首页 > 学术期刊知识库 > 统计的毕业论文数据

统计的毕业论文数据

发布时间:

统计的毕业论文数据

你也可以看看是不是你的实验有误,检查自己是不是哪步骤出了差错,如果还是不知道怎么弄得话,可以看看汉斯出版社官网上的文献

这个还是需要一些相关资料吧不然不好做的

关键是有无多少个样本?如果就是一个处理组和一个对照组,可以进行T检验,若无显著差异则无意义!aqui te amo。

PS软件与教程百度网盘资源免费下载

软件资源实时更新旅誉枣

链接:

密码:ffh6

资源包含:bavi视频素材、pscs6软件和虚渗色盘的插件、PS4人物转手绘教程ps、安装包+入门教程+高级课程、祁连山、李涛Photoshop高手之路教程、PS课程素材包、PS各版本软件+教程、Photoshop教程+配套素材、各种Photoshop 中文破解版+破解方法+正版软件+补丁+安装方法,AE PR PS软件安装包,spss教学视频,PS破解器,PS字体包、拆拆矢量素材打包等

毕业论文统计数据的软件

不是。paperask是英语单词,不是笔杆。笔杆和paperyy不是同一个,它们分别是不同类型的网站,提供的服务也不一样。

论文查重软件排行榜以下三个好。

1、知网论文查重软件数据库比较强大,并且可以分类对论文进行检测,有本科论文查重入口,硕博论文查重入口,职称论文查重入口,初稿论文查重入口等。

是目前高校使用最多的软件。对于本科毕业论文检测拥有独特的大学生联合对比数据库。检测结果基本上跟学校一致。

2、万方、维普是这几年兴起的论文查重软件,数据库没有知网齐全。版本也没有知网多,如果学校要求使用这两个查重,大家就可以去选择,如果没有要求选择这两个系统,大家就不要存在侥幸心理。

3、paperfree论文查重软件,是比较长久的论文查重软件,仅次于知网论文查重,在市场上得到了很多学校和毕业生的认可,也是很多学校要求使用的论文查重系统,查重速度快,查重结果准确,费用非常的低。

知网论文查重软件:知网在资源丰富方面具有突出的优势,其科学算法也使得论文的查重结果具有很高的权威性。万方论文查重软件:维普论文查重拥有优秀的自主研发算法,在数据库上也有突出的优势,比较资源可以用海量来形容。维普论文查重软件:维普论文检测系统是目前国内论文查重平台之一,采用AI智能比对技术,拥有丰富的本地文本资源库,致力于维护学术诚信,杜绝学术不端。paperfree论文查重软件:PaperFree论文查重软件通过海量数据库对提交论文进行对比分析,准确地查到论文中的潜在抄袭和不当引用,实现了对学术不端行为的检测服务。请点击输入图片描述

笔杆和paperask是两个不同品牌的查重软件,目前免费查重软件比较多,各个查重网站都有着一定的免费字数领取,相比paperbye免费查重是目前全网最优的的检测系统。

PaperBye论文查重系统,数据范围包括,硕博研究生论文本科毕业论文,课程作业论文,活动征文,会议论文,专利,图书专著等各领域数据,目前推出,永久免费版,不限制篇数,不限制字数,每天可以免费查重。

大数据统计毕业论文

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

大数据只是一个时代背景,具体内容可以班忙做

统计学毕业论文数据

这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

关键是有无多少个样本?如果就是一个处理组和一个对照组,可以进行T检验,若无显著差异则无意义!aqui te amo。

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

毕业论文数据统计方法

有!需要q!我!

摘要:产业在地理空间上的集聚现象已经成为许多学科领域研究关注的焦点,从一般经济学理论、产业经济学、区域经济学、国际贸易理论、管理学到空间经济学理论都有从各自领域对产业在地理空间上集聚有所解释。我们从江苏沿江产业集聚现象的形成和发展着手研究,试图以地理集中度为衡量指标,以制造业为例,根据各学科的相关理论对产业集聚的形成原因进行剖析,指出影响江苏沿江制造业产业集聚的因素。实证结果说明,本地市场规模、产业关联和FDI是影响江苏沿江产业集聚形成的显著因素。关键词:产业集聚;经济地理;因素分析Abstract: This paper examines the micro-foundations of agglomeration economies for Jiangsu industries. Using industries as observations, we regress the LQ measure of spatial concentration on industry characteristics that proxy for the presence of market scale, labor market pooling, input sharing, product shipping costs, natural advantage, FDI and infrastructure construction. Results indicate that proxies for market scale, input sharing and FDI have the most robust effect, positively influencing words: industrial agglomeration; distribution; important factor产业集聚是市场经济条件下伴随着地区工业快速发展的结果,是一个国家或地区产业竞争力的重要来源和集中体现。从著名的美国硅谷、波士顿128公路到英国的剑桥工业园,以色列的特拉维夫地区等等,都是很有代表性的竞争力很强的产业集聚区域。我国自改革开放以来,在对外开放、市场化取向的体制改革推动下,经济活动的空间分布也发生了很大的变化。逐渐形成了一些制造业集聚的中心、一批高集聚、高度专业化的产业集群。代表我国产业空间集聚最迅速的珠江三角洲区域、长江三角洲区域也是我国经济发展最快的区域。产业在空间的分布趋向于在一些地区集聚,在其他地方分散。那存在这种产业分布的空间上的集聚的原因究竟是什么呢?本文在前人文献研究的基础上,试图结合江苏沿江制造业产业集聚的模式,从新经济地理学的角度找出集聚形成的原因。文章第一部分回顾现有文献,介绍对于制造业产业集聚的研究方法、相关理论;第二部分介绍本文的对产业集聚的分析框架;第三部分对中国制造业的集聚现状描述;第四部分是产业空间集聚与相关因素的计量分析及结果;第五部分是文章的结论和政策建议。一、产业集聚及相关理论对于制造业产业在空间集聚的因素研究很多,国外很多研究从不同的理论角度都曾给过解释。从早先马歇尔从外部规模经济的角度阐述了产业集聚的原因,韦伯从集聚带来成本节约的角度解释集聚的产生,到现在的新产业区位论、新贸易理论、新地理经济学等等都对产业集聚做出解释。(一)产业集聚的定义产业在空间上聚集的现象已经是很多学科的共同关注的焦点。但对产业聚集的定义、产生原因、甚至产业聚集的衡量方法,都没有一致的认定。本文将对产业聚集的定义综合现有的研究成果,在不同领域的共性的基础上,总结出几个方面的定义。1.从空间角度看,产业聚集是发生在某一特定地理区域内的经济过程或现象。2.从产业角度看,产业聚集区域内的企业是属于某几种产业或具有直接上下游产业关联或具有其他密切联系的相关产业的企业。3.从相互关系角度看,产业聚集区域内的企业彼此之间必须以各种可能的方式产生互动,使聚集区域内厂商表现较其他非聚集区域的厂商更好。波特(Porter 1990,1998,2002)的定义是:“产业集群指一群特定产业领域内相关联的企业、生产供应商、服务供应商、相关产业厂商及相关机构(如大学、制定标准化的机构、金融机构、贸易协会等)以彼此既竞争又合作的方式在某一地理区内集中的现象”。(二)产业集聚的形成原因综合前人的研究成果,笔者认为以下几个方面是影响我国产业集聚的重要因素:1.资源要素资源要素包括区位要素和生产要素。区位要素指的是具体产业相关的或必须的自然区位、交通区位、经济区位。从理论上看,企业一般倾向于选择聚集再交通要塞,以降低运输成本。生产要素就包含自然资源和社会资源。产业集聚的的形成表现为区域专业化生产,根据赫克歇尔-俄林理论,区域专业化生产的主要原因是自然资源禀赋。早期的产业集聚形成过程中,自然资源起到了根本性的作用。后来的研究证实,相对于早期自然资源,社会资源的作用在后期产业集聚的形成中,具有更大的作用。包括技术、人才、社会网络、文化、制度等社会资源具有不可量化和无限性,已经成为产业集聚形成的关键因素。2.需求条件靠近特定的市场也是产业集聚形成的重要原因。在一定程度上,接近市场有利于厂商掌握客户偏好,有利于厂商掌握新产品信息与走向,这个过程同时也能够促进厂商对产品或服务的升级,增强自己产业的竞争力。市场需求是产生集聚的动力,同时,市场需求也促使着产业的专业化分工过程。根据斯杨定理,专业化分工会提高效率,企业可以获得递增报酬,但由于其受到市场容量的制约,只有市场容量达到最初的临界点才有可能触发专业化分工自我强化的过程。产业集聚才可能持续良性发展。3.外部经济环境“自发性”是产业集聚形成的一个最根本的特征,而这样自发形成的基础是市场机制。市场自由度越高,外向化程度越高,政府的不合理管制程度越低,产业集聚的效应就越能发挥出来。我国对产业集聚的研究中,经济体制因素是我国特色的一个重要影响因素。随着我国市场化程度逐步提高,产业集聚在我国形成的外部经济环境已经越来越好。实践证明,产业集聚在生产、流通两方面都离不开开放的市场环境。产业集聚的形成和经济开放存在这样的关系:凡是经济开放程度高、市场竞争力量强的地区,产业集群的特征就比较突出;凡是经济相对封闭、市场竞争力量弱的地区,产业集群现象就比较弱(徐康宁,2001)。4.产业特征反映产业特征的很多因素如技术溢出因素、产业规模等都是产业集聚形成的重要因素。在产业集聚的形成过程中,通过技术溢出,以带动整个集聚群内部的技术创新能力的提高。技术水平的提高使得区域内的企业特别是学习型企业得到发展的动力,促进与区域内其他企业的合作,推动技术创新的良性循环,推动技术水平的整体提高。技术进步也是实现集聚区企业升级可持续发展的动力。5.政府政府对产业集聚发展的影响是非常重要的。政府通过对某个地域或某个产业制定的种种优惠措施,对产业集聚形成起着非常关键的作用,这在发展中国家尤为明显。此外,政府的教育、文化、税收等政策都可能影响到生产要素,从而影响产业的集聚的形成、发展。(三)地理集中度的衡量指标衡量区域内企业集中度有很多指标,地理经济学上是地理集中度衡量指标,此处借用区位商(Location Quotient)来衡量产业集聚。区位商是产业效率与效益分析的定量工作,是较普遍的识别地区制造业专业化的方法,是衡量某一产业的某一方面,在特定区域专业化程度的方法,也可以说明各地区各产业的相对集聚程度。起计算公式如下:二、对产业集聚的分析与变量的选取近几年,江苏的产业集群发展迅速,苏州工业园区和高新区、南京江宁开发区、昆山高新区等初具规模。产业集群效益在江苏已经凸显。以沿江高新技术产业带为例,据统计,2004年,高新技术产业带实现产值超过2 000亿元。该产业带创造了江苏八成以上的信息产业产值和15%的工业总产值。总的看来江苏省产业集群这些年的发展前景令人鼓舞:一是有一定的规模,目前江苏成型的产业集群约有一百多个;二是行业分布比较广,几乎涉及了纺织、服装、金属制品、电器、建材、轻工等传统行业,也有IT、环保等新兴产业;三是分布比较广泛,苏南、苏中、苏北三大板块都在各个经济领域都有分布;四是已经形成一批品牌,在全国有一定的知名度和比较高的市场占有率。产业集群已成为江苏经济发展的强劲支撑。影响产业集聚形成的因素很多,从前文的叙述和考虑到数据的可得性,我们假设的与产业集聚形成有关是资源要素、需求条件、产业特征、外部经济环境、政府等。本文选取数个相关指标来分析产业空间集聚的决定设立以下联立方程:EDU为该地区的大专以上学历人口所占比例。TEC为该地区的技术市场合同交易金额,用来说明地区的技术创新。NUM为该地区企业数量,用以说明区域产业规模。FDI为外商直接投资,用以说明外资对产业集聚的影响。SPHWY是该地区在总公路里程数的份额。IM指本地市场效应,用以反映的就是本地市场规模的大小,各地区人均GDP与全国人均GDP的比值来衡量。某地区该比值越大那就意味着某地区越接近本地市场。TER第三产业所占比例,用以描述产业集聚的配套设施。LINK指产业关联系数,新经济地理理论认为,投入产出会影响产业的区位集中。但投入产出数据缺乏,采用王业强、魏后凯(2007)的方法,用工业产值中制造业产值所占比例来估算产业关联效应。所用的数据都出自于2006年、2007年《中国统计年鉴》、《江苏统计年鉴》、《中国工业统计年鉴》。三、结果分析运用SPSS统计软件版对数据进行回归分析,结果见下表。EDU,TEC,NUM,SPHWY未通过显著性检验,应从模型中删去,其余变量如下页表。从以上的数据可以看出,模型修正后,可以从需求条件、产业特征、外部环境等几个方面对产业集聚效应影响因素进行了说明。市场容量有利于产业集聚的形成,根据波特的理论,产业集聚与市场需求有很大的联系。而第三产业的配套设施的显著影响为负,这是一个与常理相违背的地方,笔者对此的解释是目前沿江地区的第三产业发展水平严重落后于制造业的发展,还未能体现对产业集聚形成有利的促进效应。产业关联,产业集聚之所以形成,是由于上下游产业的聚集形成的。而产业集聚对区域经济的影响也在于通过产业链影响其他产业。产业关联越是紧密,越是广泛,越是有可能通过聚集效应和乘数效应的作用带动整个区域经济的发展。FDI对江苏沿江制造业产业集聚的发展有着较为显著的推动作用,从实际情况来看,江苏的产业集聚的形成,尤其是苏南的集聚现象很多都是由外资带动的。预期的产业规模没有对产业集聚形成有显著影响,并不代表没有影响,而说明沿江制造业产业集聚并没有以简单的数量的累积,可以解释为重在质量的集约式发展。四、结论和政策含义本文通过对江苏沿江制造业产业集聚的统计描述,并对制造业产业集聚的决定因素建立了一个基于地理经济学分析的理论框架,最终得出一些启示性结论:江苏沿江制造业产业集聚的形成主要由产业关联、市场规模和外商投资等因素推动,地理因素、人口因素、规模经济等特征的作用效果不明显。根据本文的结论,针对目前江苏沿江制造业产业集聚的现状及存在的问题,可以认为,随着我国市场化改革的不断推进,制造业集聚趋势也在不断加强,江苏沿江的制造业产业集聚也会不断加强。这种加强体现在资源的优化配置,区域经济的高速发展,核心竞争力的不断提高。对于沿江制造业的发展有以下启示:一、重视服务支持对产业集聚效应的巨大促进作用,加快相关配套设施的建设,不断完善配套服务;二、适当扩大产业规模,促进龙头企业和大量中小企业共同发展,形成以小促大,以大助小共同发展的局面;三、外部环境方面继续推进国有企业、三资企业的共同发展,寻求投资主体的多元化,积极吸引外资;四、提高区域企业创新能力,鼓励专利发明和企业间的技术溢出。参考文献:[1]段小梅.台湾制造业投资大陆的产业集群分析[J].台湾研究集刊,2007,(2):40-49.[2]迈克尔·波特.竞争战略[M].北京:华夏出版社,2002.[3]徐康宁,陈奇.外商直接投资在产业集群形成中的作用[J].现代经济探讨,2003,(12):3-7.[4]杨树旺,易明.彭响产业集群的因素分析[J].西安财经学院学报,2006,(6):49-53.[5]王业强,魏后凯.产业特征、空间竞争与制造业地理集中[J].管理世界,2007,(4):68-77.[6]魏守华.集群竞争力的动力机制及其实证分析[J].中国工业经济,2002,(10).[7]文玫.中国工业在区域上的重新定位和聚集[J].经济研究,2004,(2):84-94.参考下吧

软件下载可搜索“ spss软件下载地址及安装介绍   百度经验  ”,希望对你有用。毕业论文还是自写好!

1.表格的种类

表格是以行和列组合的形式来表示实验数据和统计结果的一种方式。学位论文使用表格,可以使数据、结果更加醒目,便于读者掌握重点,了解变化,对比异同。此外,表格将众多、繁杂的数据分集中在一起,使之系统化、简约化,可以节省文字和篇幅。

根据数据的来源,表格可分为两类:一类是直接观测、调查记录数据的表格;另一类是从原始数据演算出来的数据,称为导出数据的表格。如百分数、比值、总计、平均值等,便于作比较。

根据表格的作用,表格又可分为两种:一类是表达实验结果的,数据要求精确。另一类是显示某种变化趋势和某些因素相互关系的,一般数据不必十分精确。

2.表格编制的要求

第一,表格与图形一样,应有自明性,对读者无须解释、说明,便可了解表格的含义。

第二,表格的内容要突出重点,不要罗列无关的细节,一般分析运算过程中的中间步骤应删除。

第三,表格的设计要符合逻辑。即表格内容应与论文主题相一致;表格的排列要有逻辑性,或按时间先后、因果关系方案优劣的顺序排列,方便阅读和判断。

第四,论文中出现的表格应具有典型性。同类型的表格应合并。若某个表格内容简单,只有两种数据,可以改用文字叙述,不必列表。一般是出现三种或三种以上数据时才列表。

第五,每个表格是一个单元,表达一个中心内容,不可试图把几方面性质不同的结果列在一个表格内作比较。

第六,表与图不要同时表达一个内容,以免重复。

以上就是小编关于毕业论文中表格的绘制方法的分享,希望对你们有所帮助!想要了解更多论文写作相关内容,请关注本平台,小编将进行及时的整理并发布在本平台上,大家注意查看!

  • 索引序列
  • 统计的毕业论文数据
  • 毕业论文统计数据的软件
  • 大数据统计毕业论文
  • 统计学毕业论文数据
  • 毕业论文数据统计方法
  • 返回顶部