首页 > 学术期刊知识库 > 真空磁浮铁路研究论文

真空磁浮铁路研究论文

发布时间:

真空磁浮铁路研究论文

磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。 由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。在线圈里流动的电流流向会不断反转过来。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。 另一个: 当今,世界上的磁悬浮列车主要有两种"悬浮"形式,一种是推斥式;另一种为吸力式。推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 "若即若离",是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种"若即若离"的状态,磁悬浮间隙约1厘米,因而有"零高度飞行器"的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合城市轨道交通。参考资料:网上

没有人比我更有好奇心的了,我喜爱稀奇古怪的东西,我的发现有许多,这不最近我觉得自己解开了磁悬浮的秘密。

有一次,我在家里玩磁铁,我把它放在指南针旁,突然,指针就朝向了磁铁,磁铁移向哪里指针就指向哪里,我觉得挺好玩,便想出一种有趣的玩法——用磁作画。我先在指南针的指针绑上一根活动铅笔的笔芯,在下面放上一张白纸,再用磁铁把指针转起来,磁铁吸到哪里,笔芯就划到哪里,只见纸上出现了像心电图一样的线条,我的眼睛都亮起来了。

突然一块鹅卵形的磁铁滚到了指南针对面,和我的磁铁面对面,这时,只见指针像装了弹簧似的跳了起来,我以为自己眼花了,便打开盖子看个究竟,结果还是如此,指针在两块磁铁中弹了起来,我见到这一现象百思不得其解,便马上跑去告诉爸爸。“爸爸,爸爸,我发现磁悬浮了!你看!”爸爸看着我的装置,哭笑不得:“你这也叫磁悬浮?我看这分明是两个磁铁互相吸指针嘛!真正的磁悬浮不是异极相吸,是同极相斥,因为巨大的排斥力能将沉重的列车‘托’起来,而不是把它牢牢的吸住,那样的话它动也不会动了。”

我又问:“那列车浮起来以后怎么动呢?”“当然靠火车的动力了,不过,因为它浮在空中,阻力很小,所以速度相当的快。”我还不肯罢休,又去上网去查了“磁悬浮列车”的原理,原来爸爸也是错的,实际上列车和轨道上都有磁铁,排斥力可以使列车浮起来,还能“推”着列车前进,而且前面的铁轨还利用吸引力“拉”着列车跑。

哦,原来如此!我大失所望,收拾着我的“残兵败将”又回去搞研究了。但是我很高兴,因为有时候,我的错误的发现也能给我带来许多的知识。

星期三,我们到浦东国际机场去乘坐陆地上最快的交通工具—磁悬浮列车。

我们先来到了“磁悬浮列车的原理区”。原来磁悬浮列车制造是根据磁铁的同极相斥的原理。

它的轨道其实是一块巨大的磁石,列车底部也有一块磁石,使磁石抗拒地心引力。从而使列车完全脱离轨道而悬浮行驶。

随后,我们来到了磁悬浮站口。这里的人好多哦,除了我们三年级的人以外,还有许多外国人也来乘车,他们大概也是想要感受一下磁悬浮列车的高速吧!走进车厢,映入眼帘的是两旁的软垫靠椅。

中间是供人行走的红地毯,车厢两头上方电子显示器,显示着“欢迎乘坐磁悬列车”的字样。这一切多么国际化呀!过了一会儿,字幕消失了,列车开始慢慢行驶起来。

电子显示器上开始显示1千米、2千米……两旁的风景慢慢地从眼前流过,到了60千米速度已经与汽车差不多了,100千米时,风景只能让你欣赏几秒钟,200千米时速度已经和箭一般了,300千米速度简直能和F1赛车一样快了,431千米时,两旁的风景根本已经看不清了。正当我心潮澎湃时,列车已经进站了,我还意犹未尽。

因为浦东国际机场到龙阳路有公里,而我们只用了7分30秒的时间。太匪夷所思了!然后,我们又参观了浦东国际机场……这次乘坐磁悬浮列车的经历让我印象太深刻了。

高速磁浮列车是20世纪的一项技术发明,其原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。科学家将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁浮列车”。

由于磁铁有同性相斥和异性相吸两种形式,故磁浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁浮列车,它利用车上超导体电磁铁形成的磁场与轨道上的线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10毫米(正负误差2毫米)的间隙,并使导轨钢板的吸引力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。

磁悬浮列车是现代高科技发展的产物。其原理是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。其研究和制造涉及自动控制、电力电子技术、直线推进技术、机械设计制造、故障监测与诊断等众多学科,技术十分复杂,是一个国家科技实力和工业水平的重要标志。它与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,有着“零高度飞行器”的美誉,是一种具有广阔前景的新型交通工具,特别适合城市轨道交通。磁悬浮列车按悬浮方式不同一般分为推斥型和吸力型两种,按运行速度又有高速和中低速之分。

“若即若离”,是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种“若即若离”的状态,磁悬浮间隙约1厘米,因而有“零高度飞行器”的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合城市轨道交通。

21世纪的第一个春天,3月1日,世界第一条磁悬浮列车商运线在中国上海浦东挖下了第一铲土。随着磁悬浮列车的开通,我一直都想去亲自参观一下。

今年国庆节我有幸目睹了上海磁悬浮列车的英姿。那天,爸爸开车带我们去参观浦东机场。车子行驶到龙阳路,远远望去,上海地铁二号线龙阳路站上,矗立着一座巨大的钢梁穹顶建筑。爸爸告诉我这就是高速磁悬浮列车的起点站,我仔细地观察了一下,只见在清晨的阳光下新建的磁悬浮龙阳路车站外观耀眼,极具现代感。啊,原来这儿就是磁悬浮列车出发的地方啊。

这时正好一列列车驶出了车站。刚出发的列车速度还不快,我可以看清该列车以白色为主、蓝红色相间的车厢色彩迷人,流线型的车体外观和子弹头式的车头, 美工喷绘的外表,显示出与众不同的身姿。列车越驶越快,接着用闪电般的速度在轨道上飞驰,犹如一条小白龙横飞在城市上空,一眨眼的工夫,远去的列车已经变成一个小小白点,不一会就消失得无影无踪了。“天啦,那么快!”我不禁惊讶于磁悬浮列车的高速。待晃过神来,我想起曾在书上看到:高速磁悬浮列车是一种新型的轨道交通工具,有速度快、爬坡能力强、能耗低,运行时噪音小、安全舒适、不燃油,污染少等优点。它不使用机械力,而是主要依靠电磁力使车体浮离轨道,就像一架超低空飞机贴近特殊的轨道运行,整个运行过程是在无接触、无磨擦的状态下实现高速行驶,时速可达550公里,因而具有“地面飞行器”、“超低空飞机”的美誉。今天我可算真正明白了为什么叫“磁悬浮列车”为“超低空飞机”了。我不禁感慨:科学进步可真快,给我们带来了如此便利、快捷、环保的交通工具,人类真是太聪明了!我一边想一边不停地回头张望那越离越远的磁悬浮列车车站。

看到我依依不舍的样子,妈妈打断了我的沉思,向我介绍说:“上海磁悬浮列车西起上海地铁2号线龙阳路车站南侧,东到浦东国际机场一期航站楼东侧,线路总长公里,设计时速和运行时速分别为505公里和430公里,总投资89亿元。上磁悬浮列车单列为3节车厢,共有座位200个左右……”

听到这些数值,我心里激动万分地想:城市的面貌有了磁悬浮列车真是更上一层楼了!

吾人对于空间的磁力作用会产生幻想与兴趣,其中磁浮列车亦在人们生活中存着神秘与好奇的面纱。

现在中小学课本中皆会学到磁铁原理,即异性相吸、同性相斥的道理。磁浮铁路技术就是应用这个原理,加上电力电子的操作与回授控制原理,驱使列车浮上轨道及推进力量在空中运转。

高中物理课本中教导我们的法拉第(Faraday)定律,这是电场与磁场间之电与力的相互磁力作用,也是磁浮列车应用浮力与推进力的基本原理。 磁浮列车系利用电磁吸引力与推进力,将列车悬浮在轨道上方约公分至10公分不等高度,其中以德日磁浮列车最着名及成熟,韩中亦有轻轨成型。

德国高速磁浮列车已经在上海浦东机场正式运转,它是使用电磁铁之磁力,可以在静止状态下悬浮,该列车之最高时速为430公里,日本高速磁浮列车则利用超导体,以速度感应及诱导浮力方式,在列车时速加速到60~70公里以上时使列车悬浮,该列车最高速度在2003年12月载客试车时速已达581公里,为世界最高速度。另外磁浮捷运系统于2005年3月在日本东部丘陵线已正式营运,长度为公里,该系统列车速度为100公里/小时,该系统属于都会区型,为车站静止悬浮,具有小回转半径、急升降、短距离车站等特性。

磁浮列车在德日已投入40年研发,因磁浮轨道建设在各国持正反面意见看法专家皆有,尤其在上海之磁浮列车试运转期间发生了不少工程及技术问题,就工程技术观点而言任何问题皆可以解决,这是工程上的处理方法。惟高速磁浮系统系为城际交通工具,并不具有都会区捷运之运输特性,且转乘系统的考量相当重要,这是上海高速磁浮营运不佳之主要原因。

当然,磁浮铁路也有很多的优点,如减少振动、减少噪音、速度快及环保等。只要在该系统可靠度与稳定度各项运转中获得改善及肯定,相信将会带来更快速且舒适的大众运输系统,这也是世界人类的福气。

周末,老爸老妈答应要带我去参观一下浦东国际机场,正好可以顺便体验一下磁悬浮。我背上我的小书包,装上我最还吃的零食和饮料,老大清早就嚷嚷着“出发啦”!

由于我现在约等于米,所以打了个擦边球,节约了50元车费。带着紧张激动的心情,我们的列车发动了,这可比我在家搭乐高的模型车过瘾多啦!列车一会儿向左倾斜,一会儿向右,短短的几分钟就将速度提升到300KM/H,对面行驶的列车呼啸着和我们的列车擦肩而过,马路上的车子瞬间变成了甲壳虫,缓慢地爬行着。只是,还没过够瘾呢,转眼已经到了浦东国际机场了!

老爸,要不在我超米之前再多乘几次?

磁悬浮列车综述 磁悬浮技术的研究源于德国,早在1922年Hermann Kemper先生就提出了电磁悬浮原理,并于1934年申请了磁浮列车的专利。

进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 根据当时轮轨极限速度的理论,科研工作者们认为,轮轨方式运输所能达到的极限速度为每小时350公里左右,要想超越这一速度运行,必须采取不依赖于轮轨的新式运输系统。

这种认识引起许多国家的科研部门的兴趣,但后来都中途放弃,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。 德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。

日本开发的磁悬浮列车MAGLEV (Magically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。 德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

什么是磁悬浮列车 磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。 虽然磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架及悬挂系统等许多传统机车车辆的特点,但由于列车在牵引运行时与轨道之间无机械接触,因此从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,所以它也许会成为人们梦寐以求的理想陆上交通工具。

磁悬浮列车的种类 磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。

常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。 而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。

它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。

德国的常导磁悬浮列车 常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。

车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。

常导磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就象是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就象同步直线电动机的长定子绕组。

从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就象电机的“转子”一样被推动做直线运动。

从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。 日本的超导磁悬浮列车 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。

超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。 超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。

当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。 其原理就象冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。

与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。

超导磁悬浮列车也是由沿线分布的变电所向地面导轨两侧的驱动绕组提供三相交流电,并与列车下面的动力集成绕组产生电感应而驱动,实现非接触性牵引和制动。但地面导轨两侧的悬浮导向绕组与外。

磁铁研究论文

科技革命或许还在远方,但寻找突破的脚步每天都可以踏响如同孩子向往外面更大的世界,人类也从未磨灭“离开地球摇篮,扩大生存空间,向着宇宙更深更远处出发”的梦想。而航天事业,正是这一梦想与智慧的完美结合。

来自加利福尼亚大学和复旦大学的一组研究人员已经开发出一种利用单分子磁铁作为扫描磁力仪的方法。在他们发表在《科学》论文中,该小组概述了包括展示他们传感器扫描嵌入在另一种材料中的分子自旋和磁性能。随着科学家们继续在越来越小的存储设备上压缩越来越多数据,正在 探索 利用单个分子甚至原子磁性状态的可能性——很可能是最小的记忆元素类型。在这项新研究中已经证明,使用附着在传感器上的单个分子来读取另一种材料中单个分子的特性是可能的。为了制造传感器和存储介质,研究人员首先将镍(环戊二烯)2的磁性分子吸附到镀银的平板上。然后从银表面提取一个镍新烯分子,并将其应用于扫描隧道显微镜传感器的顶端。接下来将一个被吸附物覆盖的表面加热到600毫克利艾文,然后将带有单个分子的传感器靠近表面移动,并读取两个分子相互作用时探针接收到的信号。研究人员能够读懂自旋和磁性相互作用,因为发生了与两个分子。使用探测器,还能够在几个空间方向上创建相互作用的形状图像。当探针直接放置在被研究分子的中心时,收到的信号最强。研究人员演示了一种显微镜技术,该技术使用一个磁性分子,Ni(环戊二烯基)2,吸附在扫描探针顶端,以连续可调的方式在所有三个空间方向上检测与吸附在Ag(110)表面上的另一个分子之间的交换相互作用。进一步利用探针成像交换相互作用强度的轮廓,揭示了 埃级 区域,在那里两个磁性分子的量子态强烈混合。研究结果为基于磁性单分子传感器的新型纳米成像能力铺平了道路。

英国剑桥大学科学家的研究有了新进展,他们可以在不使用稀土金属的情况下,制造用于风力涡轮机和电动汽车的磁性材料——这可能对中国稀土行业构成潜在冲击。据该报道,剑桥大学的一个团队和来自奥地利的合作者发现了一种制造新型磁性材料铁-镍(tetrataenite)的新方法,根据该大学的一篇研究论文,这可能成为稀土永磁的替代品。根据中国科学院此前公布的资料显示,Tetrataenite由50%的铁和50%的镍组成,铁和镍原子交替排列,为规则的周期性晶体结构。它产生一种硬磁,即磁化方向不会轻易改变,其磁性能接近稀土磁体。在此之前,tetrataenite只能通过在实验室中,依靠一些非商业化方法制造。但剑桥大学的研究人员最新发现,通过添加常见元素磷,有可能批量生产tetrataenite。目前,研究人员希望与主要磁铁制造商合作,以确定tetrataenite是否适用于高性能磁铁。如果剑桥大学发现的这种生产工艺在商业上被证明可行,它可能会替代稀土永磁在电动汽车、风力涡轮机等领域的应用,中国在全球稀土市场的主导地位可能会受冲击。目前中国占全球稀土供应的80%以上。

稀土对花卉植物开花期的影响上海宝山区海滨二中 张蕾菁 吴军等随着人民生活水平的提高,人们对鲜花的需求也增加了。鲜花色彩艳丽,清香宜人,但都有花期不长久的缺陷。人们为延长鲜花的保鲜期,曾使用过不少试剂,如阿斯匹林等。我们则尝试用稀土来延长植物的开花期。稀土是一类稀有元素。农用稀土主要是镧和铈元素的化合物。它对植物生长有一定促进作用。为了解它对花期和花的大小有否影响,我们做了以下实验。一、实验材料农乐粉状物(一种稀土肥料),金盏菊,烧杯。二、实验过程和记录将农乐配制成5种不同浓度的溶液,将金盏菊朵插入,另外设一对照组。列表如下:花直径为3—4cm 农乐溶液 情况记录 对照 50mg/100ml 花盛开,1周后凋谢 花6天后谢 100mg/100ml 花刚开,2周后谢,花盛开时比对照组略大 花6天后谢 150mg/100ml 花盛开,1周多后凋谢,叶色好 花6天后谢,枝上叶比前较差 200mg/100ml 花盛开,1周多后凋谢,叶色好 花6天后谢,枝上叶比前较差 300mg/l00ml 花盛开,1周多后凋谢,叶色好 花6天后谢,枝上叶比前较差 三、分析和讨论从上述实验记录可以认为:稀土对鲜花的开放时间有一定的延长作用。从50mg/100ml稀土溶液到3OOmg/100ml稀土溶液都有一定的延长开花期的作用,而且使花朵的直径也略有扩大。金盏菊施加稀土后一般能延长开花2--4天。我们认为,这与稀土能促进植物生命活动,促进叶绿素形成,增加有机物合成(加稀土溶液的植物叶色较深)有关。稀土也许有促进植物生殖器官吸收有机养料的作用。我们还发现,稀土浓度越高(在300mg/l00ml以下),延长花朵开放的时间也越长。至于浓度到达多高才会有负作用,我们还得在以后作进一步研究。稀土是一种含微量元素的化合物,对植物生长有一定的促进作用。张、吴二位同学用农用稀土——农乐做延长花卉植物花期的试验,是很有实用价值的。从文章来看,这两位同学确实做了不少工作,也取得了可喜的成果,可嘉可勉。当然,和大多数初次独立进行科学实验的同学一样,他们在实验方法和实验报告的表述方面还显得不够成熟。不过这没关系,以后多开展一些这样的活动,多看一些课外书籍,他们一定会做得更好。与许多同龄人相比,他们已经领先一步了。首先,从报告的内容来看,作者只进行了一种花卉——金盏菊的花期实验,所以,报告的题目似改为“稀土对金盏菊花期的影响”更贴切一些。要知道,植物是一个外延很大的概念,在科学研究报告中是不能随意乱用的。把稀土对某一种植物有作用看作是对所有植物都有相同的作用,那是不行的。这叫以偏概全,往往会酿成大错。第二,极稀溶液的浓度应用ppm(百万分之一)表示,如文中的“50mg/lOOml"可表示为500ppm。第三,在报告中应该明确记录用金盏菊做试验的数量和次数(至少10株金盏菊,反复多次)。第四,花的开放有始花期、盛花期和凋谢期,它们的具体日期要记录明确、完整。注意,实验记录中的数据必须是明确的,如“6天”“23小时”等,不能出现“1周多”“10多天”之类比较含糊的数据,要不然“稀土越浓,花期越长”有何根据?(选自《中学科技》1994年第4期)

磁浮列车课题研究论文

磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。 由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。在线圈里流动的电流流向会不断反转过来。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。 当今,世界上的磁悬浮列车主要有两种"悬浮"形式,一种是推斥式;另一种为吸力式。推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 "若即若离",是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种"若即若离"的状态,磁悬浮间隙约1厘米,因而有"零高度飞行器"的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合城市轨道交通。

一、磁悬浮技术的发展与现状 磁悬浮技术的发展始于上世纪,恩思霍斯(Eamshanws)发现了抗磁物体可以在磁场中自由悬浮,此现象于1939年由布鲁贝克(Braunbeck)进行了严格的理论证明,但是它的实际应用研究直到最近二十年才广泛开展。近年来,磁悬浮技术得到了迅速发展,并得到越来越广泛的应用。由于现代科学技术的发展,如传感器、控制技术(尤其是数字控制技术)、低温和高温超导技术,使得磁悬浮技术迅速崛起,各国都投入大量的人力、物力、进行研究。 磁悬浮由于无接触的特点,避免了物体之间的摩擦和磨损,能延长设备的使用寿命,改善设备的运行条件,因而在交通、冶金、机械、电器、材料等各个方面有着广阔的应用前景。 二、磁悬浮的应用 磁悬浮技术的应用范围从高速磁轴承到高速悬浮列车,以及大气隙的风洞磁悬浮模型等各个领域。磁悬浮轴承的研究是国外一个非常活跃的研究方向,典型对象是发电机的磁悬浮轴承(又称磁力轴承)。主动式磁悬浮轴承(AMB)以其无机械磨损、无噪声、寿命长、无润滑油污染等特点而广泛应用于航空、航天、核反应堆、真空泵、超洁净环境、飞轮储能等领域。 高速磁悬浮电机(Bearingless Motors)是近年提出的一个新研究方向,集磁悬浮轴承和电动机于一体,具有自悬浮和驱动能力,不需要任何独立的轴承支撑,具有体积小、临界转速高等特点,更适合于超高速运行的场合,也适合小型乃至超小型结构。国外自上世纪90年代中期开始进行研究,相继出现了永磁同步型磁悬浮电机、开关磁阻型磁悬浮电机、感应型磁悬浮电机等各种类型。其中感应型磁悬浮电机具有结构简单、成本低、可靠性高、气隙均匀、易于弱磁升速,是最有前途的方案之一。传统的电机由定子和转子组成,定子与转子之间通过机械轴承连接,在转子运动过程中存在机械摩擦,增加了转子的摩擦阻力,佼运动部件磨损,产生机械振动和噪声,使运动部件发热,润滑剂性能变差,甚至会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。磁悬浮电机利用定子和转子励磁磁场间“同性相斥,异性相吸”的原理使转子悬浮起来,同时产生推进力驱使转子在悬浮状态下运动。磁悬浮电机的研究越来越受到重视,并有一些成功的报道。如磁悬浮电机应用在生命科学领域,国外已研制成功的离心式和振动式磁悬浮人工心脏血泵,采用无机械接触式磁悬浮结构不仅效率高,而且可以防止血细胞破损引起溶血、凝血和血栓等问题。磁悬浮血泵的研究不仅可以解除心血管病患者的疾苦,提高患者生活质量,而且对人类延续生命具有深远意义。 三、磁悬浮球控制系统的工作原理 图1 磁悬浮球控制系统功能图 电磁铁绕组中通以一定的电流,产生电磁力,只要控制电磁铁绕组中的电流,使产生的电磁力与钢球的重量相平衡,钢球就可以悬浮在空中,处于不稳定的平衡状态。这是由于电磁铁与钢球之间的电磁力大小与相互之间的距离成反比,只要平衡状态稍微受扰动,就会导致钢球掉下来或被电磁铁吸住,为此必须实现闭环控制。采用电光源和传感器组成的测量装置测量钢球与电磁之间的距离y的变化,当钢球受到扰动下降,与电磁铁之间的距离增大时,控制电磁铁控制绕组中的控制电流相应增大,则钢球又被吸回到品衡状态,反之亦然。 以上讨论的是钢球在垂直方向的控制,为了使钢球能稳定地在空中悬浮,钢球在水平方向上也应有一定的稳定范围。为了解决这个问题,将电磁铁铁心指向钢球的一端呈锥体形,如图1示。当钢球在水平方向上偏离中心平衡位置时,电磁力重新指向钢球表面的发向方向。此力可分解为垂直方向和水平方向两个分量,水平方向分量使钢球恢复到原中心平衡位置。 四、对磁悬浮球控制器进行理论设计 首先建立数学模型得到钢球的数学模型为: 选取模型参数 通过对磁悬浮球控制系统的性能分析最终确立系统数学模型。 所以,磁悬浮球控制器校正后的传递函数为: 五、传递函数G(s)的性能分析 由图2示可以知道,该系统由较宽的带宽,截至频率比较大,所以控制系统有较快的快速性;相角裕度越小,系统的阻尼特性越好,动态过程较为平稳;高频斜率大,控制系统有较强的抗干扰能力,钢球能稳定地悬浮。希望采纳

磁悬浮毕业论文

因此,利用我国稀土永磁材料的优势,开发新型大功率、高效率、宽调速范围永磁同步型交流电主轴单元,将可有效解决现有电主轴存在的问题,形成具有中国特色的新一代电主轴产品。由于永磁电主轴的机械结构和控制系统都较感应异步型电主轴简单,因此易于进行专业化大规模生产。当然,这还要攻克主轴支承(陶瓷轴承、流体动静压轴承、磁悬浮轴承)技术、高精度高速动平衡技术、高速驱动、检测与控制技术、高可靠性安全保证技术等关键技术。 (2)廉价的高性能伺服系统 目前,一套进给交流伺服系统(驱动器+电机)的价格一般都在万元以上,主轴伺服系统的价格高达数万元,已成为降低国产数控机床成本的一大障碍。因此,应配合新型集成化国产数控系统的发展,大力开发廉价的高性能内装式伺服系统。由于内装式伺服的硬件部分只有电机和功率接口,充分利用我国的永磁资源优势,通过专业化生产可以把电机的造价降下来,而采用智能化的IPM模块作为功率接口也很便宜,因此将内装式进给伺服的价格控制在数千元以内,将内装式主轴伺服的价格控制在2万元以内,将是完全可能的。 (3)直线交流伺服系统 直线交流伺服系统是下一世纪数控机床不可缺少的功能部件,目前我国还没有成熟产品,因此应加强研究、开发和推广应用。考虑到常规机床的防磁问题较难解决,而并联机床的防磁相对容易,因此可为常规结构机床开发感应异步型直线电机,为并联结构机床开发永磁同步型直线电机,从而扬长避短,构成符合实际应用要求的新型高速高精度进给系统。在此基础上,可进一步开发将驱动与支承合二为一的磁悬浮工作台。 (4)零传动数控转台与摆头 数控转台与摆头是多坐标数控机床的关键部件,传统的采用高精度蜗杆蜗轮等传动的转台与摆头不仅制造难度大、成本高,而且难以达到高速加工所需的速度和精度,因而必须另辟蹊径开发新型零传动(无机械传动链)数控转台和摆头,以促进我国高速高精度多坐标数控机床的发展。 (5)高速高精度检测装置 高速高精度是下世纪数控机床发展的主题,这不但需要高性能的控制和驱动,同时还需要高品质的检测环节,因此应在现有技术基础上,进一步开发 μm以上精度的高速(60 m/min以上)线位移传感器和100万脉冲/r的角位移传感器,此类技术国外对我国是封锁的。 加速数控机床的全国产化,打好市场翻身仗 数控产业化的最终成功将体现在数控机床的全国产化和市场占有率上。在上述总体战略指导下,采取抓两头(低价位数控机床和高速高效数控机床)、带中间(普通数控机床)、促重型(重型关键装备)的方针,将是在国内市场上快速收复失地,在国际市场上稳步进军,最终打赢国产数控机床市场翻身仗的一种有效战术和策略。关于普通数控机床的发展已有许多文章作了专门论述,因此下面仅就低价位数控机床、高速高效数控机床和重型数控机床的发展问题作一讨论。 (1)大力发展低价位数控机床 低价位机床是功能满足用户要求(无功能浪费)、技术指标适中、可靠性好、价格便宜的普及型数控机床。这类机床已成为国际市场上数控机床的发展趋势之一,也是国内众多用户渴求的产品,其市场前景相当广阔。然而,如果采用国外数控系统(包括伺服)按照传统思路来发展低价位机床,是很难将价格降至广大用户所能接受的水平的。因此,采用本文提出的新型集成化国产数控系统来发展高性能的低价位数控机床,将是一条最有希望成功的道路。只要有一定批量,由此构成的全国产普及型数控车床的售价完全可以控制在10万元以内,三坐标数控铣床可控制在15万元左右,加工中心可控制在20万元左右。此价位的国产数控机床将是具有较强竞争力的。 (2)加速开发高速高效数控机床 高速高效是数控机床发展的另一大潮流。发展高速高效数控机床的技术途径可有以下几条:①通过提高切削速度和进给速度,从而达到成倍提高生产效率,有效提高零件的表面加工质量和加工精度并解决常规加工难以解决的某些特殊材料(如铝钛合金、模具钢、淬硬钢)和特殊形状零件(如复杂薄壁零件)的高效加工问题。②通过工艺复合,减少工件的安装次数,有效缩短搬运和装夹时间。例如,将五面五轴加工中心与立车复合构成万能加工中心,可实现一次装卡完成零件的大部分(或全部)加工。③采用高速高精度圆周铣加工孔和以螺旋轨迹插补实现不钻底孔的直接攻丝等新加工方法,大幅度减少换刀次数,提高加工效率。④为数控机床开发智能寻位加工功能,消除对精密夹具和人工找正的依赖,有效缩短单件小批加工的准备时间。 在我国现实条件下如果沿用传统思路是难以实现上述途径的,因此,必须立足国情,结合实际勇于创新,大胆探索新的道路。 考虑到常规数控机床在总体结构上基本上采用工件和刀具沿各自导轨共同运动的方案,一方面由于机床传动环节刚性不足和导轨中的摩擦阻力较大,使运动部件难以获得高的进给速度;另一方面由于工件、夹具和工作台的总质量比较大,使之难以获得高的加速度。此外,传统机床结构是一种串联开链结构,组成环节多、结构复杂,并且由于存在悬臂部件和环节间的联接间隙,不容易获得高的总体刚度,因此难以适应高速高效加工的特殊要求。为此,开发国产高速高效数控机床时,可采用工件固定,以直线电机组成并联短链直接驱动主轴和刀具运动、将高速高精度传动与高刚度支撑合二为一的适合于高速高效加工中心的新型结构。采用该结构的高速高效数控机床不但速度高、刚度高,如果在传动与控制上处理得当,可以达到比常规机床更高的加工精度和加工质量,而且具有机械结构简单,零部件通用化、标准化程度高,制造成本低,易于经济化批量生产等显著优点。因此,沿此思路发展高速高效数控机床将是一条符合国情、易于取得成功的道路。 (3)突破重型数控机床的设计制造技术 重型数控机床(特别是多坐标重型数控机床)是国民经济和国防生产中的重大关键设备,属于战略物资,真正先进的重型数控机床国外是不可能卖给我们的,因此,在我国下世纪数控产品的发展中必须依靠自己的力量进行解决。发展重型数控机床必须有过硬的基础,我们在数控机床国产化的进程中应不断总结经验,加强基础技术和关键技术研究,充分发挥我国产学研相结合的优势,各部门通力合作、共同努力,争取在下世纪初取得突破性进展。 目前,在发展重型数控机床中除需加强基础理论研究外,还应加强其关键技术研究。例如,重型机床的控制就是需要加以特殊解决的关键问题。因重型机床加工的工件特别昂贵不允许报废,为了确保机床工作可靠,在数控系统中可采用双(或多)CPU冗余工作方案,以确保运算和控制的绝对正确,并在出现故障时自动诊断、自动修复或自动替补,确保加工不出问题。此外,在电源上可采取双蓄电池供电的全隔离供电方案,即一组电池在给系统供电时,可对另一组电池进行充电,电网与控制系统是完全隔离的。这就彻底消除了重型车间中电网电压波动厉害、干扰严重对数控系统造成的影响,从而有效保证系统的可靠性。又如,重型数控机床的驱动也是一大关键问题。当行程长度超过5 m,普通滚珠丝杆就难以胜任大负荷的传动,因此目前一般采用预加负载的双齿轮-齿条机构、静压蜗杆-蜗母条机构、四足(或双足)爬行进给机构等来实现长行程传动。但这些方案存在结构复杂、速度和加速度低、动态性能差、难以达到高精度、维护保养复杂等问题。为此可发展阵列式高效直线电机直接驱动技术和空间并联机构驱动技术,以新的途径来解决重型数控机床的高速、高精度驱动问题。除此之外,机床结构的优化设计、长行程精密检测、重力变形补偿、切削力变形补偿、热变形补偿等也是重型数控机床中必须解决的关键问题,必须予以充分重视。 3 结语 制定符合中国国情的总体发展战略,确立与国际接轨的发展道路,对21世纪我国数控技术与产业的发展至关重要。本文在对数控技术和产业发展趋势的分析,对我国数控领域存在的问题进行研究的基础上,对21世纪我国数控技术和产业的发展途径进行了探讨,提出了以科技创新为先导,以商品化为主干,以管理和营销为重点,以技术支持和服务为后盾,坚持可持续发展道路的总体发展战略。在此基础上,研究了发展新型数控系统、数控功能部件、数控机床整机等的具体技术途径。 我们衷心希望,我国科技界、产业界和教育界通力合作,把握好知识经济给我们带来的难得机遇,迎接竞争全球化带来的严峻挑战,为在21世纪使我国数控技术和产业走向世界的前列,使我国经济继续保持强劲的发展势头而共同努力奋斗!

高压软开关充电电源硬件设计自动售货机控制系统的设计PLC控制电磁阀耐久试验系统设计永磁同步电动机矢量控制系统的仿真研究PLC在热交换控制系统设计中的应用颗粒包装机的PLC控制设计输油泵站机泵控制系统设计基于单片机的万年历硬件设计 550KV GIS中隔离开关操作产生的过电压计算时滞网络化控制系统鲁棒控制器设计多路压力变送器采集系统设计直流电机双闭环系统硬件设计 漏磁无损检测磁路优化设计光伏逆变电源设计胶布烘干温度控制系统的设计基于MATLAB的数字滤波器设计与仿真电镀生产线中PLC的应用万年历的程序设计变压器设计步进电机运动控制系统的硬件设计比例电磁阀驱动性能比较220kv变电站设计 600A测量级电流互感器设计自动售货机控制中PLC的应用足球机器人比赛决策子系统与运动轨迹的研究厂区35kV变电所设计基于给定指标的电机设计电梯控制中PLC的应用常用变压器的结构及性能设计六自由度机械臂控制系统软件开发输油泵站热媒炉PLC控制系统设计步进电机驱动控制系统软件设计足球机器人的视觉系统与色标分析的研究自来水厂PLC工控系统控制站设计永磁直流电动机磁场分析永磁同步电动机磁场分析应用EWB的电子表电路设计与仿真电路与电子技术基础》之模拟电子篇CAI课件的设计逻辑无环流直流可逆调速系统的仿真研究机器人足球比赛图像采集与目标识别的研究自来水厂plc工控系统操作站设计PLC结合变频器在风机节能上的应用交流电动机调速系统接口电路的设计直流电动机可逆调速系统设计西门子S7-300PLC在二氧化碳变压吸附中的应用DMC控制器设计电力电子电路的仿真图像处理技术在足球机器人系统中的应用管道缺陷长度对漏磁场分布影响的研究 生化过程优化控制方案设计交流电动机磁场定向控制系统设计开关电磁阀流量控制系统的硬件设计比例电磁阀的驱动电源设计交流电动机SVPWM控制系统设计PLC在恒压供水控制中的应用西门子S7-200系列PLC在搅拌器控制中的应用基于侧抑制增强图像处理方法的研究西门子s7-300系列plc在工业加热炉控制中的应用西门子s7-200系列plc在电梯控制中的应用PLC在恒压供水控制中的应用磁悬浮系统的常规控制方法研究建筑公司施工进度管理系统设计网络销售数据库系统设计生产过程设备信息管理系统的设计与实现

机械专业毕业论文开题报告范文(精选6篇)

在生活中,报告与我们愈发关系密切,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面是我整理的机械专业毕业论文开题报告范文,欢迎阅读,希望大家能够喜欢。

论文题目:

MC无机械手换刀刀库毕业设计开题报告

本课题的研究内容

本论文是开发设计出一种体积小、结构紧凑、价格较低、生产周期短的小型立式加工中心无机械手换刀刀库。主要完成以下工作:

1、调研一个加工中心,了解其无机械手换刀刀装置和结构。

2、参照调研的加工中心,进行刀库布局总体设计。画出机床总体布置图和刀库总装配图,要有方案分析,不能照抄现有机床。

3、设计该刀库的一个重要部分,如刀库的转位机构(包括定位装置,刀具的夹紧装置等),画出该部件的装配图和主要零件(如壳体、蜗轮、蜗杆等3张以上工作图。

4、撰写设计说明书。

本课题研究的实施方案、进度安排

本课题采取的研究方法为:

(1)理论分析,参照调研的加工中心,进行刀库布局总体设计。

进度安排:

收集相关的毕业课题资料。

完成开题报告。

完成毕业设计方案的制定、设计及计算。

完成刀库的设计

完成毕业设计说明书。

毕业设计答辩。

主要参考文献

[1] 廉元国,张永洪. 加工中心设计与应用 [M]. 北京:机械工业出版社,

[2] 惠延波,沙杰.加工中心的数控编程与操作技术 [M]. 北京:机械工业出版社

[3] 励德瑛.加工中心的发展趋势 [J]. 机车车辆工艺,1994,6

[4] 徐正平.CIMT2001 加工中心评述[J]. 制造技术与机床,2001,6

[5] 刘利. FPC-20VT 型立式加工中心[J]. 机械制造,1994,7

[6] 李洪. 实用机床设计手册 [M]. 沈阳:辽宁科学技术出版社,

[7] 刘跃南.机械系统设计[M].北京:机械工业出版社,

[8] Panasonic 交流伺服电机驱动器 MINASA 系列使用说明书

[9] 成大先.机械设计手册第四版第 2 卷[M]. 北京:化学工业出版社,

[10] 成大先.机械设计手册第四版第 3 卷[M]. 北京:化学工业出版社,

1 课题提出的背景与研究意义

课题研究背景

在数控机床移动式加工中移动部件和静止导轨之间存在着摩擦,这种摩擦的存在增加了驱动部件的功率损耗,降低了运动精度和使用寿命,增加了运动噪声和发热,甚至可能使精密部件变形,限制了机床控制精度的提高。由于摩擦与运动速度间存在非线性关系,特别是在低速微进给情况下,这种非线性关系难以把握,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。为此,把消除或减少摩擦的不良影响,作为提高机床技术水平的努力方向之一。该课题提出的将磁悬浮技术应用到数控机床加工中,即可以做到消除移动部件与静止导轨之间存在的摩擦及其不良影响。对提高我国机床工业水平及赶上或超过国际先进水平具有重大意义,且社会应用前景广阔。

课题研究的意义

机床正向高速度、高精度及高度自动化方向发展。但在高速切削和高速磨削加工场合,受摩擦磨损的影响,传统的滚动轴承的寿命一般比较短,而磁悬浮轴承可以克服这方面的不足,磁悬浮轴承具有的高速、高精度、长寿命等突出优点,将逐渐带领机电行业走向一个没有摩擦、没有损耗、没有限速的崭新境界。超高速切削是一种用比普通切削速度高得多的速度对零件进行加工的先进制造技术,它以高加工速度、高加工精度为主要特征,有非常高的生产效率,磁悬浮轴承由于具有转速高、无磨损、无润滑、可靠性好和动态特性可调等突出优点,而被应用于超高速主轴系统中。要实现高速切削,必须要解决许多关键技术,其中最主要的就是高速切削主轴系统,而选择合理的轴承型式对实现其高转速至关重要。其中,磁悬浮轴承是高速切削主轴最理想的支承型式之一。磁悬浮轴承可以满足超高速切削技术对超高速主轴提出的性能要求。但它与普通滑动或滚动轴承的本质区别在于,系统开环不稳定,需要实施主动控制,而这恰恰使得磁悬浮轴承具有动特性可控的优点磁悬浮轴承是一个复杂的机电磁一体化产品,对其精确的分析研究是一项相当困难的工作,如果用实验验证则会碰到诸如经费大、周期长等困难,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,利用计算机软件对磁悬浮控制系统进行仿真是一种获得磁悬浮系统有关特征简便而有效的方法。这就是本课题的研究目的和意义。

2 本课题国内外的研究现状

磁悬浮轴承的应用与发展可以说是传统支承技术的革命。由于具有无机械接触和可实现主动控制两个显著的优点,主动磁悬浮轴承技术从一开始就引起了人们的重视。磁悬浮轴承的研究最早可追溯到1937年,Holmes和Beams利用交流谐振电路实现了对钢球的悬浮。自1988年起,国际上每两年举行一届磁悬浮轴承国际会议,交流和研讨该领域的最新研究成果;1990年瑞士联邦理工学院提出了柔性转子的研究问题,同年教授提出了数字控制问题;1998年瑞士联邦理工学院的和等人提出了无传感器磁悬浮轴承。近十年,瑞士、美国、日本等国家研制的电磁悬浮轴承性能指标已经很高,并且已成功应用于透平机械、离心机、真空泵、机床主轴等旋转机械中,电磁悬浮轴承技术在航空航天、计算机制造、医疗卫生及电子束平版印刷等领域中也得到了广泛的应用。纵观2006年在洛桑和托里诺召开的第10界国际磁轴承研讨会,磁轴承主要应用研究为磁轴承在高速发动机、核高温反应堆(HTR-10GT)、人造心脏和回转仪等方面。国内在磁悬浮轴承技术方面的研究起步较晚,对磁悬浮轴承的研究起步于80年代初。

1983年上海微电机研究所采用径向被动、轴向主动的混合型磁悬浮研制了我国第一台全悬浮磁力轴承样机;1988年哈尔滨工业大学的陈易新等提出了磁力轴承结构优化设计的理论和方法,建立了主动磁力轴承机床主轴控制系统数学模型,这是首次对主动磁力轴承全悬浮机床主轴从结构到控制进行的系统研究;1998年,上海大学开发了磁力轴承控制器(600W)用于150m制氧透平膨胀机的控制;2000年清华大学与无锡开源机床集团有限公司合作,实现了内圆磨床磁力轴承电主轴的'工厂应用实验。目前,国内清华大学、西安交通大学、国防科技大学、哈尔滨工业大学、南京航空航天大学等等都在开展磁悬浮轴承方面的研究。2002年清华大学朱润生等对主动磁悬浮轴承主轴进行磨削试验,当转速60000r/min、法向磨削力100N左右时,精度达到小于8m的水平,精磨磨削效率基本达到工业应用水平。2003年6月,南京航空航天大学磁悬浮应用技术研究所研制的磁悬浮干燥机的性能指标已通过江苏省技术鉴定,向工业应用迈出了可喜的一步。2005年“济南磁悬浮工程技术研究中心”研制的磁悬浮轴承主轴设备,在济南第四机床厂做磨削试验,成功磨制出一个内圆孔工件,这是我国第一个用磁悬浮轴承主轴加工的工件。此项技术填补了国内空白。近几年来,由于微电子技术、信号处理技术和现代控制理论的发展,磁悬浮轴承的研究也取得了巨大进展。

从总体上看,磁悬浮轴承技术正向以下几个方向发展:

(1)理论分析更注重系统的转子动力学分析,更多地运用非线性理论对主动

磁悬浮转子系统的平衡点和稳定性进行分析;更注重建立系统的非线性耦合模型以求得更好的性能。

(2)注重系统的整体优化设计,不断提高其可靠性和经济性,以期获得磁悬浮轴承更加广泛的应用前景。

(3)控制器的实现越来越多的采用数字控制。为达到更高的性能要求,控制器的数字化、智能化、集成化成为必然的发展趋势。由于数字控制器的灵活性,各种现代控制理论的控制算法均在磁悬浮轴承上得到尝试。

(4)发展了多种新型磁悬浮轴承如:无传感器磁悬浮轴承、无轴承电机超导磁悬浮轴承、高温磁悬浮轴承。此外,磁悬浮机床主轴在各方面也有较大的发展空间如:高洁净钢材Z钢和EP钢的引入;陶瓷滚动体,重量比钢球轻40%;润滑技术的开发,对于高速切削液的主轴,油液和油雾润滑能有效防止切削液进入主轴;保持架的开发,聚合物保持架具有重量,自润滑及低摩擦系数的特点从应用的角度看,磁悬浮轴承的潜力尚未得到的发掘,而它本身也未达到替代其它轴承的水平,设计理论,控制方法等都有待研究和解决。

3 课题的研究目标与研究内容

研究目标

控制器是主动控制磁悬浮轴承研究的核心,因此正确选择控制方案和控制器参数,是磁悬浮轴承能够正常工作和发挥其优良性能的前提。该课题主要研究单自由度磁悬浮系统,其结构简单,性能评判相对容易、研究周期短,并且可以扩展到多自由度磁悬浮系统的研究。针对磁悬浮主轴系统的非线性以及在控制方面的特点,该课题探索出提高系统总体性能和动态稳定性的有效控制策略。

主要研究内容

(1)阐述课题的研究背景与意义,对国内外相关领域的研究状况进行综述。

(2)对磁悬浮机床主轴的动力学模型进行分析,并将其数值化、离散、解耦和降阶等,为后续研究

1、 目的及意义(含国内外的研究现状分析)

本人毕业设计的课题是”钢坯喷号机行走部件及总体设计”,并和我的一个同学(他课题是“钢坯喷号机喷号部件设计”)一起努力共同完成钢坯喷号机的设计。我们的目的是设计一种价格相对便宜,工作性能可靠的钢坯喷号机来取代用人工方法在钢坯上写编号。

对钢坯喷号是钢铁制造业必然需要存在的一个环节,这是为了实现质量管理和质量追踪。我们把生产钢坯对应的连铸机号、炉座号、炉号、流序号以及表示钢坯生产时间的时间编号共同组成每块钢坯的唯一编号,适当的写在钢坯的表面。这样就在钢铁厂的后续检验或在客户使用过程中,如果发现钢坯的质量有问题,就可以根据这个编号来追踪到生产这个钢坯的连铸机、炉座、炉号、流序及时间等重要信息,及早的发现并解决生产设备中存在的问题。

目前,在国外像日本、美国等一些发达国家已经实现了对钢坯的自动编号,虽然其辅助设备较多,价格较贵,但大大提高生产的自动化进程和效率。并且钢坯喷号机具有设备利用率高、位置精度高、可控制性能好等优点。而在国内,除了少数的几家大型钢铁企业(宝钢、鞍钢等)引进了自动钢坯喷号机,大部分的钢铁企业仍然处在人工编号的阶段。

实现钢坯喷号的机械化和自动化是提高生产效率和降低生产成本的重要途径之一,钢坯喷号机无论在国内还是国外都会有很大的市场。一方面因为人工的工艺流程不但浪费了大量的能量,而且打断了生产的自动化进程,从而致使生产效率降低,生产成本增加。另一方面由于生产钢坯的车间温度很高,有强烈的热辐射,同时还有大量的水蒸气和粉尘,因此对其中进行人工编号的工人的劳动强度非常大,并且对身体是一种摧残,容易得职业病。所以无论从那个方面看都急需一种价格相对便宜,工作性能可靠的钢坯喷号机来代替人工编号。

作为一个大学生,毕业设计对我来说是展示我大学四年学习成果的一个机会,也是对我的综合能力的一个考验。我本人对“钢坯喷号机行走部件及总体设计”的课题也非常感兴趣,我一定会努力完成这次毕业设计的。总的来说,钢坯喷号机对于钢铁厂和这次毕业设计对于我都是具有现实意义的。

2、基本内容和技术方案

本课题是基于机械设计与电子控制结合的技术来设计钢坯喷号机。经连连轧的钢坯规格为160mmx200mm的方形钢坯,用切割机割成定长,由300mm宽的输出通道送出。

1.基本内容

先拟定钢坯喷号机的总体方案,然后确定钢坯喷号机行走部件的传动方案及结构参数,最后画出钢坯喷号机行走部件的装配图以及零件图。

2.系统技术方案

(1)工作过程:启动机器PLC控制步进电机带动钢坯喷号机到相应的位置,按下启动键发送控制信号传到控制部件(PLC),控制部件发出控制命令给执行部件(主要是行走部件及喷号部件,行走部件带动喷头靠近钢坯表面,然后喷头进行喷号),喷号完成后喷头上升并清洗号码牌。再次移动喷号到下一个钢坯处。

(2)要求实现的功能:行走部件功能(喷号机整体左右的移动,喷号部件的上下前后移动,喷头的左右移动)、喷号部件功能(喷头喷号,清洗号码牌,号码牌的更换)。其中号码为(0—9)十个数字,号码可以变化更换。每个号码大小为35mmx15mm,号码间距为5mm。

(3)实现方案:

行走功能的实现:由于在钢坯上喷号并不需要很精确的定位,所以采用人工控制步进电机的方式移动整体喷号机来粗调。采用液压缸提供动力来推动喷号部件,并采用行程开关控制电机来实现喷号部件上下移动,下行程开关可以控制喷号部件与钢坯表面之间的间距和发出信号使喷头开始喷涂料并向右移动。采用液压缸推动,滚轮在导架上滚动的方式实现喷好机构的前后移动,并采用行程开关控制电机来实现喷头的左右移动,右行程开关可以控制喷头停止喷涂料并回到初始位置和喷号部件向上移动。

喷号功能的具体实现方案由和我一组的同学确定。

3、进度安排

3-4周 认真阅读和学习有关资料和知识,并翻译英文文献

5-7周 钢坯喷号机行走部件的传动方案及总体设计

8-9周 确定钢坯喷号机行走部件结果参数

10-13周 完成钢坯喷号机行走部件装配图及零件工作图

14-15周 准备并进行毕业答辩

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、提高劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大提高。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,提高材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,提高产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30﹪;由于锻件精化减少了切削加工量,电力消耗可降低30﹪;

(2)锻件质量显着提高,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均提高2~3倍;

(3)由于一次性挤压成型,生产率提高25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)写毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

一、毕业设计题目的背景

三级圆锥—圆柱齿轮减速器,第一级为锥齿轮减速,第二、三级为圆柱齿轮减速。这种减速器具有结构紧凑、多输出、传动效率高、运行平稳、传动比大、体积小、加工方便、寿命长等优点。因此,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并且已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、主要研究内容及意义

本文首先介绍了带式输送机传动装置的研究背景,通过对参考文献进行详细的分析,阐述了齿轮、减速器等的相关内容;在技术路线中,论述齿轮和轴的选择及其基本参数的选择和几何尺寸的计算,两个主要强度的验算等在这次设计中所需要考虑的一些技术问题做了介绍;为毕业设计写作建立了进度表,为以后的设计工作提供了一个指导。最后,给出了一些参考文献,可以用来查阅相关的资料,给自己的设计带来方便。

本次课题研究设计是大学生涯最后的学习机会,也是最专业的一次锻炼,它将使我们更加了解实际工作中的问题困难,也使我对专业知识又一次的全面总结,而且对实际的机械工程设计流程有一个大概的了解,我相信这将对我以后的工作有实质性的帮助。

三、实施计划

收集相关资料:20XX年4月10日——4月16日

开题准备: 4月17日——4月20日

确定设计方案:4月21日——4月28日

进行相关设计计算:4月28日——5月8日

绘制图纸:5月9日——5月15日

整理材料:5月15日——5月16日

编写设计说明书:5月17日——5月20日

准备答辩:

四、参考文献

[1] 王昆等 机械设计课程设计 高等教育出版社,1995.

[2] 邱宣怀 机械设计第四版 高等教育出版社,1997.

[3] 濮良贵 机械设计第七版 高等教育出版社,2000.

[4] 任金泉 机械设计课程设计 西安交通大学出版社,2002.

[5] 许镇宁 机械零件 人民教育出版社,1959.

[6] 机械工业出版社编委会 机械设计实用手册 机械工业出版社,2008

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、增强劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大增强。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、增强零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,增强材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,增强产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30%;由于锻件精化减少了切削加工量,电力消耗可降低30%;

(2)锻件质量显着增强,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均增强2~3倍;

(3)由于一次性挤压成型,生产率增强25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、增强生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

数控机床诊断维修方法经验浅述摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。关键词:数控机床;诊断维修;方法随着发达国家先进技术和装备的不断引进,使我们设备维护人员的维修难度越来越大,这是不可否认的事实。但怎样尽快适应和掌握它,是我们应该认真探讨并急需解决的课题,下面就自己多年的维修经验谈一点个人体会。笔者近年引进的日立精机VA 一65 和HC 一800 两台加工中心,不但具有交流伺服拖动、四轴联动功能,而且还配有磁栅全闭环位置反馈及自动测量、自动切削监视系统,其CNC 是当时国际上最先进的FANUC 一11M 系统。运行11 年来,虽然随着使用年限的增长,一些元器件的老化、故障期的到来,特别是加工任务的增多,设备每天24h 不停机的运转,出现了几乎每周都有故障报警的现象。但为保证任务的按期完成,我们在没有经过国内外培训且图纸资料不全的条件下,在无数次的维修测试中,认真分析故障规律,不断积累有关数据,逐渐掌握维修要领,尽量在最短的时间内查出故障点,用最快的速度修复调整完成。以下从几方面论述快速诊断和维修数控设备的方法:1 先观察问询再动手处置首先看报警信息,因为现在大多数CNC 系统都有较完善的自诊断功能,通过提示信息可以马上知道故障区域,缩小检测范围。像一次HC 一800 卧式加工中心在运行中出现5010 # spindle drive unitalarm 报警。我们根据提示信息马上按顺序检查了主轴电机及其执行元件、主轴控制板,查明过流断路点后恢复正常,仅用20min 完成。但从我们的经验中也有受报警信息误导的例子,因此说可依据它但不能依赖它。原文以及其他一些范文,请到这里看看

铁磁物质磁化过程的研究论文

磁铁为什么能吸住铁器由磁铁的特性决定的如果按原子电流解释就是电流产生的磁场磁化别的物体磁化物体产生电场电场互相作用产生力的作用物质大都是由分子组成的,分子是由原子组成的,原子又是由原子核和电子组成的。在原子内部,电子不停地自转,并绕原子核旋转。电子的这两种运动都会产生磁性。但是在大多数物质中,电子运动的方向各不相同、杂乱无章,磁效应相互抵消。因此,大多数物质在正常情况下,并不呈现磁性。铁、钴、镍或铁氧体等铁磁类物质有所不同,它内部的电子自旋可以在小范围内自发地排列起来,形成一个自发磁化区,这种自发磁化区就叫磁畴。铁磁类物质磁化后,内部的磁畴整整齐齐、方向一致地排列起来,使磁性加强,就构成磁铁了。磁铁的吸铁过程就是对铁块的磁化过程,磁化了的铁块和磁铁不同极性间产生吸引力,铁块就牢牢地与磁铁“粘”在一起了。我们就说磁铁有磁性了。

先介绍一下居里点the Curie temperature 居里点或居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。19世纪末,著名物理家居里在自己的实验室里发现磁石的一个物理特性,就是当磁石加热到一定温度时,原来的磁性就会消失。后来,人们把这个温度叫“居里点”。在地球上,岩石在成岩过程中受到地磁场的磁化作用,获得微弱磁性,并且被磁化的岩石的磁场与地磁场是一致的。这就是说,无论地磁场怎样改换方向,只要它的温度不高于“居里点”,岩石的磁性是不会改变的。根据这个道理,只要测出岩石的磁性,自然能推测出当时的地磁方向。这就是在地学研究中人们常说的化石磁性。在此基础之上,科学家利用化石磁性的原理,研究地球演化历史的地磁场变化规律,这就是古地磁说。 为了寻找大陆漂移说的新证据,科学家把古地磁学引入海洋地质领域,并取得令人鼓舞的成绩。 第二次世界大战之后,科学家使用高灵敏度的磁力探测仪,在大西洋洋中脊上的海面进行古地磁调查。之后,人们又使用磁力仪等仪器,以密集测线方式对太平洋进行古地磁测量。两次调查的资料使人们惊奇地发现,在大洋底部存在着等磁力线条带,而且呈南北向平行于大洋洋中脊中轴线的两侧,磁性正负相间。每条磁力线条带长约数百千米,宽度在数十千米至上百千米之间不等。海底磁性条带的发现,成为本世纪地学研究的一大奇迹。1963年,英国剑桥大学的一位年轻学者.瓦因和他的老师.马修斯提出,如果“海底扩张”曾经发生过,那么,大洋中脊上涌的熔岩,当它凝固后应当保留当时地球磁场的磁化方向。就是说在洋脊两侧的海底应该有磁化情况相同的磁性条带存在。当地球磁场发生反转时,磁性条带的极性也应该发生反转,磁性条带的宽度可以作为两次反转时间的度量标准。这个大胆的假说,很快被证实了,人们在太平洋、大西洋、印度洋都找到了同样对称的磁性条带。不仅如此,科学家还计算出在7600万年中,地球曾发生过171次反转现象。 研究还发现,地球磁场两次反转之间的时间最长周期约为300万年,最短的周期约为5万年,两次反转的平均周期约为42~48万年。目前,地球的磁场方向己保留70万年了,所以,人们预感到一个新的磁场变化可能正在向我们靠近。 对于海底磁性条带的研究仍在继续之中,许多问题仍找不到令人满意的答案。例如,对于地球磁场为什么要来回反转这个最基本的问题,就无法解释清楚。尽管科学家们提出过种种假说,但其真正的原因还是不清楚的。也就是说,地球发生磁场转向的内在规律之谜,有待于科学家们去继续探索。再介绍铁磁材料 (1)铁磁性物质只要在很小的磁场作用下就能被磁化到饱和,不但磁化率>0,而且数值大到10-106数量级,其磁化强度M与磁场强度H之间的关系是非线性的复杂函数关系。这种类型的磁性称为铁磁性。 (2)铁磁性物质只有在居里温度以下才具有铁磁性;在居里温度以上,由于受到晶体热运动的干扰,原子磁矩的定向排列被破坏,使得铁磁性消失,这时物质转变为顺磁性。 (3)特点 A、磁性很强,通常所说的磁性材料主要是指这类物质。 B、磁滞现象。 C、自发磁化: 铁磁性物质内的原子磁矩,通过相邻晶格结点原子的电子壳层的作用,克服热运动的无序效应,原子磁矩是按区域自发平行排列、有序取向,按不同的小区域分布,这种现象称为自发磁化。 未配对的3d电子壳层: Fe、Ni、Co、Mn D、磁畴 自发磁化的小区域,称为磁畴。各个磁畴之间的交界面称为磁畴壁。 然后说明一下测量实验铁磁材料的居里点实验目的:初步了解铁磁物质有铁磁性转变为顺磁性的微观原理,学习用JLD——Ⅱ型居里点测试仪测量居里温度的原理和方法。实验仪器:JLD——Ⅱ型居里点测试仪一套(主机一台、加温炉一台、样品5只)、ST16B型示波器实验原理:对于铁磁物质来讲,由于有磁畴的存在,因此在外加的交变磁场作用下将产生磁滞现象。磁滞回线就是磁滞现象的主要表现。如果将铁磁物质加热到一定的温度,由于金属点阵中的热运动的加剧,磁畴遭到破坏时,铁磁物质将转变为顺磁物质,磁滞现象消失,铁磁物质这一转变温度称为居里点。本居里点测试仪就是通过观察示波器上显示的磁滞回线的存在与否来观察测量铁磁物质的这一转变温度的。本仪器通过给绕在样品上的线圈通交变电流,从而产生交变磁场。在给加热炉加热过程中,在示波器上找出居里点。 实验步骤:1、将加热炉的连线接于电源箱前面的两接线柱上。将铁磁材料样品与电源箱用专用线连接,并把样品放在加热炉中。将温度传感器、降温风扇的接插件与接在电源前面板上的传感器接插件对应相接。2、将B输出与示波器上的Y输入,H输出与X输入用专用线相连接,“升温——降温”开关打向升温,开启电源箱上的电源开关,并适当调节示波器上Y、X调节,示波器上就显示出了磁滞回线。3、炉上的两风门(旋钮方向和加热炉的轴线方向垂直),将“测量——设置”开关打向“设置”,设定好炉温后,打向“测量”,加热炉工作,炉温逐渐升向设置的温度。4、温达到该样品的居里点时,磁滞回线消失,同时数显温度表显示测量的温度值——居里点。打开加热炉上的两风门(风门上的旋钮方向和加热炉的轴线方向平行),把“升温——降温”开关打向降温,让加热炉降温后,换一样品重复上述过程,直到样品测完为止。

我谈环保袋——科技小论文现在,环境保护已经成了社会上的人人注重的话题。我们是资源有限的国家,人人都应该保护环境和资源。比如塑料制品,现在我国的塑料制品严重地污染了我们的环境,带来了“白色污染”。塑料购物袋就是“白色污染”的一种,它不仅是日常生活中的易耗品,而且中国每年都要消耗大量的塑料购物袋。塑料购物袋在为消费者提供便利的同时,由于过量使用及回收处理不到位等原因,也造成了严重的能源资源浪费和环境污染。特别是超薄塑料购物袋容易破损,大多被随意丢弃,成为“白色污染”的主要来源。所以,我国对此也已经进行了一系列的环保措施,如“限塑令”——使用环保袋就是控制“白色污染——塑料袋”的一个办法。使用环保袋有很多好处,比如:使用寿命比塑料袋长;.可以循环利用;价格低廉,易于推广等等。现在人们去超市、商场购物大多都使用环保袋,从而减少塑料袋的使用,更好的保护环境。但是现在很多的环保袋都是用纸制品做成的。比如牛皮纸袋、塑料纸袋都是用纸做的。我认为这样也不是很环保,因为纸也是用树木制成的,而现在人类砍伐树木用来做环保袋,所以这样的环保袋也是破坏绿化,不够环保。我认为使用环保袋,应该选用更加环保的材料,比如无纺布袋,帆布袋,棉布袋等等。这些材料都是非常环保的。无纺布袋(也叫不织布袋),是很合适的环保袋,因为这种袋子不仅造型美观,很耐用,而且透气性好,可以重复使用。从限塑令发布开始,塑料袋将开始逐渐退出物品的包装市场,也有一部分市场取而代之的是能够反复使用的无纺布购物袋。无纺布袋较之塑料袋而言更容易印刷图案,颜色表达更鲜明。加上能够反复使用的这一特点,陆续被许多市场、超市、商店选用。虽然无纺布袋很环保,也被各个商家选用。但是这种袋子也存在着一种问题——价格比塑料贵,这对业主来讲,却增加了经营成本。比如,业户售出一公斤青菜,利润可能只有1角钱,用普通的塑料袋几乎不用计算成本,但如果使用环保的无纺布塑料袋,差不多就不挣钱了。因此,降低使用成本是关键。所以现在的环保袋上,很多商家都在“环保袋”上印刷广告,以广告费来抵消使用成本。最重要的还是人类应该节约能源,保护环境,减少塑料的污染,促进资源综合利用,保护生态环境。参考资料: 只有这个原创的环保散文。参考!

  • 索引序列
  • 真空磁浮铁路研究论文
  • 磁铁研究论文
  • 磁浮列车课题研究论文
  • 磁悬浮毕业论文
  • 铁磁物质磁化过程的研究论文
  • 返回顶部