离具体安装时间相差二三年之久,这样不仅占用库存量,由于海南天气高温潮溼,装置容易生锈和老化,影响装置的质量问题,同时也给后期物项保养增加了工作任务,导致成本增加。 如何解决到货与安装进度所需物项不匹配的问题,根据其他核电的安装进度所用物资进行分析,结合现场的施工进度,制定物项的一年的到货滚动计划,发给供货商,提前做好到货安排,也要控制物项过早到货。安装单位根据二级施工进度计划,编制三、四级施工进度计划,在四级进度计划的基础上结合实际施工编制3个月滚动安装需求计划。根据施工安装单位的安装需求计划,核实所求物项是否已经到货,及时与供应商联络到货问题,提前解决到货问题,满足施工现场所需。 一、库房的建设: 仓库规划和建设问题。在核电现场平面图中布置,仓库的布置和现场厂房之间科学安排,防止仓库离现场施工远,二次搬运的吊车、卡车、叉车、人工费用增加。同时也增加了安全风险。总承包应建立仓库设计、建造的标准化体系。根据核电物资储存等级、类别、大小应建立不同储存等级的仓库,满足物资的储存要求。仓库配备行车、叉车、等机具,配备消防设施、通风保溼设施、配置摄像头、保安岗亭等安保设施,配置照明、动力等电源设施。每天对仓库的设施进行安全检查,做好相关检查记录。其次仓库的各种作业活动,必须有相关程式规定和管理规章制度,做到有章可循,有据可依,这也是核电行业的管理方针。 二、到货开箱检验缺陷问题: 截止日前,到货开箱检验的缺陷的统计,开箱检验缺陷已经有二千条,已经关闭一千一百多条,核电专案已经接近尾项,这些没有关闭的缺陷检验报告,按照要求不能组卷进行移交,虽然这些缺陷大部分都是一些小问题。后期的工作重点在关闭检验缺陷上面了,要减少开箱检验的问题,个人建议从源头开始:***1***开箱时,对面哪些重大装置和供货比较多的厂家,在开箱检查时,要求厂家人员必须参加,发现小问题或疑惑的问题,在开箱检验时就可以解决。***2***对于检验时发现一些小问题,如小面积生锈、零件脱落,如厂家人员没有到现场参加开箱,这些问题可以安排仓库承包商在开箱时就可以进行处理,减少开箱检验。***3***参加开箱检验人员,如开箱中发现密封垫片、管接头等有划痕现象,如钢丝绳、电缆、钢管到货米数缺少一点,这些问题安装单位QC人员在开箱检验的时候都可以下结论,不影响现场的安装使用。 三、物资管理系统SAP 由于核电物资的种类繁杂,数量庞大,在日常到货、开箱、出库、查询的活动中,产生海量的交易记录资料,这些记录要用系统软体要实际管理。现代化的物资管理软体SAP,可以帮我们实际日常的工作管理的需求,和资源共享,资讯的准确性。工程物资的消耗统计,后期的费用的结算提供了可靠的资讯。 四、物资储存级别的要求 现场储存保养。仓库大致分为三个等级,一级为恒温恒溼仓库,温度控制在16℃~25℃,溼度小于等于60%,防静电,防强磁场,保持清洁度等;二级为一般室内或保温库,三级为一般露天仓库。在储存期间,需按照规范书中要求的频率、内容对储存的物资进行预防性和修正性保养,如防腐涂油、气体或液体保护、通电保温干燥、转动等,发现质量异常,进行修正性保养,严重质量问题按照《不符合项报告》进行处理。所有保养工作都须形成记录以备核查。 五、总结 随着人类对能源需求的日益增长和不可再生能源的日渐减少,核电能源已成为一些国家能源计划中的重点物件之一,尤其在我国,核电能源已进入快速发展阶段。物资管理从前的单一的模式变成多样化,现代化管理的模式,科学化的管理,降低管理成本,更好的为核电建设提供有力的保障。 参考文献: [1]任永娟,薛润泽.核电厂建设阶段的仓储管理工作[J].分析中国城市经济,2011 的人还看

当中子轰击235铀核(重核)时一个铀核会分解为2个等质量的小铀核同时也会产生2个中子这2个中子再去轰击其他的铀核 依次下去会放出巨大的能量 这就是核的裂变 也是链式反应

(报告出品方/分析师: 兴业证券 蔡屹 石康 李春驰 史一粟)

核电原理概述:裂变链式反应产生能量,产生蒸汽推动汽轮机组发电

核能通过核裂变、核聚变和核衰变等三种核反应从原子核释放能量,其中核裂变链式反应为核能发电原理。

核能发电主要利用质量较大的原子(如铀、钍、钚)的原子核在吸收一个中子后会分裂为多个质量较小原子核、同时放出二至三个中子和巨大能量的特性,而放出的中子和能量会使别的原子核接着发生裂变,使放出能量的过程持续,这样的系列反应被称作核裂变链式反应。核裂变链式反应即为核能发电的能量来源。

核电站使核裂变链式反应产生的能量完成核能-热能-机械能-电能的转变,达到发电的目的。

核电站大体可分为核岛部分(NI)和常规岛部分(CI):

核岛部分:核岛部分包括反应堆装置和一回路系统,主要作用为进行核裂变反应和 产生蒸汽。

核岛反应堆的作用为发生核裂变,将裂变过程中释放的能量转化为水的热能;水在吸收热能后以高温高压的形式沿管道进入蒸汽发生器的 U 型管内,将热量传递给 U 型管外侧的水,使外侧水变为饱和蒸汽;冷却后的水将被主泵打回到反应堆中重新加热,形成一个以水为载 体的闭式吸热放热循环回路,这个回路被称作一回路,又称“蒸汽供应系统”。

常规岛部分:常规岛部分包括汽轮发电机系统和二回路系统,主要作用为利用蒸汽推动汽轮机组发电。

由核岛部分热传递产生的蒸汽会进入常规岛中的汽轮机组中,将蒸汽的热能转变为汽轮机的机械能,再通过汽轮机与发电机相连的转子将机械能转换为电能,完成发电过程。

同时做功完毕的蒸汽(乏汽)被排入冷凝器,由循环冷却水进行冷却,凝结成水,之后由凝 结水泵送入加热器进行预加热,最后由给水泵输入蒸汽发生器,形成又一个以水为载体的封闭循环系统,这个回路被称作“二回路”。

从原理上看,二回路系统与常规火电厂蒸汽动力回路大致相同。

核电商业模式:重资产模式+运营期现金牛

核电商业模式呈现重资产模式+运营期现金牛的特点:

建设期:工期长,投资额大

核电站因存在普遍拖期现象,实际建设周期约在5-10年。核电站的设计工期通常为 5 年,而因缺乏施工经验、设计变更、耗时检测等原因,我国核电机组普遍存在首堆拖期问题,导致建设期利息费用增长、发电成本提高。

批量化生产有利于核电机组建设周期缩短、成本下降,实现批量化建设之后,M310/CPR等同机型系列建设周期可逐渐稳定在 5 年左右。

我国三代核电单千瓦投资额在15000元左右。

在AP1000基础上自主研发的三代核电技术CAP1000的建设成本为14000元/kW,同属三代核电技术的“华龙一号”建设成本达17390元/kW。据此计算,一台百万千瓦级的核电机组对应投资额约为150亿元,呈现投资额大的特点。

运营期:稳健现金牛

核电行业与水电行业类似,都具有运营期稳定现金牛的特征。

核电站遵循营业收入=电价*上网电量=电价*装机容量*利用小时数*(1-厂电率)的拆分简 式,营业收入可确定性强,同时由于项目前期建设投入高昂、固定资产折旧成本较高(占主营业务成本的30-40%),所以核电站成本中非付现成本(折旧)占比较高。

因此核电站一旦进入运营期,将呈现获得稳健而充裕的经营性净现金流的特性。

低碳高效的基荷电源,“双碳”目标下重要性凸显

核电具有低碳高效的特点,我国核电占比明显低于全球水平。

相比于其他发电方式,核电利用小时数高、度电成本较低,具有低碳、稳定、高效的特点,适合作为优质基荷电源发展。

而从电源结构上看,2020年我国核电占比仅为 ,不仅低于核能利用大国法国的 ,也显著低于全球平均水平的 ,我国核电占比仍有较大的提升空间。

“双碳”目标下非化石能源占比提升,核能重要性凸显。

在2020年12月的气候雄心峰会上:到2030年单位GDP的二氧化碳排放比2005年下降65%以上,非化石能源占一次能源比例达到 25%左右。

2021年10月24日,《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作意见》中提出要“积极发展非化石能源”、“实施可再生能源替代行动”、“不断提高非化 石能源消费比重”、“积极安全有序发展核电”。

2021年10月26日,国务院正式发布《2030年前碳达峰行动方案》,其中指出“积极安全有序发展核电。

合理确定核电站布局和开发时序,在确保安全的前提下有序发展核电,保持平稳建设节奏。

积极推动高温气冷堆、快堆、模块化小型堆、海上浮动堆等先进堆型示范工程,开展核能综合利用示范。

加大核电标准化、自主化力度,加快关键技术装备攻关,培育高端核电装备制造产业集群。

实行最严格的安全标准和最严格的监管,持续提升核安全监管能力。”对比我国近10年来的能源结构变化,非化石能源占比自2011年的提升至2020年的;从电源结构上看,据中电联数据核电占比已从2011年的提高至2021年的,核能重要性正在凸显。

核电技术演进:经济性与安全性推动核电技术发展

经济性与安全性是推动核电发展的核心目标。

核电站的开发始于上世纪50年代, 70年代石油涨价引发的能源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组绝大部分是在这段时期建成的。

上世纪90年代,为解决三里岛和切尔诺贝利核电站的严重事故的负面影响,美国和欧洲先后出台“先进轻水堆用户要求”文件和“欧洲用户对轻水堆核电站的要求”,满足两份文件之一的核电机组称为第三代核电机组。

21 世纪初,第四代核能系统国际论坛(GIF)会议提出将钠冷快堆、铅冷快堆、气冷快堆、超临界水冷堆、超高温气冷堆、熔盐堆 6 种堆型确认为第四代核电站重点研发对象。四代核电技术强化了防止核扩散等方面的要求,目前相关产业链雏形基本形成,预计将于2030年开启商业化进程。

2019年核电审批重启,三代机组成为主力机型

2016-2018年我国核电连续三年“零审批”,核电发展处于停滞期。

2011年日本福岛核电站受地震引发的海啸冲击,出现严重核泄漏事故,世界各国开始谨慎对待新增核电站建设,我国核电站审批工作也受此影响放缓。

2015年,我国批准 8 台核电机组,之后2016-2018年进入停滞状态,连续三年“零审批”。

2019年核电审批重启,三代核电机组正成为主力机型。

2018年后我国多台三代核电机组投入商运,三代机组的安全性和可靠性得到印证;此外2018 年1月28日,我国自主研发的三代核电机组“华龙一号”首堆、中核集团福清核电 5 号机组反应堆压力容器顺利吊装入堆,建设工程进展顺利。受此影响,我国核电审批工作重新提上议程。

2019年 7 月,国家能源局表态山东荣成、福建漳州和广东太平岭核电项目核准开工,标志着核电审批正式重启。

2020年,海南昌江核电二期工程、浙江三澳核电一期工程总计 4 台机组获批;

2021年,江苏田湾核电厂7&8号机组、辽宁徐大堡核电厂3&4号机组和海南昌江多用途模块式小型堆 科技 示范工程项目共计5台机组获批,我国核电机组批复进度正有序进行。

而从2019年后核电机组开工情况来看,以“华龙一号”和“VVER”为代表的三代核电机组已成主力机型。

自主三代核电有望按照每年 6-8 台机组的核准节奏稳步推进,“积极发展”政策正逐步兑现。2021年 3 月,《政府工作报告》中提到“在确保安全的前提下积极有序发展核电”,这是近10 年来首次使用“积极”来对核电进行政策表述。

据中国核能行业协会《中国核能发展与展望(2021)》,我国自主三代核电有望按照每年6-8台机组的核准节奏稳步推进,2021年全年核准、开工各 5 台,积极有序发展政策正逐步兑现。

四代核电技术快速发展,有望带领核电产业迈入新纪元

四代核电有望带领核电产业迈入新纪元。

近年来,我国在“863”、“973”、核能开发、重大专项计划以及第四代核能系统国际合作框架的支持下,先后开展了高温气冷堆、钠冷快堆、超临界水冷堆、铅冷快堆和熔盐堆五种堆型的研究开发,取得了一系列研究成果,与国际水平基本同步。其中,我国高温气冷堆、钠冷快堆研发进度居于世界前列。

高温气冷堆利用其高温特性,在工艺供热、核能制氢、高效发电等工业领域拓展核能的应用前景;快堆则是当今唯一可实现燃料增殖的关键堆型,将明显提高铀资源的利用率,并能够利用嬗变以实现废物最小化。

我国在高温气冷堆、钠冷快堆上的研发进度居于世界前列。

高温气冷堆全球首堆华能石岛湾高温气冷堆已于2021年12月20日成功并网发电,并计划于山东海阳辛安核电项目建设 2 台高温气冷堆。

钠冷快堆方面,中核霞浦600MW示范快堆工程已于2017年底实现土建开工,计划于2023年建成投产。

高温气冷堆: 具有固有安全性和潜在经济竞争力的先进堆型。

固有安全性: 即在严重事故下,包括丧失所有冷却能力时,核电站可不采取任何人为和机器的干预,仅依靠材料本身的能力保证反应堆放射性不会熔毁与大量外泄。

具体表现为:

①防止功率失控增长。

以我国石岛湾示范工程为例,其采用不停堆的连续在线装卸燃料方式,形成流动的球床堆芯;且示范堆采用石墨作为慢化剂,堆芯结构材料不含金属,稳定性高,堆芯热容量大、功率密度低。

②载出剩余余热。

高温气冷堆采用氦气作为一回路冷却剂,具有良好的导热性能。在主传导系统失效的情况下,堆芯余热可借助热传导等自然机理导出,再通过非能动余热排出系统排出,剩余发热不足以使堆芯发生熔毁。

③放射性物质的包容。

示范堆采用全陶瓷包覆颗粒燃料元件,以四层屏蔽材料对燃料核心进行包裹,只要环境温度不超过1650 ,碳化硅球壳就能保持完整,固锁放射性裂变产物。经测试,示范堆正常运行温度最高达1620 ,放射性达到了国际最好水平。

潜在经济竞争力: 同样以石岛湾示范工程为例,通过①装备高度自主化(示范工程国产化率达 )、②“多合为一”降低成本支出(在保持主体系统不变的情况下,进行双模块组合,即核岛由两座球床反应堆模块、两台蒸汽发生器带动一台汽轮机发电。

这类模块化建造缩短了工期,大幅减少施工量,提高了经济性)来控制造价。

同时若对比建设成本,尽管高温气冷堆(HTR-PM)在反应堆本体(主要是 PRV 和堆内构件)的造价远超同等规模的压水堆(PWR)核电站,但根据张作义等人的相关文献研究,在一个 PWR 核电站的建设总造价中,反应堆本体(PRV 和堆内构件)的造价所占的比例非常有限,大约为 2%,所以影响较小。

对比等规模 PWR 核电站,在其他部分造价保持不变的情况下,即使 HTR-PM 示范电站反 应堆本体的造价增加为原来的 10 倍,全站建设总造价的增涨也可以控制在 20% 以内。

钠冷快堆: 固有安全性外,具备核燃料增殖提高利用率、核废料最小化等优势的先进堆型。

提高核燃料利用率: 快堆技术利用铀-钚混合氧化物(Mixed Oxide,MOX)。在快堆中,堆心燃料区为易裂变的钚 239,燃料区的外围再生区里放置着铀 238。

钚 239 产生核裂变反应时放出来的快中子较多,这些快中子除了维持钚 239 自身的链式裂变反应外,还会被外围再生区的铀 238 吸收。

铀 238 吸收快中子后变成铀 239,而铀 239 很不稳定,经过两次β衰变后又一次变成了钚 239。

因此在快堆运行时,新产生的易裂变核燃料多于消耗掉的核燃料,燃料越烧越多,此便称为增殖反应。

增殖反应充分利用了铀资源,且核废料导致的环境污染问题将有希望解决,从而使第四代核电成为拥有优越安全性和经济性,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统。

新型核电技术下,核能综合应用成为可能

据中国科学院院刊《核能综合利用研究现状与展望》,从能源效率的观点来看,直接使用热能是更为理想的一种方式,发电只是核能利用的一种形式。

随着技术的发展,尤其是第四代核能系统技术的逐渐成熟和应用,核能有望超脱出仅仅提供 电力的角色,通过非电应用如核能制氢、高温工艺热、核能供暖、海水淡化等各种综合利用形式,在确保全球能源和水安全的可持续性发展方面发挥巨大的作用。

核能制氢: 核能制氢即利用核反应堆产生的热作为一次能源,从含氢元素的物质水或化石燃 料制备氢气。目前研发的主流核能制氢技术包括热化学碘硫循环、混合硫循环和高温蒸汽电解,实现了核能到氢能的高效转化,有效减少热电转换过程中的效率损失。由于高温气冷堆(出口温度 700 950 )和超高温气冷堆(出口温度 950 以上)具有固有安全性、高出口温度、功率适宜等特点,是目前最理想的高温电解制氢的核反应堆:

1) 高温陶瓷包覆燃料具有高安全性。

2) 与热化学循环过程耦合。在800 下,高温电解的理论制氢效率高于50%,且温度升高会使效率进一步提高。

3) 核热辅助的烃类重整利用高温气冷堆的工艺热代替常规技术中的热源,可部分减少化石燃料的使用,也相应减少了CO2排放。

4) 可与气体透平藕合发电,效率达48%。

当前,中核集团与清华大学、宝武集团等已联合开展核能制氢与氢能冶金结合的前期合作,计划“十四五”期间进行中试验证,“十五五”期间进行高温堆核能制氢—氢冶金的工程示范。

对比不同制氢方式,高温气冷堆制氢具有成本优势。

美国能源部在核氢创新计划下进行了核能制氢经济性评估,得到的氢气成本在美元/kg。此外,IAEA开发了氢经济评估程序,参与国对核能制氢成本进行了情景分析,在不同场景下得到的氢气成本在美元/kg。

核能供暖: 核能供暖即使用核电机组二回路抽取蒸汽作为热源,通过厂内换热首站、厂外供 热企业换热站进行多级换热,最后经市政供热管网将热量传递至最终用户。

从安全性角度来看,在整个供热过程中核电站与供暖用户间有多道回路进行隔离,每个回路间只有热量的传递,而热水也只在小区内封闭循环,与核电厂隔离,较为安全;而从碳排放角度来看,核能作为零碳能源大大优于传统热电厂烧煤供热。

2021年 11 月 15 日,国家能源核能供热商用示范工程二期 450 万平方米项目在山东海阳正式投产;2021年 12 月 3 日,浙江海盐核能供热示范工程(一期)在浙江海盐正式投运。从远期来看核能供暖作为零碳清洁取暖手段,具备复制推广潜力,也有助于我国“双碳”目标的实现。

核电乏燃料需妥善处置,我国已确认闭式循环路线

乏燃料指受过辐射照射、使用过的核燃料,由核电站反应堆产生。

核燃料在反应堆内经中子轰击发生核反应,经一定时间内从堆内卸出。

乏燃料含有的铀含量较低,无法继续维持核反应,但仍含有大量放射性元素,需要妥善处置。

乏燃料处理方式分为“开式核燃料循环”和“闭式核燃料循环”,差异在于“开式”直接将乏燃料冷却包装后送入深地质层进行处置或长期储存,而“闭式”将乏燃料送入后处理厂回收铀、钚等物质后再将废物固化进行深地址层处置。

我国于上世纪 80 年代确立核燃料“闭合循环”路线以提高资源利用率,同时减小放射性废物体积并降低毒性。

卸出乏燃料规模持续增长,首套200吨/年处理设施处于建设周期

卸出乏燃料规模不断增长,供需矛盾日益突出。

国家能源局在2021年7月5日公开的《对十三届全国人大四次会议第2831号建议的答复复文摘要》(索引号:000019705/2021-00408)中表示,一台百万千瓦核电机组每年卸出乏燃料20-25吨;若按中电联披露截至2021年12月我国核电装机5326万千瓦计算,我国将每年产生乏燃料约吨吨。

据《中国核能行业智库丛书(第三卷)》,2020年我国产生1100吨乏燃料,乏燃料累积量已达8300吨,预计到2050年累积量达114500吨。

随着核电规模的不断扩大和持续运营,我国每年卸出乏燃料的规模将持续增长,核电的继续发展势必离不开乏燃料后处理设施的相关配套。

首台套 200 吨/年处理设施正处于建设周期中,紧迫需求下未来具有确定性发展机会。

据江苏神通非公开发行 A 股股票预案介绍,我国在建的首套闭式乏燃料处理设施处理能力仅有 200 吨/年,而开式核燃料循环使用到的堆贮存水池容量已超负荷,这与较为庞大的乏燃料年产生量与累积量形成了鲜明对比。

此外国家发改委、国家能源局早在 2016 年的《能源技术革命创新行动计划(2016-2030 年)》中就明确了要发展乏燃料后处理技术,提出要在 2030 年基本建成我国首座 800 吨大型商用乏燃料后处理厂。

我国核电行业的发展离不开“闭式核燃料循环处理”相关产能的同步推进,市场需求较为紧迫,未来具有确定性发展机会。

受益于核电积极发展的逐步兑现,核电全产业链景气度有望回暖。

核电属于典型重资产行业,运营期可获得优质现金流,利用小时数高、度电成本较低、低碳稳定高效等优势,在碳中和背景下有望迎来发展机遇期。

(1)核电站建设进度不及预期的风险:核电项目建设期长,若因种种原因造成建设工期延长,将导致造价成本大幅上升;

(2)政策风险:核电行业高度受政府监管,若相关政策出现变化可能会对核电发展产生影响;

(3)核安全风险:若世界范围内发生核事故,将会对项目推进节奏、核电长期发展空间造成不利影响。

—————————————————————

报告属于原作者,我们不做任何投资建议!

获取更多精选报告请登录【远瞻智 库官网】或点击:报告下载|文档下载|免费报告|行业研究报告|品牌报告|战略报告|人力资源报告|培训课件|工作总结|远瞻文库-为三亿人打造的有用知识平台

  • 索引序列
  • 精馏技术的研究与发展论文
  • 电子技术的发展研究论文
  • 石油馏分热力学研究发展论文
  • dna测序技术的研究发展论文
  • 核电技术发展研究论文
  • 返回顶部