首页 > 学术期刊知识库 > 力学小论文

力学小论文

发布时间:

力学小论文

物理学力学论文篇3 浅析物理力学的产生及其发展 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 物理学力学论文篇4 试谈物理力学的产生及其发展分析 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 猜你喜欢: 1. 物理学史论文3000字 2. 高中物理力学论文范文 3. 物理学生论文力学 4. 物理学术论文3000字

力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题,力学的研究成果改进工程设计思想。从工程上的应用来说,工程力学包括:质点及工程力学刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。 人类对力学的一些基本原理的认识,一直可以追溯到史前时代。在中国古代及古希腊的著作中,已有关于力学的叙述。但在中世纪以前的建筑物是靠经验建造的。 1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。 纳维于1819年提出了关于梁的强度及挠度的完整解法。1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》 ,这被认为是弹性理论的创始。其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。 早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。欧拉提出了理想流体的运动方程式。物体流变学是研究较广义的力学运动的一个新学科。1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。研究方法 分实验研究和理论分析与计算两个方面。但两者往往是综合运用,互相促进。实验研究 工程力学包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。结构的现场测试还有其他的目的: ①验证结构的机能与安全性是否符合结构的计划、设计与施工的要求; ②对结构在使用阶段中的健全性的鉴定,并得到维修及加固的资料。理论分析与计算 结构理论分析的步骤是首先确定计算模型,然后选择计算方法。 土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。在其形成以及发展的初期,泰尔扎吉起了重要作用。岩体力学是一门年轻的学科, 二十世纪50年代开始组织专题学术讨沦,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。岩体力学是以工程力学与工程地质学两门学科的融合而发展的。 从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如梁的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。 于是基于二十世纪前半期物理学的进展 ,并以现代数学为基础,出现了一门新的学科——理性力学。1945年,赖纳提出了关于粘性流体分析的论文,1948年,里夫林提出了关于弹性固体分析的论文,逐步奠定了所谓理性连续体力学的新体系。 随着结构工程技术的进步,工程学家也同力学家和数学家一样对工程力学的进步做出了贡献。如在桁架发展的初期并没有分析方法,到1847年,美国的桥梁工程师惠普尔才发表了正确的桁架分析方法。电子计算机的应用,现代化实验设备的使用,新型材料的研究,新的施工技术和现代数学的应用等,促使工程力学日新月异地发展。 质点、质点系及刚体力学是理论力学的研究对象。所谓刚体是指一种理想化的固体,其大小及形状是固定的,不因外来作用而改变,即质点系各点之间的距离是绝对不变的。理论力学的理论基础是牛顿定律,它是研究工程技术科学的力学基础。 固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。 在二十世纪50年代后期,随着电子计算机和有限元法的出现,逐渐形成了一门交叉学科即计算力学。计算力学又分为基础计算力学及工程计算力学两个分支 ,后者应用于建筑力学时,它的四大支柱是建筑力学、离散化技术、数值分析和计算机软件。其任务是利用离散化技术和工程力学数值分析方法,研究结构分析的计算机程序化方法,结构优化方法和结构分析图像显示等。 如按使结构产生反应的作用性质分类,工程力学的许多分支都可以 再分为静力学与动力学。例如结构静力学与结构动力学,后者主要包括:结构振动理论、波动力学、结构动力稳定性理论。由于施加在结构上的外力几乎都是随机的,而材料强度在本质上也具有非确定性。 随着科学技术的进步,20世纪50年代以来,概率统计理论在工程力学上的应用愈益广泛和深入,并且逐渐形成了新的分支和方法,如可靠性力学、概率有限元法等。编辑本段《工程力学》 《工程力学》是由中国科协主管、中国力学学会主办、清华大学土木系承办的以工程应用为特点的全国性学术刊物。主要报导力学在工程及结构中的应用,刊登力学在科研、设计、施工、教学和生产方面具有学术水平、创造性和实用价值的论文,包括力学在土木建筑、水工港工、公路铁路、桥梁隧道、航海造船、航空航天、矿山冶金、机械化工、国防军工、防灾减灾、能源环保等工程中的应用且具有一定学术水平的研究成果。所以,它是力学刊物中专业覆盖面最宽、行业涉及面最广的期刊之一。《工程力学》 主管单位:中国科学技术协会 主办单位:中国力学学会 承办单位:清华大学土木系 出版单位:《工程力学》杂志社[1] 国际统一刊号:ISSN1000-4750 国内统一刊号:CN11-2595/O3 国际刊名代码:(CODEN)GOLIEB 性质及等级:EI全刊收录的一级学会主办的O3力学类核心期刊。百种中国杰出学术期刊。在各类科技期刊排名中,载文量、被引频次及影响因子均位居前列。其中1999年在力学类期刊中影响因子位居第一位,2002年名列第二 年期数:月刊。每年另有两期正规增刊(审批、Ei收录) 印张及版面:16个印张256页,大16K双栏 邮发代号:82-862编辑本段《工程力学》资料 工程力学 作 者: 宋本超,卞西文 主编《工程力学》 出 版 社: 国防工业出版社[2] 出版时间: 2010-1-1 开 本: 16开 I S B N : 9787118063950 定价:¥内容简介 本书以教育部《关于全面提高高等职业教育教学质量的若干意见》为指导,以“必需、够用”为原则进行编写。本书共20章,由静力学、材料力学以及运动学与动力学三部分组成。静力学部分包括静力学基本概念、简单力系、平面任意力系、空间力系等内容,主要研究受力分析和刚体的平衡问题,是材料力学的基础。材料力学部分包括轴向拉伸或压缩、扭转、剪切与挤压、弯曲变形、强度理论、组合变形和压杆稳定等内容。运动学与动力学部分包括点的运动、刚体的基本运动、点的运动合成、刚体的平面运动、质点和刚体的动力学基础、动能定理以及动静法等内容。为了便于学习,每章后面均附有思考题和习题,并在附录中给出了答案。 本教材可作为高等职业院校机械类、机电类专业的教材。各院校也可以根据学时的安排和专业需要选讲部分内容。目录 第一篇 静力学 引言 第1章 静力学基本概念和物体受力分析 静力学的基本概念 刚体的概念 力的概念 集中力与均布载荷 力系 平衡 静力学公理 力的平行四边形法则(公理一) 二力平衡公理(公理二) 加减平衡力系公理(公理三) 作用和反作用定律(公理四) 约束和约束反力 约束相关概念 常见的约束类型 物体的受力分析和受力图 思考题 习题 第2章 简单力系 汇交力系合成与平衡的几何法 汇交力系合成的几何法 平面汇交力系平衡的几何条件 平面汇交力系合成与平衡的解析法 力在坐标轴上的投影 合力投影定理 平面汇交力系合成的解析法 平面汇交力系平衡的解析条件 力对点之矩与合力矩定理 力对点之矩的概念 合力矩定理 平面力偶理论 力偶的概念 力偶的性质 平面力偶系的合成 平面力偶系的平衡条件 思考题 习题 第3章 平面任意力系 力的平移定理 平面任意力系向一点简化 平面任意力系向一点简化 平面一般力系简化结果 平面任意力系的平衡条件 平面一般力系的平衡条件和平衡方程 平面平行力系的平衡方程¨ 静定与超静定问题的概念及物体系统的平衡 静定与超静定问题 物体系统的平衡 考虑摩擦时的平衡问题 思考题 习题 第4章 空间力系 力在空间直角坐标轴上的投影 力在空间直角坐标轴上的投影 合力投影定理 力对轴的矩 力对轴之矩 合力矩定理 空间力系的平衡及其应用 空间力系的简化 空间力系的平衡方程 空间任意力系的平衡问题转化为平面问题的解法 重心与形心 物体的重心 平面图形的形心 用组合法确定平面组合图形的形心 思考题 习题 第二篇 材料力学 引言 第5章 轴向拉伸和压缩 第6章 剪切与挤压 第7章 圆轴扭转 第8章 弯曲内力 第9章 弯曲应力 第10章 弯曲变形 第11章 应力状态分析和强度理论 第12章 组合变形 第13章 压杆稳定 第三篇 运动学与动力学 引言 第14章 点的运动 第15章 刚体的基本运动 第16章 点的合成运动 第17章 刚体的平面运动 第18章 质点和刚体动力学基础 第19章 动能定理 第20章 动静法 附录Ⅰ 常用图形的几何性质 附录Ⅱ 型钢表 附录Ⅲ 习题答案 参考文献编辑本段《工程力学》资料 书 名: 工程力学 《工程力学》作 者:赵晴 出版社: 机械工业出版社 出版时间: 2009-6-1 ISBN: 9787111266075 开本: 16开 定价: 元内容简介 本教材适用于工科非机类各专业本科生,机械类各专业自学考试本科生,机类各专业专科生,参考学时40-90学时。学时安排可分为三种:少学时(40学时)讲授静力学基础、平面力系平衡方程、杆件四种基本变形强度设计和压杆稳定设计;中学时(65学时)讲授静力学、材料力学全部内容;多学时(90学时)讲授静力学、材料力学、运动力学全部内容。 本教材内容编排以够用为度,兼顾理论体系完整;注重与工程实际问题的联系,重点突出,难点分散;全部插图具有三维效果。为了方便学生的学习,每章配有附录,对本章的知识点进行小结;选择典型问题进行讨论、讲解;总结解题方法;设置思考题供学生学习。为降低学生购书成本,此部分附于随书光盘中。图书目录 序 前言 绪论 第一篇 静力学 第一章 静力学基础 第一节 力的概念及其性质 第二节 力矩的计算 第三节 力偶的计算 第四节 约束与约束力 第五节 物体的受力分析 习题 本章小结及扩展练习(见随书光盘) 第二章 平面力系的简化 第一节 平面汇交力系的简化 第二节 平面力偶系的简化 第三节 平面一般力系的简化 习题 本章小结及扩展练习(见随书光盘) 第三章 静力学平衡问题 第一节 平面力系的平衡条件和平衡方程 第二节 物体系统的平衡问题 第三节 考虑摩擦的平衡问题 第四节 空间一般力系的平衡问题 习题 本章小结及扩展练习(见随书光盘) 第四章 重心及平面图形的几何性质 第一节 物体的重心坐标公式 第二节 平面图形的几何性质 习题 本章小结及扩展练习(见随书光盘) 第二篇 材料学 第五章 材料力学的基本概念 第一节 变形固体的概念 第二节 杆件的内力和应力 第三节 杆件的基本变形和应变 本章小结及扩展练习(见随书光盘) 第六章 杆件的内力和内力图 第一节 直杆轴向拉伸(压缩)时的轴力与轴力图 第二节 轴扭转时的内力及内力图 第三节 梁弯曲时的内力及内力图 习题 本章小结及扩展练习(见随书光盘) 第七章 拉(压)杆件的应力、变形分析与强度设计 第一节 拉伸与压缩杆件的应力与强度设计 第二节 拉伸与压缩杆件的变形 第三节 拉(压)杆超静定问题 第四节 材料受拉伸与压缩时的力学性能 习题 本章小结及扩展练习(见随书光盘) 第八章 剪切挤压实用计算 第一节 剪切与挤压 第二节 剪切与挤压的强度计算 习题 本章小结及扩展练习(见随书光盘) 第九章 圆轴的扭转应力、变形分析与强度、刚度设计 第一节 圆轴扭转时的切应力分析 第二节 圆轴扭转强度设计 第三节 圆轴扭转变形与相对扭转角 第四节 扭转时圆轴的剐度设计 习题 本章小结及扩展练习(见随书光盘) 第十章 梁的强度 第一节 弯曲梁横截面上的正应力 …… 第三篇 运动力学 附录 参考文献 [3]编辑本段《工程力学》资料 《工程力学》 武昭晖 张淑娟 葛序风 主编 16开 2008年8月出版 定价:元 ISBN 978-7-301-13653-9 出版社:北京大学出版社内容简介 本书是依据教育部最新制定的高职高专教育机械类及近机械类专业工程力学课程教学基本要求编写而成的。全书共分3篇12章,第1篇为静力学部分,第2篇为材料力学部分,第3篇为运动学和动力学部分。 本书文字简明,内容精练,简化理论推导,注重理论应用。本书可作为高职高专机械类及近机械类专业60~70学时工程力学课程的教学用书,也可供有关技术人员参考。目录 第1篇 静力学 第1章 静力学的基本概念和物体的 受力分析 第2章 平面力系 第3章 空间力系 第2篇 材料力学 第4章 轴向拉伸与压缩 第5章 剪切与挤压 第6章 圆轴扭转 第7章 平面弯曲 第8 章 强度理论与组合 变形时的强度计算 第3篇 运动学和动力学 第9章 点的运动 第10章 刚体的运动 第11章 动能定理 第12章 动静法编辑本段相关院校 很多理工科学校都开设工程力学这个专业。 研究生专业排名前十的学校分别是(排名依据中国研究生院分专业排名): 1、大连理工大学 2、上海交通大学 3、同济大学 4、南京航空航天大学 5、哈尔滨工业大学 6、清华大学 7、北京理工大学 8、浙江大学 9、西安交通大学 10、重庆大学

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

大学力学小论文

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

大学物理(力学)与后续课程(工程力学)教学衔接的研究摘要:大学物理是工科专业学生的一门基础课程,其内容体系所包括的力、热、光、电、原子物理的基本原理贯穿于自然学科的各个领域,并广泛应用于生产技术,是学习和研究其它自然学科和工程技术的基础。其中,力学是大学物理教程的一个重要组成部分,与其后续课程工程力学有着密切的联系。为了能够更好地明确它们之间的关系,本文就大学物理(力学)与后续课程(工程力学)教学衔接的研究这个论题进行了探讨,主要从两个方面展开,首先,对本校开设了大学物理的三个工科专业(信息技术,机械设计,工业工程)学生进行问卷调查,并对部分问卷题目的结果进行了统计分析,结果表明:在不同学院、不同专业中,对大学物理所包括的各部分内容中,与后续课程的关联程度有所不同;大学物理的学习对工科学生后续课程的学习产生重要影响;对于大学物理课程中所包括的,基本知识、基本概念、基本规律等要进行精细的讲解;要重视对学生思考问题、提出问题、分析问题、解决问题的能力培养;加强与学科联系部分的深度、广度的讲解等等。其次,在问卷调查分析的基础上,论述了力学和工程力学在发展、研究方法及研究内容等方面存在的密切联系。论述了加强二者教学衔接的重要性,同时还探讨了加强教学衔接的方法。通过对这两个方面内容的研究,揭示了大学物理与后续课程的紧密联系,以及加强大学物理与后续课程内容衔接的重要性。 追问: 有关于具体知识点的类型论文吗?比如谈谈力学、光学、或者波之类的……

液晶材料的分类、应用及其发展状况摘要介绍了液晶材料的种类及其分类性能,论述了液晶材料的应用和发展情况。关键词液晶材料;介晶相;应用1.液晶的简介和分类液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称作介晶相,是一种取向有序流体,既具有液体的易流动性,又有晶体的双折射等各向异性的特征。1888年奥地利植物学家Reinitzer首次发现液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。近二十多年来液晶材料获得迅速的发展,这是因为液晶材料的光电效应被发现,因此被广泛地应用在需低电压和轻薄短小的显示组件上,因此它一跃成为一热门的科学研究及应用的主题,目前已被广泛使用于电子表、电子计算器和计算机显示屏幕上,液晶逐渐成为显示工业上不可或缺的重要材料,液晶高分子的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门科学,而且在高分子材料、生命科学等方面都得到了大量应用。溶致型液晶有些材料在溶剂中,处于一定的浓度区间内会产生液晶,这类液晶我们叫它溶致液晶。如可以利用溶致型液晶聚合物的液晶相的高浓度低黏度特性进行液晶纺丝制备强度高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和粘度等。在热致型液晶中,又根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。近晶型液晶近晶相除有沿分子长轴的取向有序外,有一个沿某一方向的平移有序,近晶型液晶在所有液晶聚合态结构中最接近固体晶体,通常含有C=N或者N=N键及苯环结构,分子是厂棒状。目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。向列型液晶向列相仅有沿分子长轴的取向有序,液晶分子呈棒状形刚性部分平行排列,该种液晶分子运动自由度大,是流动性最好的液晶,此类型液晶的粘度小,应答速度快,是最早被应用的液晶,普遍地使用于液晶电视、笔记本电脑以及各类型显示元件上。胆甾型液晶这类液晶大都是胆甾醇的衍生物,胆甾醇本身无液晶性质,而它的衍生物均具有液晶特性,次类型液晶是由多层相列型液晶堆积所形成,为向列相液晶的一种,也可以称为旋光性的向列相液晶,因分子具有非对称碳中心,所以分子的排列呈螺旋平面状的排列,面和面之间为相互平行,而分子在各平面上为向列相。2.液晶的应用及发展状况液晶材料在显示器的应用回顾液晶的发展史可以发现,尽管液晶早在19世纪60年代已经被发现,然而在相当长一段时间里,虽然液晶的许多有价值的现象早被揭露,但液晶始终只是实验室中的珍品而已。只有当液晶被用于显示器开始,它的研究才有了前所未有的动力。在这最近的几十年时间里液晶显示器有了长足的进步,目前液晶显示器已是整个领域中的佼佼者,只要稍加留意,不难发现市场上用液晶显示器的仪器仪表、计算器、计算机、彩色电视机等不仅品种越来越多,而且显示品质亦越来越高,价格越来越便宜。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有T N(扭曲向列相)模式,H T N(高扭曲向列相)模式、S T N(超扭曲向列相)模式、T F T(薄膜晶体管)模式等。其中TFT模式是近10年发展最快的显示模式。

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

简单力学小论文

物理学力学论文篇3 浅析物理力学的产生及其发展 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 物理学力学论文篇4 试谈物理力学的产生及其发展分析 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 猜你喜欢: 1. 物理学史论文3000字 2. 高中物理力学论文范文 3. 物理学生论文力学 4. 物理学术论文3000字

一只筷子夹东西是不行的,只有二只筷子夹才能夹住!·你明白我的意思了吗?

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

材料论文包括很多方面,像(材料科学)里面说的一样,什么碳纤维材料,什么高分子材料,等等,你都可可了解下,对你写论文有一定的帮助的~

力学小论文1000字

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

材料论文包括很多方面,像(材料科学)里面说的一样,什么碳纤维材料,什么高分子材料,等等,你都可可了解下,对你写论文有一定的帮助的~

先引入一个生活中的例子,然后就此展开讨论力与运动的各种关系,后总接一下。

材料力学小论文圆形薄板小挠度不同约束下的挠度计算分析 12151196 背景在材料力学课程中,第七章主要内容是梁的弯曲变形,通过对梁进行有限元 分析,导出了梁在不同约束、不同受力情况下的小挠度公式。但是在实际的工程 应用中,还有另外一种比较常见的情况——薄板的受力,书中没有讨论。本文将 就一种特殊情况,即圆形薄板受均布载荷情况下的小挠度计算分析。 建模计算分析 圆形薄板的受力模型及其基本假设 查阅相关资料,并结合书本知识,先讨论均布载荷为横向轴对称的情况,并 做出如下基本变形假设: 板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面法线 变形前位于中性面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变; 平行于中性面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 则据此,使用有限元法可以推得受轴对称横向载荷圆形薄板小挠度弯曲微分 方程为: 为距圆心距离为r处的横向剪力,对D 其中h为圆形薄板的厚度,μ 为材料的泊松比。 圆形薄板内力计算和挠度、转角方程 将圆形薄板加上集度为q 的均布载荷,如图所示: 则由静力学平衡方程有: 对上式中的变量r连续三次积分得: 由于r=0处的w应该为有限值,则应该有C2=0,最终得到: 其中C1、C3需由边界调节确定。 几种不同约束条件下的计算 圆周处为固定支座 由于圆周处的约束为固定支座,不允许有挠度和转角,则有边界条件 64所以有圆周固定支座的转角、挠度方程为: 圆周处为简单支座(不约束转角) 此时有约束条件: 圆心处为固定或简单支座 若为固定支座,此时有约束条件: 周处为简单支座的情况下,圆周处不限制转角,这与圆心处有约束的情况相同,则用可以得到这两种圆心约束的情况下,挠度、转角方程的值与 中互为相反 分析与总结 受均布载荷的圆形薄板不同约束下的挠度 因为圆心的约束情况可以等效于圆周简单支座约束,所以本部分只讨论前两 种约束的挠度。 固定支座时,最大挠度在中心,为: 64简单支座时,最大挠度在中心,为: 结果分析 可见固定支座时的最大挠度要小于简单支座时的情况,所以若要减小变形,应采用固定支座的约束形式,工程中一般使用的都是介于固定和简 单之间的约束。 在板材的材料和载荷都确定的情况下,减小半径和增加板的厚度都能够减小挠度,从而减小变形。 总结 本文通过查阅相关文献得到受均布载荷圆形薄板挠度的相关计算公式,再应 用到两种简单的约束条件下,得到了挠度的计算公式。但是由于模型约束强度选 取不同,简单支座的挠度计算公式与资料中的结果有差别,但误差并不大,在一 定范围内可以得到好的结论。

质点力学小论文

质点和刚体一样是力学中的理想模型,没有大小,质量,形状,一般用于研究动力学受力物体的运动与作用力之间的关系.

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne )法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。 1614年,英国的耐普尔制定了对数。 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。 1638年,法国的费尔玛开始用微分法求极大、极小问题。 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。 1654年,法国的帕斯卡、费尔玛研究了概率论的基础。 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。 1670年,法国的费尔玛提出“费尔玛大定理”。 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。 1686年,德国的莱布尼茨发表了关于积分法的著作。 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。 1696年,法国的洛比达发明求不定式极限的“洛比达法则”。 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。 1711年,英国的牛顿发表《使用级数、流数等等的分析》。 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。 1715年,英国的布·泰勒发表《增量方法及其他》。 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。 1733年,英国的德·勒哈佛尔发现正态概率曲线。 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。 1736年,英国的牛顿发表《流数法和无穷级数》。 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。 1742年,英国的麦克劳林引进了函数的幂级数展开法。 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。 1772年,法国的拉格朗日给出三体问题最初的特解。 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。 微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

古代方程发展史中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

双峰二中创建八十年,培养人才三万余人。在教育、科技、军政、工农、艺术各界出现了众多有成就的人物。据1996年建校七十周年时的不完全统计:教育战线大学的正副教授、中学的特级教师,科技战线高级工程师以上,军政界地师级以上,工农战线的企业家、养殖家以及艺术、技能方面有突出成就或有著作问世者,总数在五百人以上。以下仅为部分之简单介绍。 (转自《双峰二中七十周年校庆纪念册》) 欧阳崇一 又名欧阳祜,青树坪人,起陆高小一班毕业。湖南和平解放前夕,任国min党第一兵团司令部第四处上校处长,主管后勤业务。积极趋向弃暗投明,抗拒执行白崇禧对长沙的破坏命令,促使司令员陈明仁和平起义。和平解放后,任兵团军需处长、省政府参事、省政协委员等职。他对母校感情甚深,曾来信说:“我1949年能走向光明,是与母校的教育分不开的,堪可告慰。” 匡燕鸣 双峰人,起陆高小四班毕业。1960年及1979年两次回校任党支书、校长。工作刻苦实干,文化大革命后拨乱反正,恢复学校元气,备著辛劳。荣膺全国教育战线劳动模范称号。后调任双峰一中党支书、校长。 戴鸿仪 青树坪人,起陆高小十一班毕业。四十年代曾回起陆初中任教,是有名数理老师。中国矿业大学北京研究生部教授,其与人合作发明的“矿用强力运输带横向断裂预报装置”获国家专利。享受国家特殊津贴。 欧阳谦叔 又名欧阳熙,青树坪人,起陆高小十六班毕业。曾任湖北歌剧团编剧、作曲。是著名歌剧《洪湖赤卫队》的主要作曲者。国家一级作曲家。其论文《歌剧探索三十年》曾发表于北京《音乐理论》杂志及《中国歌剧艺术文集》。1990年,他与爱人一同回到母校与师生们联欢,后又为母校校歌作曲。 欧阳骅 青树坪人,起陆初中十二班毕业。空军航空医学研究所研究员、教授、硕士和博士论文评审委员。编写了《中国航空百科词典》、《中国医学检验全书》及论文40余篇。所发明“管式液冷防暑降温背心”获国家专利。对母校怀有深厚感情,为庆祝母校七十周年校庆与爱人曾月英捐出多年积蓄设希望奖,要求奖励家庭困难而品学兼优的学生,以报答国家和母校对他们的培育之恩。 王文介 双峰县花门镇人,起陆初中十三班毕业。中国科学院南海海洋研究员、国际海洋研究委员会中国工作组委员、硕士研究生导师、国家特殊津贴获得者。获得过中国科学院科技进步二等奖,广东省科技进步特等奖、国家海洋局科技成果三等奖。主持和参与专门著作16本。有论文和译文60余篇在国内有关学报刊物发表。 曾月英(女) 青树坪人,起陆初中十五班毕业。1956年考入空军第二飞行学院,毕业后,分配空军专机师任飞行员,担任过中央首长专机机长。1987年被授予空军上校,一级飞行员。其机组获“英雄机组”称号,个人曾荣立二等功一次,三等功二次。三十年飞行近五千个小时,行程达200万公里,飞过四十多次专机,参加过常年的战备值班,执行过临时的抢险救灾,均安全而出色地完成了任务。 王影 原名李醒辰,永丰镇人,二中初五班毕业。1963年大学毕业后分配在林业部湖南农林工业设计研究院工作,并任该院副总工程师。他主持、设计的工程,多次获部、省奖励及先进称号。由于他的突出贡献,1993年起,享受政府特殊津贴。系民盟湖南省委副主委,第六届省政协委员,省八届人大常委。 李希特 双峰人,二中初十五班毕业。现为县文化局干部,中国剪纸学会会员、农工民主党县委常委、政协双峰常委。1995年,联合国教科文组织和中国民间文艺家协会联合授予他“民间工艺美术家”称号。有作品百余幅在报刊发表,并多次在展出中获奖。其《凤朝阳》《凤凰戏牡丹》经选送日本、瑞典展出。其三分钟人像剪影,以快、准、美受到中外好评,誉为“湘中一绝”。 欧阳梦轲 青树坪人,二中初二十一班毕业。1985年临池学书,兼学装裱。1988年获全省农民书法大奖赛三等奖,1990年获全省国土杯书法大赛二等奖,1993年获国际和平杯书法赛三等奖。其作品编入《中国国际艺术大观》。《人民日报》及《人事与人才》报道了其自学成才的事迹。 王振华 青树坪人,二中高一、二班毕业。乘改革开放东风,在农村发展养殖事业。全国养猪协会副理事长、湖南省动物人参系列产品开发公司总经理。荣获全国农村科普工作先进个人、全国科技致富能手、湖南省优秀科技工作者等称号。 谢和平 双峰县甘棠镇人,二中高三十一班毕业。现任四川大学校长、教授、博士生导师。中国科学院国际材料物理中心成员。他在岩石损伤力学和分形几何结合方面取得了开创性的成果,从而推动岩石力学的发展,他的学术成果在国内外产生了较大的影响。1992年被评为中国青年科学家。被聘至美、英、波兰、德国各大学讲学。共发表论文40余篇,英文著作3部,中文著作2部。

  • 索引序列
  • 力学小论文
  • 大学力学小论文
  • 简单力学小论文
  • 力学小论文1000字
  • 质点力学小论文
  • 返回顶部