首页 > 学术期刊知识库 > 大数据的高效运用研究论文

大数据的高效运用研究论文

发布时间:

大数据的高效运用研究论文

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

大数据技术在网络营销中的策略研究论文

从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。

摘要:

当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。

关键词:

大数据;网络营销;应用策略;营销效果;

一、前言

现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。

二、基于大数据的网络营销概述

网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。

应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。

三、传统网络营销存在的一些问题

(一)传统网络营销计划主要由策划人主观决定,科学性不足

信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。

(二)传统网络营销的互动性不足,无法进行准确的产品营销

传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。

(三)无法有效分析客户需求,导致客户服务质量差

当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。

四、将基于大数据的网络营销如何促进传统的网络营销

(一)使网络营销决策更科学,更明智

在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。

(二)大大提高了网络营销的准确性

如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。

(三)显着提高对客户网络营销服务水平

通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。

五、基于大数据的网络营销优势

(一)提高网络营销广告的准确性

在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。

(二)提高网络营销市场的定位精度

在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:

1、分析客户数据并确定产品在市场上的定位:

首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。

2、通过市场调查对产品市场定位进行验证:

在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。

3、建立客户反馈机制:

客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。

(三)增强网络营销服务的个性化

为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。

六、基于大数据网络营销策略

使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。

(一)客户档案策略

客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。

(二)满足需求策略

为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。

(三)客户服务策略

随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。

(四)多平台组合策略

在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。

七、结语

总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。

参考文献

[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.

[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.

[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.

[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.

[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.

[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.

[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.

[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.

[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.

[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.

[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.

[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.

[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.

网络安全与大数据技术应用探讨论文

摘要: 随着互联网技术的高速发展与普及,现如今互联网技术已经广泛应用于人们工作与生活之中,这给人们带来了前所未有的便利,但与此同时各种网络安全问题也随之显现。基于此,本文主要介绍了大数据技术在网络安全领域中的具体应用,希望在网络系统安全方面进行研究的同时,能够为互联网事业的持续发展提供可行的理论参考。

关键词: 网络安全;大数据技术;应用分析

前言

随着近年来互联网技术的不断深入,网络安全事故也随之频频发生。出于对网络信息安全的重视,我国于2014年成立了国家安全委员会,正式将网络安全提升为国家战略部署,这同时也表示我国网络信息安全形势不容乐观,网络攻击事件处于高发状态。木马僵尸病毒、恶意勒索软件、分布式拒绝服务攻击、窃取用户敏感信息等各类网络攻击事件的数量都处于世界前列。时有发生的移动恶意程序、APT、DDOS、木马病毒等网络攻击不仅会严重阻碍网络带宽、降低网络速度、并且对电信运营商的企业声誉也会产生一定影响。根据大量数据表明,仅仅依靠传统的网络防范措施已经无法应对新一代的网络威胁,而通过精确的检测分析从而在早期预警,已经成为现阶段网络安全能力的关键所在。

1网络安全问题分析

网络安全问题不仅涉及公民隐私与信息安全,更关乎国事安全,例如雅虎的信息泄露,导致至少五亿条用户信息被窃;美国棱镜门与希拉里邮件门等等事件都使得网络安全问题进一步升级、扩大。随着互联网构架日益复杂,网络安全分析的数据量也在与日俱增,在由TB级向PB级迈进的过程,不仅数据来源丰富、内容更加细化,数据分析所需维度也更为广泛。伴随着现阶段网络性能的增长,数据源发送速率更快,对安全信息采集的速度要求也就越高,版本更新延时等导致的Odav等漏洞日渐增多,网络攻击的影响范围也就进一步扩大;例如APT此类有组织、有目标且长期潜伏渗透的多阶段组合式攻击更加难以防范,唯有分析更多种类的安全信息并融合多种手段进行检测抵御。在传统技术架构中,大多使用结构化数据库来进行数据存储,但由于数据存储的成本过高,系统往往会将原始数据进行标准化处理后再进行存储,如此易导致数据的丢失与失真以及历史数据难以保存而造成的追踪溯源困难;同时对于嘈杂的大型、非结构化数据集的执行分析以及复杂查询效率很低,导致数据的实时性及准确性难以保证,安全运营效率不高,因此传统网络安全技术已经难以满足现阶段网络安全分析的新要求。大数据技术这一概念最初由维克托.迈尔.舍恩伯格与肯尼斯.库克耶在2008年出版的《大数据时代》一书中提出的,大数据是指不采用随机分析法,而是对所有的数据进行综合分析处理。大数据技术作为现阶段信息架构发展的趋势之首,其独有的高速、多样、种类繁多以及价值密度低等特点,近年来被广泛应用于互联网的多个领域中。大数据的战略意义在于能够掌握庞大的数据信息,使海量的原始安全信息的存储与分析得以实现、分布式数据库相比传统数据库的存储成本得以降低,并且数据易于在低廉硬件上的水平扩展,极大地降低了安全投入成本;并且伴随着数据挖掘能力的大幅提高,安全信息的采集与检测响应速度更加快捷,异构及海量数据存储的支持打造了多维度、多阶段关联分析的基础,提升了分析的深度与广度。对于网络安全防御而言,通过对不同来源的数据进行综合管理、处理、分析、优化,可实现在海量数据中极速锁定目标数据,并将分析结果实时反馈,对于现阶段网络安全防御而言至关重要。

2大数据在网络安全中的应用

将大数据运用到网络安全分析中,不仅能够实现数据的优化与处理,还能够对日志与访问行为进行综合处理,从而提高事件处理效率。大数据技术在网络安全分析的效果可从以下几点具体分析:

数据采集效率

大数据技术可对数据进行分布式地采集,能够实现数百兆/秒的采集速度,使得数据采集速率得到了极大的提高,这也为后续的关联分析奠定了基础。

数据的存储

在网络安全分析系统中,原始数据的存储是至关重要的,大数据技术能够针对不同数据类型进行不同的数据采集,还能够主动利用不同的方式来提高数据查询的效率,比如在对日志信息进行查询时适合采用列式的存储方式,而对于分析与处理标准化的数据,则适合采用分布式的模式进行预处理,在数据处理后可将结果存放在列式存储中;或者也可以在系统中建立起MapReduce的查询模块,在进行查询的时候可直接将指令放在指定的节点,完成处理后再对各个节点进行整理,如此能够确保查询的速度与反应速度。

实时数据的分析与后续数据的处理

在对实时数据的分析中,可以采用关联分析算法或CEP技术进行分析,如此能够实现对数据的采集、分析、处理的综合过程,实现了更高速度以及更高效率的处理;而对于统计结果以及数据的处理,由于这种处理对时效性要求不高,因此可以采用各种数据处理技术或是利用离线处理的方式,从而能够更好地完成系统风险、攻击方面的分析。

关于复杂数据的分析

在针对不同来源、不同类型的复杂数据进行分析时,大数据技术都能够更好的完成数据的分析与查询,并且能够有效完成复杂数据与安全隐患、恶意攻击等方面的处理,当网络系统中出现了恶意破坏、攻击行为,可采用大数据技术从流量、DNS的角度出发,通过多方面的数据信息分析实现全方位的防范、抵御。

3基于大数据技术构建网络系统安全分析

在网络安全系统中引入大数据技术,主要涉及以下三个模块:

数据源模块

网络安全系统中的`数据及数据源会随着互联网技术的进步而倍增技术能够通过分布式采集器的形式,对系统中的软硬件进行信息采集,除了防火墙、检测系统等软件,对设备硬件的要求也在提高,比如对服务器、存储器的检查与维护工作。

数据采集模块

大数据技术可将数据进行对立分析,从而构建起分布式的数据基础,能够做到原始数据从出现到删除都做出一定说明,真正实现数据的访问、追溯功能,尤其是对数据量与日俱增的今天而言,分布式数据存储能够更好地实现提高数据库的稳定性。

数据分析模块

对网络安全系统的运营来说,用户的业务系统就是安全的最终保障对象,大数据分析能够在用户数据产生之初,及时进行分析、反馈,从而能够让网络用户得到更加私人化的服务体验。而对于用户而言,得其所想也会对网络系统以及大数据技术更加的信任,对于个人的安全隐私信息在系统上存储的疑虑也会大幅降低。当前网络与信息安全领域正在面临着全新的挑战,企业、组织、个人用户每天都会产生大量的安全数据,现有的安全分析技术已经难以满足高效率、精确化的安全分析所需。而大数据技术灵活、海量、快速、低成本、高容量等特有的网络安全分析能力,已经成为现阶段业界趋势所向。而对互联网企业来说,实现对数据的深度“加工处理”,则是实现数据增值的关键所在,对商业运营而言是至关重要的。

4结语

在当下时代,信息数据已经渗透到各个行业及业务领域中,成为重要的社会生产因素。正因如此,互联网数据产生的数量也在与日倍增中,这给网络安全分析工作带来了一定难度与压力,而大数据技术则能够很好的完善这一问题。在网络系统中应用大数据技术不仅能够满足人们对数据处理时所要求的高效性与精准性,并且能够在此基础上构建一套相对完善的防范预警系统,这对维护网络系统的安全起着非常关键的作用,相信大数据技术日后能够得到更加广泛的应用。

参考文献:

[1]鲁宛生.浅谈网络安全分析中大数据技术的应用[J].数码世界,2017.

[2]王帅,汪来富,金华敏等.网络安全分析中的大数据技术应用[J].电信科学,2015.

[3]孙玉.浅谈网络安全分析中的大数据技术应用[J].网络安全技术与应用,2017.

论文研究方法运用数据的是什么

有关于论文的研究方法有哪些

有关于论文的研究方法有哪些,论文是一种常见的写作方式。而论文的研究方法则是为了论文的写作去进行调查、实验等的一种研究方式,下面分享有关于论文的研究方法有哪些相关内容,一起来看看吧。

(1)调查法

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的'方法。一般是通过书面或口头回答问题的方式获得大量数据,进而对调查中收集的大量数据进行分析、比较、总结归纳,为人们提供规律性的知识。

典型例子

调查法中最典型的例子是问卷调查法。它是通过书面提问收集信息的一种方法,即调查人员编制调查项目表,分发或邮寄给相关人员,询问答案,然后收集、整理、统计和研究。

(2)观察法

观察法是指人们有目的、有计划地通过感官和辅助仪器,对处于自然状态下的客观事物进行系统考察,从而获取经验事实的一种科学研究方法。

典型例子

皮亚杰的儿童认知发展理论就是通过观察法提炼总结出来的;儿童心理学创始人——普莱尔,也是在一次次地使用观察法后,提出了儿童心理学领域中的诸多理论。

(3)实验法

实验法是指经过精心设计,在高度控制的条件下,通过操纵某些因素,从而发现变量间因果关系以验证预定假设的研究方法。核心在于对所要研究的对象在条件方面加以适当的控制,排除自然状态下无关因素的干扰。

典型例子

采取实验法的一个典例是罗森塔尔效应的提出,美国心理学家罗森塔尔和L.雅各布森通过对小学生进行“未来发展趋势测验”,发现人们对他人行为的期望通常可以导致他人向期望方向改变。

1、定量分析法

定量分析是对事物或事物的各个组成部分进行数量分析的一种研究方法。依据统计数据,建立数学模型,并用数学模型计算出研究对象的各项指标及其数值。常见的定量分析法包括比率分析法、趋势分析法、数学模型法等等。

典型例子

企业管理中时常采用定量分析法,比如企业信用结果的得出,就是采用定量分析法,以企业财务报表为主要数据来源,按照某种数理方式进行加工整理的结果。

2、定性分析法

定性分析法是对研究对象进行“质”的方面的分析。运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,揭示事物运行的内在规律,包括因果分析法、比较分析法、矛盾分析法等。

典型例子

德尔菲法是最典型的定性分析法,该方法按照规定的程序,背靠背地征询专家小组成员的预测意见,经过几轮征询,使专家小组的预测意见趋于集中,最后做出符合市场未来发展趋势的预测结论,是一种主观预测方法。

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

通过数据进行分析的论文用数据是数学方法。

数据分析方法:将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系。

此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

数据分析目的:

数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。

这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。

高效应用数学学报

数学的就太多了!《中国数学教育》期刊级别: 国家级期刊《中学数学教学参考》期刊级别: 北大核心期刊《数学教学》期刊级别: 国家级期刊《中等数学》期刊级别: 国家级期刊《数学通报》期刊级别: 北大核心期刊《高校应用数学学报A辑(中文版)》期刊级别: CSCD核心期刊 北大核心期刊 统计源期刊杂志之家还有很多适合你的推荐!发表老师还会推荐最适合你的期刊。

花点钱啊,可以发论文的地方多呢,大学校园里贴满了广告,不是投了就一定会收,但是花了钱就是很快的了,呵呵~~~

中国学术期刊网

数学学报,数学研究等

数据挖掘论文运用数据挖掘工具

前段时间国际权威市场分析机构IDC发布了《中国人工智能软件及应用(2019下半年)跟踪》报告。在报告中,美林数据以11%的市场份额位居中国机器学习开发平台市场榜眼,持续领跑机器学习平台市场。在此之前,2019年IDC发布的《IDC MarketScape™:中国机器学习开发平台市场评估》中,美林数据就和BAT、微软、AWS等知名一线厂商共同跻身领导者象限,成为中国机器学习开发平台市场中的领导企业之一。

以上都是对美林数据Tempo人工智能平台(简称:TempoAI)在机器学习开发平台领域领先地位的认可,更说明美林数据在坚持自主创新、深耕行业应用道路上的持续努力,得到了业界的广泛认可,并取得了优异成绩。

点此了解详情

Tempo人工智能平台(TempoAI)为企业的各层级角色提供了自助式、一体化、智能化的分析模型构建能力。满足用户数据分析过程中从数据接入、数据处理、分析建模、模型评估、部署应用到管理监控等全流程的功能诉求;以图形化、拖拽式的建模体验,让用户无需编写代码,即可实现对数据的全方位深度分析和模型构建。实现数据的关联分析、未来趋势预测等多种分析,帮助用户发现数据中隐藏的关系及规律,精准预测“未来将发生什么”。

产品特点:

1 极简的建模过程

TempoAI通过为用户提供一个机器学习算法平台,支持用户在平台中构建复杂的分析流程,满足用户从大量数据(包括中文文本)中挖掘隐含的、先前未知的、对决策者有潜在价值的关系、模式和趋势的业务诉求,从而帮助用户实现科学决策,促进业务升级。整个分析流程设计基于拖拽式节点操作、连线式流程串接、指导式参数配置,用户可以通过简单拖拽、配置的方式快速完成挖掘分析流程构建。平台内置数据处理、数据融合、特征工程、扩展编程等功能,让用户能够灵活运用多种处理手段对数据进行预处理,提升建模数据质量,同时丰富的算法库为用户建模提供了更多选择,自动学习功能通过自动推荐最优的算法和参数配置,结合“循环行”功能实现批量建模,帮助用户高效建模,快速挖掘数据隐藏价值。

2 丰富的分析算法

TempoAI集成了大量的机器学习算法,支持聚类、分类、回归、关联规则、时间序列、综合评价、协同过滤、统计分析等多种类型算法,满足绝大多数的业务分析场景;支持分布式算法,可对海量数据进行快速挖掘分析;同时内置了美林公司独创算法,如视觉聚类、L1/2稀疏迭代回归/分类、稀疏时间序列、信息抽取等;支持自然语言处理算法,实现对海量文本数据的处理与分析;支持深度学习算法及框架,为用户分析高维海量数据提供更加强大的算法引擎;支持多种集成学习算法,帮助用户提升算法模型的准确度和泛化能力。

3 智能化的算法选择

TempoAI内置自动择参、自动分类、自动回归、自动聚类、自动时间序列等多种自动学习功能,帮助用户自动选择最优算法和参数,一方面降低了用户对算法和参数选择的经验成本,另一方面极大的节省用户的建模时间成本。

4 全面的分析洞察

为了帮助用户更好、更全面的观察分析流程各个环节的执行情况, TempoAI提供了全面的洞察功能,通过丰富详实的洞察内容,帮助用户全方位观察建模过程任意流程节点的执行结果,为用户开展建模流程的改进优化提供依据,从而快速得到最优模型,发现数据中隐含的业务价值。

5 企业级的成果管理与应用能力

挖掘分析成果,不仅仅止步于模型展示,TempoAI全面支撑成果管理与应用,用户在完成挖掘流程发布后,可基于成果构建服务或调度任务等应用,在成果管理进行统一分类及管理,可根据业务需求选择应用模式:调度任务、异步服务、同步服务、流服务及本地化服务包,满足工程化的不同诉求。提供统一的成果分类统计、在线数量变化趋势、日活跃数量变化趋势、调用热度、失败率排名等成果统计功能,同时提供所有服务的统一监测信息,包括服务的调用情况及运行情况。帮助用户高效便捷的管理成果、利用成果及监测成果。

6 完善的断点缓存机制

TempoAI提供节点的断点缓存机制,包括开启缓存、关闭缓存、清除缓存、从缓存处执行、执行到当前节点、从下一个节点开始执行等功能,为用户在设计端调试建模流程提供了高效便捷的手段,显著提升用户的建模效率。

7 灵活的流程版本及模型版本管理机制

为了方便用户更好的对多次训练产生的挖掘流程和模型进行管理,平台提供了流程版本及模型版本管理功能,支持用户对流程的版本及模型的版本进行记录和回溯,满足用户对流程及模型的管理诉求,提升用户建模体验。

8 跨平台模型迁移及融合能力

TempoAI平台支持PMML文件的导入和导出功能,可以实现跨平台模型之间的迁移和融合,利于用户进行历史模型的迁移,实现用户在不同平台的模型成果快速共享,提升成果的复用性。

9 丰富的行业应用案例

TempoAI支持应用模板功能,针对不同行业的痛点内置了丰富的分析案例,“案例库”一方面为用户学习平台操作和挖掘分析过程提供指导,另一方面可以为用户提供直接或间接的行业分析解决方案。

10 流数据处理功能

TempoAI提供流数据处理功能,包括kafka输入(流)、kafka输出(流)、SQL编辑(流)、数据连接(流)、数据水印(流),满足用户对实时流数据进行处理的需求。

11 一键式建模能力

TempoAI支持一键式建模功能,用户只需输入数据,该功能可以自动完成数据处理、特征工程、算法及参数选择及模型评估等环节。节省了用户AI建模的时间,提升了建模效率。让用户将有限的精力更多的关注到业务中,将建模工作交给平台,从而进一步降低AI建模的门槛。

比如SQL Server。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

来推荐一个最新的敏捷BI工具,叫DataFocus。它采用自然语言分析处理,运用搜索问答式的交互方式,更贴合用户使用习惯,并在使用中运用AI智能去辅助用户对数据进行探索。轻量建模、数据直连、灵活交互,性价比更高、上线更快、使用更方便、价值更大。基于大数据前提的数据处理技术,列存储、内存计算等支持对TB级的数据实现秒级响应,能交互式分析,上钻下钻挖掘数据。以无IT背景业务人员为目标用户,当然数据分析师也一样能用,而且可以更关注于问题本身,略去以前繁重的编程过程。不需要IT人员进行事先建模,可在分析过程中灵活调整以及自动建模,提升分析的效率从而提升企业决策的洞察力和及时性。他们的官网可以申请试用,有兴趣可以去试试。

大数据的研究生论文

笔杆网有研究生论文库。笔杆网()是一款基于大数据的写作与创新辅助工具,收录整理了超过5亿元数据,15亿引文数据,覆盖图书,期刊,学位论文,会议论文,报纸,标准,专利,互联网博客等文献类型。基于这一海量数据和笔杆强大的大数据技术,笔杆提供了一系列学术创作的文献服务功能。该平台围绕毕业论文写作和职称论文写作服务,目前分为6大模块:选题分析,资料搜集,提纲推荐,在线写作,参考文献,论文查重。

现在感觉大家说大数据,一般都在炒概念,大数据并不难,怎么让数据分析落地式很难的,在我来看,目前很多人都在吹嘘大数据,但是真正懂大数据落地的人寥寥无几。给你一个工具,FineBI,楼主可以自己看看。

  • 索引序列
  • 大数据的高效运用研究论文
  • 论文研究方法运用数据的是什么
  • 高效应用数学学报
  • 数据挖掘论文运用数据挖掘工具
  • 大数据的研究生论文
  • 返回顶部