燃煤火电厂紧凑式湿法烟气脱硫技术发布日期:2009-5-12 13:32:16 (阅130次)关键词: 烟气脱硫 脱硫 湿法脱硫引言我国目前的酸雨区已超过国土面积的三分之一,2005年的S排放量达到2549万t,超过总量控制指标749万t,加剧了我国的大气污染火电厂是S的主要排放源,我国2004年1月1日实施的GBl3223-2003《火电厂大气污染排放标准》按时段规定了火电厂的大气污染物最高允许排放值,加快了我国火电厂脱硫装置的投入使用,对于单机容量超过20MW的大型燃煤火电机组,国内外目前流行的脱硫工艺是采用湿法脱硫,在完成脱硫要求的同时,可以同时产生副产品石膏,实现脱硫副产品的资源再利用,我国现在运行的许多火电厂在原设计中没有考虑脱硫装置的安装位置,这使运行的火电厂增加脱硫装置带来了困难,未来10年装机容量3×10MW的火电机组均需要安装脱硫'>烟气脱硫装置,因此,我国现在运行的火电厂急需一种既具有高脱硫效率且节省占地面积的湿法脱硫新工艺,母公司为德国鲁尔集团公司(Ruhr AG)的德国斯特雅克集团公司(steag AG)自1969年开始研发以CaO或CaCO为脱硫剂的紧凑式湿法脱硫新工艺,该工艺具有脱硫效率高、占地面积小的独特优点,1977年在德国wilhelmshaven第一套具有商业化使用价值的紧凑式湿法脱硫工业化试验设备对5×10Nm/h的燃煤电厂烟气进行脱硫,相应的汽轮发电机组的电功率为140 MW;1982年第一台工艺脱硫设备在该电厂投入运行,脱硫的烟气量为×10Nm/h,相应的汽轮发电机组的电功率为450 MW,该工艺到2000年已成功应用的火电机组容量超过2×10MW,单台锅炉的最大额定烟气流量为×10Nm/h,单台汽轮发电机组的最大额定电功率为750MW,紧凑式湿法脱硫工艺特别适用于已运行电厂增加脱硫装置的改造方案,对我国大批火电厂的增加脱硫装置的改造方案具有重要的实用价值。1、燃煤火电厂紧凑式湿法脱硫工艺紧凑式湿法脱硫工艺的流程图如图1所示,来自电除尘器(1)温度为120~130%的待脱硫的烟气进入回转式烟气加热器(2),把热量放给来自脱硫塔(4)温度为40~45℃的净化烟气,净化后的烟气是经过立式风机(3)使其压力升高来克服回转式烟气加热器的流动阻力,净化后的烟气温度升高到80~90%后排人烟囱(17),以达到烟气进入烟囱的温度要求,放热后的烟气从脱硫塔底部进入脱硫塔向上流动,在脱硫塔内待脱硫的烟气与来自脱硫塔底部经泵(6),升压后从分布在脱硫塔上部的喷嘴(5)喷出的脱硫剂浆液进行混合发生化学反应达到脱硫目的,化学反应产物从脱硫塔上部流向脱硫塔下部,与经风机(8)送人脱硫塔的空气进一步进行化学反应,形成脱硫'>烟气脱硫的副产品石膏的浆液,石膏浆液进入经浆泵(9)送人分离器(10),分离出来的浓石膏浆液进入石膏生产系统(11),产生石膏产品,从石膏生产系统(11)分离出来的废液与分离器(10)分离出来的废液进入混合器(12),流出混合器(12)的浆液分成3部分,一部分进入脱硫剂制浆系统(16),另一部分进入脱硫塔再循环利用,还有一部分经浆泵(13)升压后送人分离器(14),分离出来的废水送入废水处理系统(15)进行净化处理,浆泵(7)将浆液升压后在脱硫塔下部进行搅拌,防止脱硫塔下部浆液沉淀,脱硫所需的工艺用水经水泵送入脱硫塔,随着脱硫剂的不断补充,就可以使脱硫系统连续运行,完成对烟气的连续脱硫。2、紧凑式湿法脱硫'>烟气脱硫工艺的应用实例紧凑式湿法脱硫工艺与常见的湿法脱硫工艺相比,主要差别是脱硫净化后的烟气经立式风机升压后送入回转式烟气加热器升温,然后再送人烟囱排入大气中。紧凑式湿法脱硫工艺已在德国、荷兰、土耳其、印尼、意大利、西班牙、巴西等十几个国家得到推广和应用,脱硫剂分别可以采用CaO、CaO/CaC03、海水,电厂的燃料可以是烟煤、褐煤、石油焦等,长期实际运行的脱硫效率从早期的90%达到目前的95%以上,最高可达%,列出了紧凑式湿法脱硫工艺的部分实例。德国对电厂排放要求十分严格,燃煤火电厂烟气的排放限定值S为400 mg/Nm脱硫效率要大于85%,NO为200 mg/Nm,烟尘50mg/Nm,这使电力生产中为环保支出的成本十分可观,在德国燃煤火力发电厂电力成本的构成中:燃料成本65%、湿法脱硫及生产石膏15%、脱氮成本9%、除尘成本5%、噪音治理2%、水费3%、厂区生态维护费用1%,德国燃煤电厂实际的烟气排放值优于排放限定值,某电厂脱硫'>烟气脱硫的实际运行记录绘出的烟气SO,出口含量和实际运行的脱硫效率,图中表明,脱硫前烟气中的SO浓度约为11000 mg/Nm,脱硫后烟气中的SO浓度约为33mg/Nm,脱硫效率为%紧凑式湿法脱硫过程产生的石膏产量可由下式计算。3、紧凑式湿法脱硫工艺应用过程中的改进措施在紧凑式湿法脱硫工艺的实用过程中,为了进一步提高该脱硫工艺的安全性、经济性和可靠性,主要进行了如下几个方面的技术改进:3、1提高设备运行的可靠性采用耐磨材料和螺旋型大口径喷嘴,解决了喷嘴的堵塞和磨损问题,不仅提高了喷嘴的耐磨性能和浆液流场的均匀性,而且使喷嘴的压差由改进前的 MP下降到 MP,实现了喷嘴节能超过30%。脱硫塔内部采用橡胶内衬结构,不仅节省了钢材,而且提高了脱硫塔的耐腐蚀性能,从而也提高了脱硫塔的使用寿命和运行可靠性。3、2减少脱硫装置的占地面积和初投资采用立式风机给进入烟气加热器的净化烟气升压,节省了紧凑式脱硫装置的安装尺寸,节约了烟气管道的长度,不仅可以大幅度降低烟气的流动阻力,而且节约了该脱硫工艺的占地面积和降低了该脱硫工艺的初投资,便于在已运行的燃煤机组上采用此脱硫工艺,如单机容量400 MW燃煤机组的脱硫塔的直径为,回转式烟气加热器的直径为10m。3、3优化脱硫工艺的运行方式和参数为了改善净化后的烟气中液体颗粒的分离效果,使气液分离器采用瓦楞板折返结构,在增加气液分离面积和增加气液分离流程的同时,降低了分离器的高度,从而也达到了降低脱硫塔高度的效果。在脱硫塔底部采用浆液循环搅拌措施,使脱硫塔底部的浆液的浓度变得十分均匀,提高了脱硫塔底部的容积有效利用率,从而降低了脱硫塔的高度,如930MW燃煤机组的锅炉高度为175m,而紧凑式脱硫塔的高度为48m。将脱硫塔内的喷嘴层设为6层,每两层喷嘴用一台浆泵供给喷嘴浆液,使喷嘴的流量可以调节,从而保证不同烟气SO浓度时均能达到较高的脱硫效率,以增强该脱硫工艺对燃料的适应性。经过上述改进措施的实施,使紧凑式湿法脱硫工艺具有改造费用低、节省占地面积、系统的安全性、经济性和可靠性都很高的一种新的湿法脱硫工艺,得到广泛推广和应用,成为运行中的大型燃煤电厂脱硫改造的首选新工艺。4、结束语紧凑式湿法脱硫工艺实际长期运行的脱硫效率现在已经超高95%,最高已达到98,5%,脱硫效率可以满足燃煤电厂脱硫效率的要求;紧凑式湿法脱硫工艺产生的脱硫石膏产品的质量和石膏中微量元素的含量,完全可以满足市场对石膏产品的质量要求,实现了脱硫副产品的资源化再利用;经过改进的紧凑式湿法脱硫工艺具有改造费用低、节省占地面积、系统的安全性、经济性和可靠性高等独特优点,是已运行的大型燃煤电厂脱硫改造的首选新工艺。本文来自: 环境技术网() 详细出处参考: thermal power plant compact wet flue gas desulfurization technologyRelease date :2009-5-12 13:32:16 (130 read)Key words: flue gas desulfurization desulfurization WFGDIntroductionAcid rain areas in China have more than one-third of the land area in 2005, emissions of S to reach million t, the total control of more than 7,490,000 t, exacerbated by air pollution in China's thermal power plant is the main source S, China's January 1, 2004 implementation GBl3223-2003 "thermal power plant air pollution emission standards," according to periods of thermal power plant provides the maximum allowable emissions of air pollutants the value of thermal power plants in China to speed up the desulfurization devices put into use, the stand-alone capacity more than 20MW of large-scale coal-fired thermal power units, both at home and abroad is currently popular is the use of wet FGD desulphurization, desulfurization requirements completed at the same time, it will also produce a by-product gypsum, FGD by-product of the realization of re-use of resources, China is now running a number of thermal power plants In the original design did not consider the installation of desulfurization equipment, which makes the operation of thermal power plant desulfurization devices to increase the difficulties brought about by the next 10 years the 3 × 10MW installed capacity of thermal power units are required to install desulfurization '> flue gas desulfurization devices, therefore, Our country is now in urgent need of running a thermal power plant not only has the high desulfurization efficiency and save the new area of the wet FGD process, the parent group for Germany's Ruhr (Ruhr AG) of Germany斯特雅克Group (steag AG) since R & D in 1969 for CaO or CaCO compact Desulfurizer WFGD new technology, the desulfurization process with high efficiency and small footprint of the unique advantages of wilhelmshaven in Germany in 1977 the first set of commercial value of the compact WFGD type of industrial test equipment 5 × 10Nm / h for coal-fired power plant flue gas desulfurization, the corresponding turbine-generator unit for the electric power 140 MW; 1982 in the first Taiwan-process desulfurization equipment in the plant put into operation, flue gas desulfurization capacity of × 10Nm / h, corresponding turbine-generator unit for the electric power 450 MW, the process that has been successfully applied in 2000 the thermal power unit capacity of more than 2 × 10MW, the largest single boiler flue gas flow rated × 10Nm / h, a single turbine-generator unit of the largest electric power for the rated 750MW, compact wet FGD process has been in operation is especially suitable for power plant desulfurization equipment to increase the transformation program, a large number of our thermal power plant desulfurization devices an increase in the transformation of program has an important practical , coal-fired thermal power plant technology of compact WFGDCompact wet FGD process flow chart as shown in Figure 1, from electrostatic precipitator (1) temperature of 120 ~ 130% of the flue gas desulfurization to be turning into the flue gas heater (2), the heat released to the from the desulfurization tower (4) temperature of 40 ~ 45 ℃ flue gas purification, after purification of the flue gas is the result of vertical fan (3) to overcome the increased pressure to turn the flow of flue gas heater resistance, purified flue gas temperature to 80 ~ 90% of people behind the chimney (17), in order to achieve the temperature of flue gas entering the chimney request, after the heat from the flue gas desulfurization tower at the bottom of upward mobility into the desulfurization tower, to be in the desulfurization tower Desulfurization of flue gas desulfurization tower from the bottom by the pump (6), step-up from the desulfurization tower located in the upper part of the nozzle (5) out of the mixed slurry desulfurizer chemical reaction to achieve the purpose of desulfurization, chemical reaction products from the desulfurization Tap the bottom of the upper part of the flow of desulfurization tower, with the fan (8) give the air desulfurizer further chemical reaction, the formation of desulfurization '> FGD gypsum by-product of the slurry, gypsum slurry into the pump through (9) give separator (10), separated into the dense slurry gypsum plaster production systems (11), resulting in gypsum products, gypsum production system from (11) separated from the liquid and the separator (10) separated from the liquid into the mixer (12 ), outflow mixer (12) of the slurry into 3 parts into the system desulfurizer Pulp (16), another part of recycling into the desulfurization tower, some by the pump (13) give separator after boost (14), separated from the wastewater into the wastewater treatment system (15) for purification, pump (7) after the slurry desulfurizer boost to stir the bottom, to prevent the lower part of serous desulfurizer precipitation, water desulfurization process required by the pump into the desulfurization tower, with the constant desulfurizer added that allow continuous operation of desulfurization systems, to complete a continuous flue gas , compact WFGD '> FGD application processCompact wet FGD process with common wet FGD process, the main difference is the desulfurization of flue gas purification by following the step-up into the vertical rotary fan flue gas heater to heat up, and then send the person into the air chimney wet FGD process has been in Germany, the Netherlands, Turkey, Indonesia, Italy, Spain, Brazil and other countries has been the promotion and application, respectively, can be used desulfurizer CaO, CaO/CaC03, water, fuel for power plants can be bituminous coal, lignite, petroleum coke, etc., long-term operation of the desulfurization efficiency of 90% from early to reach more than 95% of the current up to , are listed in the compact part of wet FGD process has very strict requirements of power plant emissions, coal-fired thermal power plant flue gas emission limit value of S for the 400 mg / Nm desulfurization efficiency is greater than 85%, NO for the 200 mg / Nm, dust 50mg/Nm, which makes power production the cost of expenditures for environmental protection is very impressive, in Germany the cost of electricity coal-fired power plants in the composition: 65% of fuel costs, the production of gypsum wet FGD and 15%, 9% of the cost of removal, the cost of 5% of dust, noise control 2% , 3 percent water, plant maintenance costs 1% of the ecological, the German coal-fired power plant flue gas emissions from the actual value than the emission limit values, a power plant desulfurization '> FGD drawn record of the actual operation of the flue gas SO, export content and practical operation of the desulfurization efficiency, the figure shows that before the flue gas desulfurization of SO concentration is about 11000 mg / Nm, after the desulfurization of flue gas concentration of SO of about 33mg/Nm, desulfurization efficiency of percent of compact wet FGD gypsum produced by the process of production can be , compact wet FGD process applications in the process of improvement measuresIn the compact utility wet FGD process, in order to further enhance the desulfurization process of the security, economy and reliability, mainly the following aspects of the technical improvements:3,1 to improve the reliability of equipmentWear-resistant materials and the use of large diameter spiral nozzles, nozzle solve the problem of congestion and wear and tear, not only improve the wear resistance and serous nozzle flow field uniformity, but also pressure from the nozzle to improve the pre-fell to MP MP, achieved more than 30% energy-saving internal structure of the use of rubber-lined, steel not only saves, but also enhanced the desulfurization tower corrosion resistance, and thus improve the life of the desulfurization tower and operating desulfurization equipment to reduce the footprint and the initial investmentThe use of vertical flue gas fan heater to enter the flue gas purification step, saving compact size of the installation of desulfurization equipment, saving the length of the gas pipeline, not only can greatly reduce the flow of flue gas resistance, and to save the Desulfurization of the area and reduce the initial investment in desulfurization technology for the coal-fired units have been in operation for the use of this desulfurization process, such as stand-alone capacity of 400 MW coal-fired units in the desulfurization tower diameter of , rotary the diameter of gas-gas heater of 3,3-FGD operation mode and parametersIn order to improve the purification of the flue gas after the separation of liquid particles, so that the use of gas-liquid separator returned to the structure of corrugated board, after an increase in size and increase in gas-liquid separation processes, gas-liquid separator at the same time, reduce the height of the separator, which also reached to reduce the effect of a high degree of desulfurization in the desulfurization tower at the bottom of the cycle slurry mixing measures to desulfurizer the concentration of slurry at the bottom become very uniform, increased volume at the bottom desulfurizer effective utilization, thereby reducing the height of the desulfurization tower, such as coal-fired units of 930MW Boiler height for the 175m, while the compact desulfurization tower height of tower will set the nozzle layer 6 layers, each with a two-tier nozzle pump slurry supply nozzle so that the flow of the nozzle can be adjusted to ensure that flue gas SO different concentration can reach the high desulfurization efficiency, in order to enhance the desulfurization process of adaptation of the above-mentioned measures to improve implementation of the compact wet FGD process with a modified low-cost, save area, the system's security, economy and reliability are very high, a new wet FGD process has been widely and applications, to become in the operation of the transformation of large-scale coal-fired power plant of choice for a new desulfurization , concluding remarksCompact actual wet desulfurization process of long-term operation of ultra-high desulfurization efficiency of 95 percent now, the maximum has reached 98,5%, the efficiency of desulfurization desulfurization efficiency coal-fired power plants to meet the requirements;Compact Wet FGD gypsum produced by the quality and content of trace elements in gypsum, plaster fully meet the market requirements of product quality to achieve desulfurization by-product of re-use of resources;Compact improved wet FGD process with a modified low-cost, save area, the system's security, economy and the unique advantages of high reliability is already running a large-scale coal-fired power plant desulfurization new technology of choice for article from: Environmental Technology Network () detailed reference to the source:
现在网络发达就是好!以前我毕业论文花三千块请别人帮我写的。你两百分换三千块,更有才!
你好,这本书叫什么名字,对我也很重要
真的不好意思,《烟气脱硫工艺主要设备吸收塔的设计和选型》这篇文档是在我做化工原理课程时,在网上下载的众多参考资料之一,由于课设时做的是精馏塔,且对强度计算没有要求,对此文章关注不多,因此对此来源也印象不深。真抱歉!!
滇东发电厂建设规模为4×600MW国产亚临界燃煤发电机组,锅炉采用北京巴威生产的亚临界、单炉膛、“W”火焰燃烧方式、中间一次再热、自然循环、平衡通风、固态排渣、露天布置的全钢架结构悬吊式燃煤汽包炉,汽轮机采用东方汽轮机厂生产的N600——2型亚临界、中间再热、单轴三缸四排汽、冲动凝汽式,设计额定功率为600MW,最大连续出力;发电机采用东方电机股份有限公司DH—600—G型三相同步汽轮发电机,额定容量为667/728MVA,额定功率为600/;电厂除尘采用双室四电场高效电除尘器,除尘效率大于 %;四台锅炉分别设一座脱硫岛,脱硫系统采用北京博奇电力科技有限公司设计建造的高效石灰石-石膏湿法脱硫装置,该烟气脱硫系统(FGD)采用日本川崎的喷淋塔技术,每套处理烟气量为本厂每台600MW100%的烟气量,设计燃煤煤质含硫量为,脱硫效率≥,石膏产量4×47t/h,石膏纯度;四台机组分别配置独立的DCS分散控制系统;废水污水经处理达标后,进入复用水系统回收利用;电厂以500KV一级电压接入系统,2回出线至罗平变电站。
烟气脱硫工艺有几种分类烟气脱硫(FGD)是工业行业大规模应用的、有效的脱硫方法。按照硫化物吸收剂及副产品的形态,脱硫技术可分为干法、半干法和湿法三种。干法脱硫工艺主要是利用固体吸收剂去除烟气中的SO2,一般把石灰石细粉喷入炉膛中,使其受热分解成CaO,吸收烟气中的SO2,生成CaSO3,与飞灰一起在除尘器收集或经烟囱排出。湿法烟气脱硫是采用液体吸收剂在离子条件下的气液反应,进而去除烟气中的SO2,系统所用设备简单, 运行稳定可靠,脱硫效率高。干法脱硫的最大优点是治理中无废水、废酸的排出,减少了二次污染;缺点是脱硫效率低,设备庞大。湿法脱硫采用液体吸收剂洗涤烟气以除去SO2,所用设备比较简单,操作容易,脱硫效率高;但脱硫后烟气温度较低,设备的腐蚀较干法严重。高脱硫率工艺——湿式洗涤工艺,主要是石灰石—石膏工艺;中脱硫率工艺——喷雾干燥工艺、炉内喷钙加湿活化工艺、烟气循环流化床和电子束照工艺;低脱硫率工艺——炉内喷射工艺和管道喷射工艺。低脱硫率工艺 脱硫率≤70%低脱硫率工艺主要包括炉内喷射工艺和管道喷射工艺。这些工艺的特点是投资费用低,但运行成本高,在煤中含硫量高。此工艺适用于剩余寿命短或现场安装空间有限的调峰机组的改造。
建立“名、优、特”烟叶产区 提高烟叶品质和可用性 所在院校:云南省广播电视大学烟草分校 所学专业:农业技术推广2002级烟草种植专业 指导教师:徐江明 学生姓名:赵英佑 学号:029370017 论文完成时间:2003年9月6日 关键词 烟叶;产区;品质;可用性 我国种烟历史悠久,长期的市场选择、烟草种性变异和栽培条件的演变,形成了晒烟、晾烟、烤烟等多种类型。广东南雄晒红烟,湖北黄岗晒黄烟,吉林蛟河晒烟,甘肃、新疆莫合烟等久负盛名。建国后又成功地引进了香料烟和白肋烟,尤其是在国家烟草专卖局的扶持下,逐步形成了一批优质烟生产基地。但在几十年的发展过程中,由于片面发展烤烟而忽视了其它类型烟叶,使很多优良的晒晾烟资源丢失或绝迹。在烟叶高农特税及多种附加税的诱导下,各地政府积极发展烟叶生产,致使不适宜区劣质烟叶也挤占了市场,适宜区由于缺乏正确的技术引导,使我国烟叶的“量”和“质”均不断出现大起大伏现象。同时在多种生态条件下共同追求一个技术模式和质量目标的做法,使有突出质量风格的烟叶走型变味,相当比例的烟叶因与市场脱节而成为库存。随着人民生活水平的提高,消费者对烟气安全性的要求也越来越高,面对加入WTO后国外卷烟对我国市场的冲击,必须尽快调整种植布局,优化烟区结构,建立名优烤烟、白肋烟和香料烟生产基地,筛选恢复传统晒晾烟名品,使我国烟叶生产整体质量达到国际水平。 1 世界先进产烟国烟叶生产概况 国外的烟区划分是以环境条件和烟叶质量为依据,通过自然选择形成优质烟区。不同烟区的环境条件造成了烟叶质量风格的差异,将这些烟区分型,卷烟工艺配方人员则可根据不同类型烟区烟叶的质量风格进行配方。美国的烤烟约51%种植在北卡罗莱纳州,弗吉尼亚、北卡罗莱纳、南卡罗莱纳、佐治亚4个州的烤烟约占全美的91%[1]。在美国的分级标准中把这些产烟区分11型、12型、13型、14型[2]。肯塔基州的白肋烟约占全美的53%[1],田纳西州约占,其它产区只有零星种植。因此,市场选择起到了优化烟区形成的作用。P�6�1M、BAT、大陆等烟草公司在收购季节就到拍卖市场直接购烟叶。不适宜的产烟区因产品没有市场已被逐步淘汰,故美国的烟叶种植纯粹是由市场选择。各大烟草公司除自身具有雄厚的技术力量外,为了购买到优质烟叶,给产地的州立大学提供大量的科研和技术推广经费,以改进生产技术,提高烟叶质量。巴西的烟区主要分布在巴拉那、里奥格兰德和桑塔卡塔里那南部3个省,北部种植面积仅占巴西的5%[3]。这些烟区被十几家烟草公司瓜分,在各公司的辖区里,由公司负责技术指导,提供贷款和物资供应,生产的烟叶由所属公司收购。土耳其的烟农种植烟叶要有许可证,试种3年被政府认可后方可获得种烟资格。 世界优质烟生产国的种植布局大多已固定,科学研究的主要任务是不断改进生产技术以提高烟叶质量,如防治病虫害提高烟叶生产保险系数,提高自动化程度以降低劳动强度,提高吸烟安全性,利用生物技术调节烟叶的化学成分和提高烟草抗病性等。 2 我国烟叶生产中存在的问题 我国烟叶生产经过几十年的发展,年种植面积发展到100万公顷左右,年收购量180万吨左右,加上晒晾烟年收购量可达到200万吨左右,较好地满足了我国卷烟工业和出口的需要。但与发达国家相比较,我国的烟叶生产还存在很多问题需要尽快解决。 烤烟独占鳌头 卷烟产品需要烤烟、晒晾烟、白肋烟、香料烟等多种类型的原料,尤其是混合型卷烟要求晒晾烟的比率较大。多年来,我国烤烟型卷烟发展很快,为满足烟叶总量的需要,下达烤烟种植计划较多。地方政府为获取较多的财政积累,对种植面积的保证措施也较多。同时因为烤烟调制需时短,受气候影响较小,烟农也乐于种植。这些原因造成烤烟面积和总产不断增加。与此同时,种植历史悠久,种质资源丰富的晒晾烟则逐步萎缩。20世纪70年代末期尚有1600个县种植,其产量约占烟叶总产量的16%,但由于卷烟工业需求量小,使其长期得不到重视,大部分地区没有纳入国家计划,致使面积缩减,产量减少,质量下降,许多优良品种失传。这种状况与当前卷烟工业发展对晒晾烟的要求不相适应。 不适宜区和次适宜区种植面积过大 烟草喜温、喜光,适宜种植在光热资源充足和微酸性土壤条件下,我国很多省区的自然条件适合烟草种植,但很多不适宜和次适宜区也在种植烟叶。西北部低温冷凉、土壤偏碱,不适宜种植烟草,但仍有不少地方种烟。近年来新疆在发展了一定规模的香料烟后,在伊犁和石河子地区种植了烤烟,烟叶难以正常成熟,少香无味。黄淮烟区覆盖面大,其中土壤pH值超过8的地区很多,有的甚至已盐渍化,但烟叶仍有普遍种植。在不适宜区、次适宜区或在适宜地带的非适宜区中生产的劣质烟叶通过搭配销售等手段,使烟叶进入卷烟配方或变成无效库存,降低了行业的经济效益。 生产模式单一,不适销烟叶比例较大 多年来,我国烟叶生产主要是以指令性计划方式安排,只有面积、收购量的计划,而没有分类型、分档次的生产计划,因此,形成了目标、质量单一的生产局面。20世纪70年代追求烟叶高产,形成了品种多、乱、杂,种植密度过大,营养不合理等技术问题,全国烟叶整体质量为叶小、片薄、油分差、烟碱含量低,少香无味。进入20世纪80年代烟叶生产以提高单叶重、烟碱含量为目标,但矫枉过正,致使20世纪90年代初期出现烟碱含量过高的问题。截止目前,上等烟缺口仍较大,不适销烟叶的工商库存达50万吨以上,上部叶比例达40%以上。 土壤贫瘠化,烟叶整体质量低 我国烟叶香气量不足的主要原因之一是农业生态环境的改变,小型农机具代替了耕牛,牲畜粪肥减少了,作物秸杆大多就地焚烧,使宝贵的有机肥资源流失且污染了环境,造成土壤贫瘠化。在目前优质烟生产基础较差的情况下,为了尽可能地提高烟叶香气质量,有必要深入研究烟叶香气与土壤有机质的关系,从中确立能够产生较好香气的土壤有机质阈值,采用新的技术手段弥补土壤缺陷,建立与我国生态环境相适应的烟草施肥技术体系。 缺乏重点,名区不名 1985年《全国烟草种植区划研究报告》中提出,在滇中、滇东、黔北、闽西建立优质烟生产基地,在湘南、豫中、豫西、鲁中、淮南等地建立烤烟生产基地,在湖北、四川建立白肋烟生产基地等。从工业需要情况看这些产地的商品竞争力较强,但由于缺乏政策倾斜和技术指导,使得烟叶生产也随着全国的生产情况而改变,近年来滇中、滇东烟叶烟碱含量较高,贵州烟叶也因面积和总产大起大伏而使整体质量水平受到影响,黄淮烟区的烟叶销售形势也不乐观,造成了优质产区名烟不名。 3 开发“名、优、特”烟区的思路和技术路线 调整生产布局,优化烟区结构,划分生产区系 在烟叶种植分布普查的基础上,根据“生物相似论”以生物体反应(如烟叶评吸结果)为主,结合生态因素的综合评估,推测“气候”相似,选择烟区,划分生产区系。根据分区结果和烟叶质量风格进行香吃味品质的分型定位,并制定相应的定向栽培技术,从而实现优质烟叶综合配套生产技术的集成创新。通过“名、优、特”烟叶的研究和开发,重新优化种植布局,让生态条件好的产区名起来,使不适宜区、次适宜区限期逐步压缩,直至淘汰。立项开展全国不同生态区气候、土壤调查分析及烟叶品质测试分析研究;制订全国范围内的烟叶品质区划、品质分型及定向栽培技术方案;提出混合型主料烟、烤烟型主料烟及填充料烟的品质指标、适宜产区和生产技术方案。 筛选健全类型品类,满足混合型卷烟开发的需要 目前仍有较大种植面积的湘西晒红烟,云南腾冲晒烟,广东南雄、连县、鹤山晒烟,黑龙江亚布力晒烟,吉林蛟河晒烟等,且有较大开发价值,能够满足我国混合型卷烟对晒晾烟的需要。湖北建始、鹤峰,重庆达州、万州、宣汉的白肋烟,云南保山、新疆石河子、湖北十堰的香料烟均已具备了较好品质,要通过进一步研究开发,建立起我国白肋烟、香料烟的优质产区。 提高烟叶生产整体水平,增强烟草行业的竞争力 通过调整生产布局建立的生产区系要具备良好的烟叶生态条件,在此基础上通过改良土壤环境,建设水利、调制等基础设施,优化物资供应和提高烟农素质等措施,提高烟叶生产的整体水平。工业企业可根据各类型烟叶的产地及质量风格,挑选适宜的烟叶原料,创立名牌卷烟,提高产品质量的稳定性,增强我国卷烟产品的市场竞争能力。 工农业相结合,边评价边改进 “名、优、特”烟叶的研究与开发工作应坚持与卷烟工业的紧密结合,从光、温、水、土等自然环境角度选择优质烟区的同时,应由卷烟工业提出选择和评价意见,以实现烟区的逐步优化,市场的循序集中。烤烟、晒晾烟、白肋烟、香料烟等类型均应采取一边研究,一边评价和工业验证,一边大规模开发的做法,使其尽快形成名产和规模。 开展国际合作 在国际市场上,市场选择、优胜劣汰的经济规律使烟叶生产步入了较高水平。在“名、优、特”烟叶的开发过程中,应积极引进国际市场的质量观念,并尽快与之接轨。同时,邀请跨国烟草公司参与开发和烟叶质量的评价、论证,借助于其雄厚的技术力量,提高烟叶生产的整体水平和技术人员的素质,力争把我国不同类型的烟叶尽快推向国际市场。 参考文献 [1]赵献章.中国烟叶分级[M].北京:中国科学技术出版社,1991. [2]刘卫群.巴西烤烟生产技术考察报告[R],2000. [3]王宝华,吴帼英.地方晒晾烟普查鉴定及利用的研究[J].中国烟草学报,1992,(2):45-54.
KR法与喷吹法在铁水预脱硫中应用的比较 面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 随着社会经济和钢铁工业的高速发展,社会对钢铁质量的要求越来越高、越来越苛刻,产品的种类也急剧增加,尤其是高品质高附加值钢种的需求不断在增大。面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 近30年来铁水脱硫技术迅速发展,现已经有十几种处理方法,其中应用最广且最具代表性的主要是喷吹法和KR机械搅拌法。它们在技术上都已相当成熟,从两种工艺在实际生产中的应用效果来看,二者是互有长短。虽然喷吹法发展迅速,目前在实际生产中应用更广泛,可KR法在这几年中又有了新发展,呈现出强劲的势头。那么,这两种工艺模式各有什么优劣势?哪种更具有应用前景呢?在国内外冶金界始终没有较统一的看法。为此,本文着重就两种工艺模式的发展、应用和运营成本作了比较,尤其是它们对整个流程影响的比较,希望能对技术人员及企业技术的选择提供参考。 KR法与喷吹法的工艺及特点 在进行比较前,先了解两种方法的工艺及特点是很有必要的,不仅有利于理解两种方法的实质,也是深刻理解对两种脱硫模式分析比较的前提。 KR机械搅拌法,是将浇注耐火材料并经过烘烤的十字形搅拌头,浸入铁水包熔池一定深度,借其旋转产生的漩涡,使氧化钙或碳化钙基脱硫粉剂与铁水充分接触反应,达到脱硫目的。其优点是动力学条件优越,有利于采用廉价的脱硫剂如CaO,脱硫效果比较稳定,效率高(脱硫到≤ %) ,脱硫剂消耗少,适应于低硫品种钢要求高、比例大的钢厂采用。不足是,设备复杂,一次投资较大,脱硫铁水温降较大。 喷吹法,是利用惰性气体(N2或Ar)作载体将脱硫粉剂(如CaO,CaC2和Mg)由喷枪喷入铁水中,载气同时起到搅拌铁水的作用,使喷吹气体、脱硫剂和铁水三者之间充分混合进行脱硫。目前,以喷吹镁系脱硫剂为主要发展趋势,其优点是设备费用低,操作灵活,喷吹时间短,铁水温降小。相比KR法而言,一次投资少,适合中小型企业的低成本技术改造。喷吹法最大的缺点是,动力学条件差,有研究表明,在都使用CaO基脱硫剂的情况下,KR法的脱硫率是喷吹法的四倍。 KR法与喷吹法的发展及现状 从前面分析二者的方法和特点可以知道,它们互有长短、各具特色,这也决定了它们的发展历程和现状必然是不同的。进一步了解它们的发展和现状,将更有利于理解各自技术的特点。 从时间上来看,喷吹法的研发及应用要早于机械搅拌法。喷吹法主要有原西德Thyssen的ATH(斜插喷枪)法、新日铁的TDS(顶吹法)和英国谢菲尔德的ISID法,早在1951年,美国钢厂就已成功地运用浸没喷粉工艺喷吹CaC2粉进行铁水脱硫。直至今日,尽管两种脱硫工艺方法在技术上都已相当成熟,全世界绝大多数钢铁厂广泛采用仍是铁水喷粉脱硫工艺。机械搅拌法有原西德DO (Demag-Ostberg) 法、RS (Rheinstahl) 法和赫歇法, 日本新日铁的KR (Kambara Reactor) 法和千叶的NP 法,其中,以KR法工艺技术最成熟、应用最多。KR法搅拌脱硫是日本新日铁广钿制铁所于1963年开始研究,1965年才实际应用于工业生产,之后迅猛的发展趋势表明,它具有投入生产使用较早的喷吹法无可比拟的某种优势。 在冶金工业中喷吹这种形式应用非常广泛,比如在转炉及精炼工艺中的各种顶吹、底吹和复吹技术等。当铁水预处理时,使用喷吹法把脱硫剂加入铁水中进行脱硫,这显然是可行的且易于人们接受。最早脱硫剂是以氧化钙基为主,辅助添加CaC2,而且喷吹过程也很难获得较好的动力学条件,这时主要面临两个问题:一是,如何保证CaC2的安全存贮运输和脱硫剂的脱硫效果;二是,怎样解决因动力学不足导致的脱硫效率低下,不能实现深脱硫的问题。 第一个问题侧重于开发使用更具有脱硫效率且安全的脱硫剂,于是出现了镁基复合喷吹法,脱硫效果有所改善却成效不大,而且镁粉在运输、储存、使用中同样存在很多的安全隐患,给生产带来诸多不便。然而,新型脱硫剂——钝化颗粒镁的开发成功,使纯镁喷吹脱硫技术得以实现,达到了真正高效安全的工艺目标,目前,镁系脱硫剂已经成为世界铁水预处理中的主导脱硫材料。针对第二个问题,如何才能获得更好的动力学条件呢?从工艺模式着手,技术人员研发出了具有实际应用价值的机械搅拌脱硫法,其中以KR法为典型,在根本上改善了脱硫过程中的动力学条件,并可以在脱硫剂中不加CaC2而主要采用CaO,避免了生产中使用CaC2而带来的不便和危险。然而,在工业应用时却又出现许多技术难题,比较突出的如,搅拌头的使用寿命较短;单工位操作设备导致更换搅拌头的同时无法进行铁水脱硫等。可最终这些难点还是被陆续攻破,解决了搅拌头的寿命问题,使其从原来的几十炉提高到现在的几百炉,而且摸索出了氧化钙基脱硫剂应该有一个最佳的指标要求,可以达到最理想的脱硫效果。目前,KR法已经完全可以达到深脱硫的要求,即把铁水中的硫脱至小于。同时,双工位布置形式的出现克服了单工位的不足,使生产的连续化程度得以提高。很长时间,KR法成本问题(尤其是前期投资)加上其过程时间较长,以及不适应于大型铁水罐,故发展缓慢;直至二十世纪后期,其投资降低后,加上运行费用低廉,所以又受到了重视。 KR法与喷吹法的比较 从铁水脱硫工艺倍受人们的重视以来,KR法与喷吹法技术一直处于发展之中,目前虽仍需完善可也已趋近于成熟,这样两者之间才更具备可比性,本文主要从以下几文面进行具体比较。 1 技术与设备 在喷吹法中,单吹颗粒镁铁水脱硫工艺因其设备用量少、基建投入低、脱硫高效经济等诸多优势而处于脱硫技术的主要发展趋势之一,可在相当长的时间我国都是引进国外的技术和设备。到2002年10月国内才首次开发出铁水罐顶喷单一钝化颗粒金属镁脱硫成套技术设备,整套装置中,除重要电器元器件采用进口或合资的外,其余机电产品100%实现了国产化,包括若干最关键的技术设备。喷吹技术和设备的国产化直接降低了建设投资和运行操作的成本,从前期的一次性投资来看,要比KR法略有优势。 虽然搅拌法的技术专利也是国外拥有,可从其设备和技术本身而言并没有难点,机械构成是常规的机械传动和机械厂提升;加料也采用的是常规大气压下的气体粉料输送系统,可以说在系统的机、电、仪、液等方面的技术应用都是十分成熟。尽管如此,KR 法设备仍然是重量大且较复杂,可它的优势是运营操作费用低廉,由此所产生的经济效益完全可弥补前期的一次性高额投资。根据有关推算,一般3~5年即可收回所增加的投资。2000年武汉钢铁设计研究院针对武钢二炼钢厂的情况,对KR 法和喷吹法两种方案的投资进行了估算,KR 法的投资估算比喷吹法投资估算多200万元。 2 脱硫效果 实际生产过程中的铁水脱硫效果,不仅与设备有关,而且受脱硫剂、操作工艺水平、时间及温度等诸多因素影响,本文主要考虑的是纯镁喷吹法和CaO基KR法。一般对铁水预处理的终点硫含量要求是不高于50ppm,工厂生产和实验研究结果表明,喷吹法因其脱硫剂Mg的较强脱硫能力,KR法由于其表现出色的动力学条件,在可以接受的时间内(一般≤15min),它们都能达到预处理要求的目标值。国内各大钢厂的具体脱硫数据可见表1。在喷吹法中,复合脱硫剂使用CaO比例越高,脱硫效果越差,使用纯镁时脱硫率最高;KR法使用CaO脱硫剂,脱硫率只是略低于喷吹纯镁。 处理容器 脱硫剂 脱硫剂消耗/kg·t -1 脱硫率ηS/ % 最低硫/ ppm 纯处理时间/ min 处理温降/ ℃ 铁损/ kg·t-1 钢厂 机械搅拌法- KR 法 100t铁水罐 CaO ≤20 5 28 - 武钢二炼 CaO 基喷吹法 280t混铁车 CaO基 75 60 - 宝钢一炼 CaC2 + CaO喷吹法 140t铁水罐 50% CaO+50% CaC2 40 - 31 - 攀枝花 Mg +CaO混合喷吹 100t铁水罐 20% Mg+80% CaO - 7 武钢一炼 Mg +CaO复合喷吹 300t铁水罐 Mg + CaO(1:3) Mg < 10 - - 宝钢 Mg + CaO复合喷吹 160t铁水罐 Mg + CaO(1:2~3) Mg 90 ≤50 8~14 - 本钢 纯Mg 喷吹 100t铁水罐 Mg ≥95 ≤10 5~8 武钢一炼 3 温降 铁水温降的消极影响是降低了铁水带入转炉的物理热,主要体现在转炉吃废钢的能力下降,导致转炉冶炼的能耗和物料消耗升高,直接影响了冶炼的经济成本。KR法因动力学条件好,铁水搅拌强烈,而且CaO的加入量较大,导致温降也大,目前国内KR法工艺应用较成熟的武钢可以使温降控制在28℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。 4 铁损 铁水预处理脱硫过程的铁损主要来自于两部分:脱硫渣中含的铁和扒渣过程中带出的铁水。由于两种工艺模式的不同,实际渣中含铁和扒渣带出铁量都有较大的差别,目前没有公开发表的详细对比数据。一方面,较少的脱硫剂产生的脱硫渣少,则渣中含铁量也低,由此颗粒镁喷吹脱硫的铁损要少一些;另外,颗粒镁喷吹脱硫的渣量少,扒净率相对低,而KR法的脱硫渣扒净率相对高。就扒渣的铁损而言,由于还取决于高炉渣残留量及扒渣过程,综合考虑看KR法与喷吹法区别不大。究竟哪个是主要因素,与各钢厂的实际操作有很大的关系,通过换算,得出具体数据可见表2。可见,喷吹法时,采用脱硫剂的CaO含量越高,则扒渣铁损越大;而KR法使用CaO作为主要脱硫剂成分,其铁损只是略高于喷吹镁脱硫铁损。 5 脱硫剂 铁水预处理过程中,脱硫剂是决定脱硫效率和脱硫成本的主要因素之一。根据日本新日铁曾做的计算,脱硫剂的费用约为脱硫成本的80%以上,所以,脱硫剂种类的选择是降低成本的关键。然而,选择时必须得结合考虑不同工艺方法的特点。 基于动力学条件和脱硫效率,目前喷吹法主要采用的是镁基脱硫剂,KR法采用的是石灰脱硫剂。根据理论计算,在1350℃,镁脱硫反应的平衡常数可达×103,平衡时的铁水含硫量可达×10-5%,大大高于CaO的脱硫能力。然而,上文已经把两种脱硫剂在各自工艺中的脱硫效果进行了对比,表明,结合实际生产工艺后它们都能达到用户对脱硫的最高要求。 在脱硫方式选择时还要考虑脱硫剂的一个因素,就是脱硫剂的来源问题。一般而言,大部分钢铁生产企业都要使用石灰石,要么有自己的石灰厂,要么有稳定的协作供货渠道,来源稳定,成本稳定,而且供货及时,不用考虑仓储问题。虽然我国的金属镁资源丰富,可是相对钢铁企业来说,获得搅拌法所需的CaO基脱硫剂更为容易,钝化颗粒镁就不具备这些有利因素。℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。
天然气作为一种优质、高效的清洁能源,在多个领域已获得广泛的应用,并且发展前景广阔。下面是我精心推荐的天然气学术论文,希望你能有所感触!
天然气净化综述
[摘 要]介绍脱碳、脱汞、脱水工艺方法。
[关键词]天然气;净化;工艺。
中图分类号:TE645 文献标识码:A 文章编号:1009-914X(2014)18-0107-01
1 引言
天然气进入液化前,需要脱除其中的酸性气体CO2。酸性气体CO2将导致设备腐蚀,还将在液化的低温部分形成固态的干冰,堵塞设备和管道,使生产无法进行,故设置酸性气体脱除单元脱除原料气中的CO2,使其达到液化的天然气质量要求。原料气还需要进行脱水脱汞处理,使水含量小于1ppm,汞含量小于μg/m3。目的是可防止天然气中的水分析出,在液化时结冰,使管道和仪表阀门出现冰堵,发生事故;因液态水的存在,未脱除的酸性组份会对压力管道和容器造成腐蚀。若汞含量超标将会严重腐蚀铝制设备,降低设备使用寿命,且将造成环境污染以及检修过程中对人员的危害。
2 脱碳工艺方法介绍
a)脱碳工艺方法
脱碳工艺方法分为干法脱碳和湿法脱碳两大类。
1)干法脱碳
主要有固体吸附和膜分离法。固体吸附CO2与分子筛脱水类似,天然气中的CO2被吸附在多孔状固体上(如分子筛),然后通过加热使CO2脱除出来。该方法工艺流程较简单,而且可以与脱水分子筛布置在同一个塔中,从而达到减少单元数量、简化流程的目的。但受固体吸附剂吸附容量较小的限制,比较适合含硫,特别是有机硫的原料。
膜分离是将天然气通过某种高分子聚合物薄膜,在高压条件下,薄膜对天然气中不同组份的溶解扩散性的差异,形成了不同组份渗透通过膜的速率不同,从而选择性将CO2与其它组份进行分离。该方法投资较高,更适合CO2浓度较高的天然气脱碳工艺。
2)湿法脱碳
分为物理吸收法和化学吸收法。物理吸收法是基于有机溶剂如碳酸丙烯脂、聚乙二醇二甲醚和甲醇等作为吸收剂,利用CO2在这些溶剂中的溶解度随着压力变化的原理来吸收CO2。其特点是在高压及低温的条件下吸收,吸收容量大,吸收剂用量少,且吸收效率随着压力的增加或温度的降低而增加。而在吸收饱和后,采用降压或常温汽提的方式将CO2分离使吸收剂再生。
化学吸收法是以可逆的化学反应为基础,以碱性溶剂为吸收剂的脱碳方法。溶剂与原料气中的CO2反应生成某种化合物,然后在升高温度、降低压力的条件下,该化合物又能分解并释放CO2,解析再生后的溶液循环使用。化学吸收主要有碳酸钾吸收法、醇胺吸收法和氢氧化钠吸收法等。
b)工艺路线比选
目前在天然气脱碳工业上主要运用以下工艺。
1)膜分离工艺
膜分离的基本原理就是利用各气体组份在高分子聚合物中的溶解扩散速率不同,因而在膜两侧分压差的作用下导致其渗透通过纤维膜壁的速率不同将不同气体分离。推动力(膜两侧相应组份的分压差)、膜面积及膜的分离选择性,构成了膜分离的三要素。依照气体渗透通过膜的速率快慢,可把气体分成渗透系数较大的“快气”和渗透系数相对较小的“慢气”。常见气体中,H2O、H2、He、H2S、CO2等称为“快气”;而称为“慢气”的则有CH4及其它烃类、N2、CO、Ar等。膜分离器内配置数万根细小的中空纤维丝,中空纤维丝的优点就是能够在最小的体积中提供最大的分离面积,使得分离系统紧凑高效,同时可以在很薄的纤维壁支撑下,承受较大的压力差。天然气进入膜分离器壳程后,沿纤维外侧流动,维持纤维内外两侧一适当的压力差,则气体在分压差的驱动下“快气”(H2O、CO2)选择性地优先透过纤维膜壁在管内低压侧富集导出膜分离系统,渗透速率较慢的气体(烃类)则被滞留在非渗透气侧,以几乎跟原料气相同的压力送出界区。
2)活化MDEA(甲基二乙醇胺)工艺
活化MDEA工艺于20世纪60年代开发,第一套活化MDEA工业装置于1971年在德国巴斯夫的一座工厂中被投入生产应用。活化MDEA法采用45~50%的MDEA水溶液,并添加适量的活化剂以提高CO2的吸收速率。MDEA不易降解,具有较强的抗化学和热降解能力、腐蚀性小、蒸汽压低、溶液循环率低,并且烃溶解能力小,是目前应用最广泛的气体净化处理溶剂。该工艺应用范围广泛,可以用来从合成氨厂的合成气中去除CO2,也可净化合成气、天然气,及高炉气等专用气体。目前活化MDEA工艺已成功运用于全世界超过250个气体净化工厂中,其中包括80个天然气处理厂。且该工艺可应用到现有工厂的技术改造上,近年来,国外的大型化肥装置已有采用活化MDEA水溶液改造热钾碱脱CO2的趋势。
3)Selexol工艺
Selexol工艺是美国Allied化学公司(现归属Norton公司)在20世纪60年代研发成功。该工艺所使用的吸收剂(聚乙二醇二甲醚混合物)具有极低的蒸汽压、无腐蚀性耐热降解和化学降解等特点,适用于合成气和天然气的净化处理。目前全球采用Selexol工艺装置的数量超过55套,但Selexol工艺存在很多问题,如聚乙二醇二甲醚混合物的溶液粘度较大,增加了传质阻力,不利于吸收过程,同时聚乙二醇二甲醚混合物溶解和夹带天然气中的少量烃类物质等。
4)冷甲醇工艺
冷甲醇工艺是由德国Linde AG公司和Lurgi公司于20世纪50年代联合开发的气体净化工艺。该工艺采用甲醇作为溶剂,依据甲醇溶剂对不同气体溶解度的显著差别来脱除H2S、CO2和有机硫等杂质。由于所使用的甲醇因蒸气压较高,需在低温下(-55℃~-35℃)操作。该工艺目前多用于渣油或煤部分氧化制合成气的脱硫和脱碳,而在其它项目单独用于脱除CO2的工业应用实例很少。
5)低温分离工艺
低温分离工艺是利用原料气中各组份相对挥发度的差异,通过冷冻制冷,在低温下将气体中组份按工艺要求冷凝下来,然后用蒸馏法将其中各类物质依照沸点的不同逐一加以分离。该方法应用较多的工艺主要是美国的Rayn-Holmes工艺,目前全世界工业装置超过8套。该方法适用于天然气中CO2含量较高,以及在CO2含量和流量出现较大波动的情形。但工艺设备投资费用较大,能耗较高。
3 脱水脱汞工艺介绍
a)概述
天然气的脱水方法主要有三种:冷却法、甘醇吸收法及固体(如硅胶、活性氧化铝、分子筛等)吸附法。
1)冷却脱水时利用当压力不变时,天然气的含水量随温度降低而减少的原理实现天然气脱水。此法只适用于大量水分的粗分离。若冷却脱水过程达不到作为液化厂原料气中对水露点的要求,则还应采用其它方法对天然气进行进一步的脱水。
2)吸收脱水是用吸湿性液体(或活性固体)吸收的方法脱除天然气中的水蒸气。用作脱水吸收剂的物质应具有以下特点:对天然气有很强的脱水能力,热稳定性好,脱水时不发生化学反应,容易再生,粘度小,对天然气和液烃的溶解度较低,起泡和乳化倾向小,对设备无腐蚀性,同时价格低廉,容易得到。实践证明二甘醇及其相邻的同系物三甘醇是常用的醇类脱水吸收剂。(1)甘醇胺溶液:优点:可同时脱除水、CO2和H2S,甘醇能降低醇胺溶液起泡倾向。缺点:携带损失量较三甘醇大,需要较高的再生温度,易产生严重腐蚀,露点小于甘醇脱水装置,仅限于酸性天然气脱水。(2)二甘醇水溶液:优点:浓溶液不会凝固,天然气中有硫、氧和CO2存在时,在一般操作温度下溶液性能稳定,高的吸湿性。缺点:携带损失比三甘醇大,露点降小于三甘醇溶液,投资高。(3)三甘醇水溶液:优点:浓溶液不会凝固,容易再生,携带损失量小,露点降大。缺点:投资高,当有轻质烃液体存在时会有一定程度的起泡倾向,运行可靠。
甘醇法适用于大型天然气液化装置中脱除原料气所含的大部分水分。
4 结语
通过以上对天然气净化工艺的综合介绍及对比,旨在为今后液化天然气装置技术选用提供借鉴和设计参考。
参考文献
[1] 徐文渊、蒋长安等,天然气利用手册,中国石化出版社,2001.
[2] 顾安忠,液化天然气技术,机械工业出版社,2003.
点击下页还有更多>>>天然气学术论文
[1]夏道宏,苏贻勋等.国内外轻质油品脱臭催化剂研究进展[J].石油大学学报,1995,9⑶:102~109[2] 杨洪云,赵德智等.油品脱硫工艺技术及其发展趋势[J].石油化工高等学校学报,2001,14⑶:26~31[3]夏道宏,苏贻勋等.汽油中硫醇的分离及结构、组成分析[J].炼油设计,1995,25⑴:46~49[4] 郭荣华.甲醇-碱液复合溶剂萃取法提高催化裂化柴油安定性的研究[J].炼油设计,1999,29⑹:23~25[5] 李成岳,张金昌等.汽油和柴油脱技术进展[J].石化技术与应用,2002,20⑸:293~295[6] 徐志达,陈冰等.活性炭纤维用于汽油脱硫醇的研究(Ⅱ)动态吸附[J].石油炼制与化工,2000,31⑸:42~45[7] 张晓静,秦如意等.催化裂化汽油吸附脱硫工艺研究[J].炼油设计,2001,31⑹:44~47[8] 张金昌,王艳辉等.负载活性炭催化脱除油品中硫化物的研究[J].石化技术与应用,2002,20⑶:149~151[9] 祝良富,王月霞.清洁燃料油及生产新工艺[J].天然气与石油,2001,19⑷:25~29
燃烧烟气中去除氮氧化物的过程,防止环境污染的重要性,已作为世界范围的问题而被尖锐地提了出来。以下是我为大家整理的关于臭氧脱硝工艺流程,给大家作为参考,欢迎阅读!
一、工艺说明
1. 工艺原理
利用臭氧发生器制备臭氧,通过布气装置把臭氧气体均布到烟气管道截面,在管道中设置烟气混合器,使臭氧与含NOX的烟气在烟气管道中充分混合并发生
氧化反应。将烟气中的NOX氧化为容易吸收的NO2和N2O5。再利用氨法脱硫洗涤塔,
对NO2和N2O5进行吸收反应,生成硝酸氨与亚硝酸氨。最后再与硫酸盐一起富集、
浓缩、干燥后,作为氮肥加以利用。
其主要反应式为:
NO+O3=NO2+O2
2NO2+O3=N2O5+O2
2NO2+2NH3+H2O=NH4NO2+NH4NO3
N2O5+2NH3+H2O =2NH4NO3
2. 工艺流程图
3. 主要工艺参数
-6
每小时需要处理的NOX的量为:60000×(800-100)×10=42kg/h
二、 主要设备说明
1. 臭氧发生器
根据烟气中NOX的含量,计算所需要的臭氧设备约为2台25kg/h的臭氧发生器,两用一备,配置气源控制系统,冷却水系统及配套齐全的自动控制(PLC)、检测仪器等。
至于采用何种气源(空气或氧气)的臭氧发生器系统,根据项目现场情况经与业主协商后确定。
臭氧制备工艺及流程(氧气源工艺)
业主提供的氧气管道气通过设置的一级减压稳压装置处理后,经过氧气过滤器进行过滤,并通过露点仪检测进气露点,通过流量计计量进气量,并与PLC站联动。每套系统的进气管路上设置安全阀用于泄压保护系统。
在臭氧发生室内的高频高压电场内,部分氧气转换成臭氧,产品气体为臭氧化气体,经温度、压力监测后、经出气调节阀后由臭氧出气口排出。臭氧发生室出气管路上设有臭氧取气口,并装有电磁阀,每个设备的取气管分别通过各自的发生臭氧浓度仪检测臭氧出气浓度。
臭氧发生器设置1套封闭循环冷却水系统,通过板式换热器换热,为臭氧发生器提供冷却水。并配置一台冷却循环水泵,冷却循环水泵受PLC自动控制系统监控。冷却水进水管路设置压力传感器,用于检测并反馈到PLC自动控制系统,冷却水出水有温度变送器、流量开关等,当冷却水温度超过设定值或者流量低于设定值时报警。本系统设计按外循环冷却水入口温度33℃,如水温超过33℃时,系统能连续稳定工作,但产能有所降低,可通过调整运行条件达到要求的臭氧产量。内循环水建议采用蒸馏水。
臭氧发生器设置检修时剩余臭氧的吹扫系统和冷却水低点排空。臭氧出气管路上设计取样口,并设置臭氧浓度在线检测仪。
臭氧设备放置点设计安装氧气泄漏报警仪(具备现场声光报警),周围环境中检测到氧气浓度超标检测仪将报警。臭氧设备放置点设置臭氧泄漏报警仪(具备现场声光报警),用于检测臭氧设备放置点是否有臭氧泄漏,当检测到臭氧浓度超标时报警。
如果确定了是其它气源的臭氧系统,再提供流程。
臭氧发生器技术参数
臭氧产量及浓度
电气性能
氧气用量
公共工程
2. 臭氧布气装置与烟气混合器
为了使臭氧与烟气中的NOX充分混合,从臭氧发生器出来的臭氧气体通过环形烟气布气装置,均匀的通入需治理的烟气风管截面中,然后再通过烟气混合器使烟气产生揣流,保证臭氧与烟气中的NOX能够充分接触而发生反应。由于臭氧与NOX的反应非常快速,基本不会受到SO2的影响,因此不需要额外增加设备,只需要在烟气管道中进行即可。布气装置与烟气混合器的总压损不超过300Pa。
3.洗涤装置
采用碱液洗涤塔对生成的NO2进行吸收治理,如果与烟气脱硫同时进行,可以利用湿法脱硫塔,同时进行NOX和SO2的吸收治理。建议碱液采用氨水,最终生成产物为NH4NO2和NH4NO3。
三、工艺特点
⑴ 反应时间短,速度快。臭氧与NOX反应速度极快,只需要很短的时间,即可将NOX氧化成高价态的NO2和N2O5。因此不需要特别的反应设备,只需要在烟气管道中混合,即可进行。
⑵ 吸收完全,净化效率高。由于NO2与N2O5都是易溶于水的物质,在碱性环境下,只需要很小的喷淋量,即可彻底吸收烟气中的NOX,转化为硝酸盐和亚硝
酸盐,因此烟气净化效率高。
⑶ 不产生二次污染。由于臭氧与NOX反应的生成物是O2,在烟道中不影响排放。而且还可以提高SO2的转化效率。
⑷ 可以直接利用脱硫洗涤塔进行洗涤。由于NOx的含量相对SO2来说很小,基本不需要增加脱硫洗涤塔的负荷。
⑸ 自动化程度高。整套设备全部通过PLC自动控制,不需要专人值守,只要定期巡查即可。
选择性非催化还原技术(SNCR)
选择性非催化还原法是一种不使用催化剂,在 850~1100℃温度范围内还原NOx的方法。最常使用的药品为氨和尿素。
一般来说,SNCR脱硝效率对大型燃煤机组可达 25%~40% ,对小型机组可达 80%。由于该法受锅炉结构尺寸影响很大,多用作低氮燃烧技术的补充处理手段。其工程造价低、布置简易、占地面积小,适合老厂改造,新厂可以根据锅炉设计配合使用。
选择性催化还原技术(SCR)
SCR 是目前最成熟的烟气脱硝技术, 它是一种炉后脱硝
方法, 最早由日本于 20 世纪 60~70 年代后期完成商业运行, 是利用还原剂(NH3, 尿素)在金属催化剂作用下, 选择性地与 NOx 反应生成 N2 和H2O, 而不是被 O2 氧化, 故称为“ 选择性” 。世界上流行的 SCR工艺主要分为氨法SCR和尿素法 SCR 2种。此 2种方法都是利用氨对NOx的还原功能 ,在催化剂的作用下将 NOx (主要是NO)还原为对大气没有多少影响的 N2和水 ,还原剂为 NH3。
在SCR中使用的催化剂大多以TiO2为载体,以V2O5或V2 O5 -WO3或V2O5-MoO3为活性成分,制成蜂窝式、板式或波纹式三种类型。应用于烟气脱硝中的SCR催化剂可分为高温催化剂(345℃~590℃)、中温催化剂(260℃~380℃)和低温催化剂(80℃~300℃), 不同的催化剂适宜的反应温度不同。如果反应温度偏低,催化剂的活性会降低,导致脱硝效率下降,且如果催化剂持续在低温下运行会使催化剂发生永久性损坏;如果反应温度过高,NH3容易被氧化,NOx生成量增加,还会引起催化剂材料的相变,使催化剂的活性退化。国内外SCR系统大多采用高温,反应温度区间为315℃~400℃。
优点:该法脱硝效率高,价格相对低廉,广泛应用在国内外工程中,成为电站烟气脱硝的主流技术。
缺点:燃料中含有硫分, 燃烧过程中可生成一定量的SO3。添加催化剂后, 在有氧条件下, SO3 的生成量大幅增加, 并与过量的 NH3 生成 NH4HSO4。NH4HSO4具有腐蚀性和粘性, 可导致尾部烟道设备损坏。 虽然SO3 的生成量有限, 但其造成的影响不可低估。另外,催化剂中毒现象也不容忽视。
活性炭吸附
配合使用
电子束脱硝(EBA)
一般认为,质量管理在项目中的应用有两个方面:项目过程方面和项目产品方面。不满足这两个方面中的任何一个都可能会对项目的产品、项目的顾客和其他相关方以及项目的组织产生重大影响。下面是我为大家整理的关于项目管理项目质量管理论文,供大家参考。
关于项目管理项目质量管理论文 范文 一:脱硝工程项目质量管理保障策略
【摘要】脱硝工程项目质量管理是一项复杂的工作,并且由于该项目的投资巨大,因此一旦出现质量方面的问题,将会对整个项目的进度产生严重影响。因此,做好脱硝工作的质量管理至关重要。本文选取邯郸云宁的脱硝工作进行了具体的分析,并就脱硝工程项目质量管理的相应保障对策进行了简要的分析。
【关键词】脱硝;工程项目;质量管理
1邯郸云宁脱硝工程项目简况
本工程所在场地位于武安市城北公里处云宁电厂厂内。厂址四周为园区规划道路。交通运输十分方便。整个场地地势较平坦,工程地质良好。现建有3台240t/h循环流化床锅炉,为使3台240t/h循环流化床锅炉排放烟气中的NOX达到最新的火力发电厂大气污染物特别排放限值≤100mg/Nm3国家标准,决定在烟气排放前增加脱硝装置,使烟气中NOX达标排放。本次为3台240t/h循环流化床锅炉的烟气脱硝系统。由于装置锅炉烟气中氮氧化合物超过新的排放标准,因此需要脱硝。选择SNCR脱硝工艺,将配置好的尿素溶液或氨水向烟气中喷入,达到脱硝要求。根据烟气的氮氧化合物检测数据,自动调节尿素溶液或氨水投加量,实施自动调节。目标是保证脱硝后烟气中NOX含量<100mg/m3,符合GB13223-2011标准。在锅炉正常稳定负荷时,本脱硝装置能满足3×240t/h循环流化床锅炉烟气脱硝要求。本脱硝装置可利用率不小于98%。
2简析脱硝工程项目的特征
脱硝工程项目主要是指在一定的时间内,为达到固定脱硝能力的资产,而按照固定的程序所完成的建设任务,主要有以下几个特征:
时间具有明确的限定
在目前阶段,由于国家出台大气污染防治超低排放标准,及实施时间限制,因此,政府对于工厂所进行的脱硝项目给予了严格的规定,并且要求脱硝工作必须符合国家规定。[1]对于新设计的脱硝设备而言,必选满足超体排放标准氮氧化物100mg以下,因此,建设的工期必须在规定时间内完成并投入使用。因而施工质量与时间方面的限制性,因此脱硝工程的施工时长也是具有很强的约束性。[2]
成本投入大
一般来说,当前市场上关于脱硝工程项目的单位造价很高,并且由于投资比较大,因此很多的工程在建设时都是预付全款,这样一来,投入成本很高,因此对于成本问题的控制力度也就越大,导致与之对应的质量以及安全问题也备受重视。[3]
工程的质量要求高
因为脱硝工程的环保要求很高,因此,脱硝工程建设必须与电厂的锅炉改造同步进行,这个时候,如果设备的质量不符合标准的话,就会导致整个电厂停运,这样造成的后果就非常严重。另外,由于脱硝工程的项目建设的投入本身就非常巨大,因此一旦出现质量不合格的情况,不仅会导致经济方面出现巨大损失,而且还会对环境造成破坏,因此,在进行脱硝项目建设时必须要严格保证质量。[4]
具有完整的程序
脱硝项目在运行时有着一套完整的程序,这种特征要求在具体的项目工程建设之中,要严格做好运行前后的准备工作以及衔接工作,并且,在工程运行的过程中,要严格按照项目所固定的程序进行,不能随意进行篡改,主要的步骤有:进行项目可行性研究、立项审批、角色、施工、试运行、验收等。
3脱硝工程项目施工质量管理存在的问题
建筑材料质量的影响
在进行脱硝工作时,建筑工程的施工管理对于脱硝工程的施工质量有着很重要的影响。对工程施工材料进行有效管理对于工程施工质量的提高具有重要作用。在进行脱硝工作时,工程的材料费在整个工程成本中占据一大半,但是一些企业只关注眼前的经济利益,对于工程项目中的材料费没有进行科学合理的管理,因此很多的工程中对于材料费的管理是不合格的,因而影响到整个工程的质量问题。
施工人员的影响
在进行脱硝工作时,相关的技术人员在整个工程中的作用是巨大的,因此施工人员的专业技能对于工程质量有着很重要的影响。只有这些施工人员具备高超的施工技术、专业的技能素养才能使得工程质量得到保证。
环境以及其他因素的影响
随着现代科技的不断发展,机械设备被越来越多的使用到建筑工程中去。可以说,在建筑工程中使用正确的机械设备对于整个工程的施工质量也会产生很深的影响。因此在实际的施工中,必须根据实际的工程情况使用适合的机械设备。当前,部分企业在脱硝工程项目开展中,有关的机械仪器和施工设备发生老化现象,使得施工技术难以与施工项目的发展保持同步,加上在一些较为恶劣的环境中进行施工,使得脱硝工程项目质量管理出现一系列质量问题。
4保障脱硝项目质量的有效对策
建立有效的质量管理体系
脱硝项目的质量管理主要目标就是为了提高工程建设的总体质量,并且将管理不同阶段、不同岗位的人员都聚集在一起,使之组成一个分工明确、协调有致、职责分明的团队。就脱硝的工程项目建设来说,从最开始的设计阶段到最后施工方案的确定,从采购原材料到最后的工程验收阶段,都必须按照相关的执行标准以及施工规范严格执行,从而使之形成一套完善的工程质量管理体系。[5]另外,在工程的具体实施阶段,除了需要对国家以及相关行业规范进行严格执行遵守之外,还需要根据具体的工程性质制定相关的企业执行标准,并且以这个标准作为施工时的具体依据。通过以上办法,不仅能够使工程质量问题有效减少,而且还是对工程进度进一步加强。
建立质量问责制度
在脱硝工程质量管理过程中,项目经理可以说是这个工程中的组织者以及领导者,当然,他也是这个工程中的第一负责人,对于保证施工过程中的质量问题起着至关重要的作用。很多具体的实践工作表明,一个工程项目经理的管理水平以及质量意识的高低将会对工程项目的质量产生直接的影响。因此,如果项目经理的质量意识微弱,那么在具体的管理过程中就很有可能出现各种问题,对工程的质量以及进度都将势必产生影响。[6]因此,针对这种情况,工程的项目部门应该对工程质量建立严格的质量问责制度,并同时设置相应的考核制度,以期使得工程建设中的每一道程序、每一种材料的使用都符合规范。并且,工程的负责人应该对于每个工程都进行详细的分析,并及时做出 总结 ,对于施工过程中的关键问题以及关键点都要引起重视,制定施工过程中的能被有效利用的相关管理 措施 。另外,对于某些重大的工程质量问题,要亲自盯紧,直到问题解决为止,而一般的工程质量问题则要求有关部门的负责人限期予以解决。值得注意的是,项目部门的负责人对于施工人员反映的工程质量问题要进行及时的分析并进行处理,对于工程质量原因更要及时查明,并且在施工过程中予以最快的速度解决,在施工中还应与施工的专业人员经常交流,并经常到现场予以勘察,以彻底消除工程质量问题的后顾之忧。
对于工程验收要严格把关
总的而言,在进行脱硝工程质量管理时,应该严格把关工程验收,具体来说,主要有以下几点:首先,对于施工方案要进行深入了解。各项目的负责人在工程还未正式开始之前,就对施工方案进行深入的了解,并在施工开始之前,对于施工过程中可能遇到的重难点问题予以及时的讨论,并通过讨论得出最佳的解决方案。另外,对于一些专业且 经验 丰富的人员,将他们安排到整个施工中的重要位置中去,并鼓励他们在施工中发挥骨干作用,使工程的质量问题得到保证。其次,要严格选购材料。在项目施工之前,项目部的相关负责人应该派专人采购合格的材料,并对采购回来的材料进行检测,不合格的材料要严格控制防止其进入施工现场。一般来说,主要是对主要设备以及使用材料的规格以及性能、供货商进行检测。另外,值得注意的是,在进行材料以及设备的采购时,要注意选派有责任心且专业素质过硬的质检人员,这将有利于保证选购的原材料以及设备的合格性。最后,对于工程中的关键程序要予以监测。在工程建设的过程中,有一些重要的工程需要引起施工人员以及相关负责人的重视,如自控系统、循环水处理的系统等。在这些重要的分项工程进行施工时,有关负责人应该选派专业素质过硬且富有责任心的技术人员予以及时的监测,以确保工程的质量。
5结语
脱硝工作是一项复杂且繁琐的工作,但是由于现今国家出于对环境保护的要求,因此,脱硝工作势在必行。 文章 在邯郸云宁的脱硝项目工程建设进行具体分析的基础上,对于脱硝工作的特征以及保障脱硝工作的工程质量问题做了详细的说明。
参考文献
[1]顾卫荣,周明吉,马薇.燃煤烟气脱硝技术的研究进展[J].化工进展,2012,09:2084-2092
[2]周荣,韦彦斐,钟晓雨,顾震宇,汪昊琪,范海燕.水泥窑炉SNCR脱硝工程优化设计的探讨[J].水泥,2013,06:47-51
[3].我国脱硫脱硝行业2012年发展综述[J].中国环保产业,2013,07:8-20
[4].我国火电厂脱硫脱硝行业2010年发展综述[J].中国环保产业,2011,07:4-12
[5]赵胜国,胡永锋.我国脱硝技术发展及技术经济分析[J].华电技术,2011,12:63-66+84
[6]于金刚,王秀月.火力发电企业脱硝改造投资对其价值的影响研究[J].现代经济信息,2014,19:391-392
关于项目管理项目质量管理论文范文二: 无线网络 工程项目质量控制
摘要:
在整个无线网络工程的建设过程中,对于无线网络工程进行质量控制非常的重要。文章对无线网络对于工程项目质量的要求进行了详细的分析和研究,并以此作为理论依据,对如何控制网络工程质量提出了一些意见和想法,希望可以帮助无线网络工程项目质量控制更好地得到完善,促进无线网络工程建设顺利地进行。
关键词:无线网络;工程项目;质量控制
1无线网络对于工程项目的质量要求
无线网络工程建设的具体特征
(1)无线网络工程建设的独特性。任何一个无线网络工程建设根据地理环境的不同以及用户特点的不同,都在其功能上以及使用上具备一些独特的特点,为了符合当地用户的需求,就要根据当地的具体情况以及相关条件来建立无线网络工程项目,所以说,从这个方面来看,无线网络工程项目建设是具备一定的独特性的。
(2)无线网络工程建设的变化性。由于无线网络工程在建设的过程中,需要解决很多方面的问题,例如会涉及到当地各个位置信号强弱有无的测量以及各个位置不同时间段的信号质量,还有因为楼层、信号干扰等各种不同的因素对无线网络造成的影响都需要去进行解决。这个过程比较长,从计划到实施会有很多情况变化会发生,这些变化的发生都会或多或少地影响无线网络工程项目的实施计划,例如人员的离开和更换,材料价格的涨幅等等。所以说,无线网络工程项目建设是具备变化性这个特征的。
(3)无线网络工程建设的多样性。因为无线网络工程项目在设计上是需要多个方面来合力进行的,工程建设相关的器材以及测试工具等都非常的多样化,这些方面都体现了无线网络工程建设的多样性的特征[1]。
(4)无线网络工程建设的阶段性。上文已经提到,无线网络工程项目建设是需要花费比较长的时间来进行的,所以在无线网络工程项目建设的过程中,不同阶段的管理方式和质量要求也是不同的,所以说,无线网络工程项目建设是具备一定的阶段性的。
无线网络有哪些质量要求
关于无线网络的质量要求问题方面,本文以3G无线网络为例来进行阐述。首先,无论是速度上还是质量上以及功能上,3G无线网络给用户带来的体验都要优于2G无线网络。但是相对的,3G无线网络对于工程质量的要求也就变的更高。3G无线网络对于用户接入网络的质量是非常重要的。想要保证用户接入网络的质量,就要保证各个基站的稳定运行[2]。另外一方面,由于3G无线网络相对于2G来说增加了许多新的功能特点,所以在业务服务方面也就有着更高质量的需求;其次,我们都知道我们国家无线网络是有着三大运营商的,移动、联通、电信这三大运营商为了提升自身的用户量都在尽力地提升各自无线网络的速度和质量。因为用户主要看重的还是各大运营商的无线网络质量,无线网络质量的提升也是增加用户群的主要途径;最后,在无线网络工程项目建设的过程中,很多原因都会对无线网络通信形成干扰,例如工程项目中使用的材料质量没达到要求以及工程建设当中一些操作的细节不符合规范和要求,这些环节如果处理不当,就会对无线网络实际运行带来不利的影响[3]。
如何衡量无线网络信号质量
对于无线网络信号的质量进行衡量在不同的时期是有不同的标准的,在无线网络工程的建设期间,质量控制是否合理,无线网络能否稳定运行,核心网的质量好坏,都是对于建设期间的无线网络工程进行衡量的标准。而在无线网络的运营期间,所进行衡量的标准就会有所不同,运营期间主要进行衡量的标准是用户的使用满意度反馈以及运营商自身对其的测试,拥有一个好的质量衡量标准,对于无线网络的建设和发展都会带来非常积极的影响[4]。
2如何控制无线网络工程项目的质量
在控制项目质量的过程中把人作为主体
对于无线网络工程项目进行质量控制,无疑,人才是这个过程当中进行控制的主体和关键,想要保证无线网络工程质量得到科学合理的控制,首先就要保证充足并且合理的工作人员配置,这样才是保证无线网络工程质量控制达标的基本前提。另外一方面,无线网络工程项目的相关人员要根据工程地点当地的具体情况来制定具体的工程质量控制要求,使得无线网络工程在质量控制的时候有章可循;其次,对于进行质量控制的相关设备和器材的质量也要进行严格的检查和控制;再次,在进行无线网络工程项目建设之前,要对当地的地理情况以及其他因素进行一个充分的考察,从而建立一个符合当地情况的建设计划,保证无线网络工程建设能够顺利的进行;最后,由于无线网络工程项目建设所需要的时间较长,工程项目所需的材料价格也会不断变化,工程相关的采购人员,必须时刻了解材料价格的变化,同时也要保证材料的质量能够达标。针对上述的这些方面,在无线网络工程质量控制过程中需要额外注意的是以下几个方面:首先,要保证无线网络工程项目的总负责人要具备足够的经验和技术,同时也要具备对下属员工进行培训和考察的能力,保证员工的技术水平达到要求;其次,在选择设计公司和监理公司的时候要仔细的进行考察和选择,要保证公司的能力和资质符合网络工程项目的要求;最后,在无线网络工程项目实施之前,要制定具体的相关合同,确定质量的具体要求,明确各个方面的职责[5]。
提升网络项目工程的相关监理力度
(1)要定期对网络工程项目情况进行监督和检测。对于无线网络工程项目的质量控制,检测是一项比较有效的手段和 方法 。用电脑通过特定的软件对各个方面的参数进行测试可以比较全面地了解到网络工程项目进展的情况。为了保证工程进展符合相关的质量要求,就要定期进行循环测试,保证参数达到标准。相关的监理工作人员要按照甲方所制定的计划和质量要求来严格进行监督和检测,通过科学合理的监督和检测,来把一些可能出现的问题遏制在萌芽中,保证无线网络工程项目质量达到预期的标准。
(2)保证监理工作人员的监督权限。想要工程监理人员发挥出应有的作用和效果,就必须给与工程监理人员必要的监督和管理权限。无线网络工程建设过程中,相关的质量问题以及技术要求都必须经过监理负责人的检查才能继续进行。对于各个环节的工程质量要有审核的相关文件,由监理负责人进行再次审核通过。工程相关的支付环节也要由监理负责人进行认证。从细节上来保证对于质量的控制要求[6]。
3结语
无线网络工程项目各方面要求严格,只有有效地把握好网络网络工程建设当中的每一个项目环节的工程质量,才能从根本上提升无线网络工程的整体质量。因此,对于无线网络项目工程进行质量控制就显得尤为重要。本文对于无线网络工程项目对于质量的要求以及控制质量的方式和方法都进行了分析和研究,希望可以帮助无线网络工程项目提升质量控制的效果,降低控制成本,提高整个无线网络工程建设质量。
参考文献:
[1]赵欣.吉林移动无线网络质量管理研究[D].吉林大学,2012
[2]朱繁.基于网络的建筑工程质量检测管理系统[D].云南大学,2012
[3]王超.浅谈中国移动4G无线网络工程的监理[J].内江科技,2014,35(4):39,48
亲,你需要的文献已给你上传,请及时下载,还望采纳为满意答案,如有疑问,请追问
Intimate contact of enolic species with silver sites benefits the SCR of NOx by ethanol over Ag/Al2O3
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
KR法与喷吹法在铁水预脱硫中应用的比较 面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 随着社会经济和钢铁工业的高速发展,社会对钢铁质量的要求越来越高、越来越苛刻,产品的种类也急剧增加,尤其是高品质高附加值钢种的需求不断在增大。面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 近30年来铁水脱硫技术迅速发展,现已经有十几种处理方法,其中应用最广且最具代表性的主要是喷吹法和KR机械搅拌法。它们在技术上都已相当成熟,从两种工艺在实际生产中的应用效果来看,二者是互有长短。虽然喷吹法发展迅速,目前在实际生产中应用更广泛,可KR法在这几年中又有了新发展,呈现出强劲的势头。那么,这两种工艺模式各有什么优劣势?哪种更具有应用前景呢?在国内外冶金界始终没有较统一的看法。为此,本文着重就两种工艺模式的发展、应用和运营成本作了比较,尤其是它们对整个流程影响的比较,希望能对技术人员及企业技术的选择提供参考。 KR法与喷吹法的工艺及特点 在进行比较前,先了解两种方法的工艺及特点是很有必要的,不仅有利于理解两种方法的实质,也是深刻理解对两种脱硫模式分析比较的前提。 KR机械搅拌法,是将浇注耐火材料并经过烘烤的十字形搅拌头,浸入铁水包熔池一定深度,借其旋转产生的漩涡,使氧化钙或碳化钙基脱硫粉剂与铁水充分接触反应,达到脱硫目的。其优点是动力学条件优越,有利于采用廉价的脱硫剂如CaO,脱硫效果比较稳定,效率高(脱硫到≤ %) ,脱硫剂消耗少,适应于低硫品种钢要求高、比例大的钢厂采用。不足是,设备复杂,一次投资较大,脱硫铁水温降较大。 喷吹法,是利用惰性气体(N2或Ar)作载体将脱硫粉剂(如CaO,CaC2和Mg)由喷枪喷入铁水中,载气同时起到搅拌铁水的作用,使喷吹气体、脱硫剂和铁水三者之间充分混合进行脱硫。目前,以喷吹镁系脱硫剂为主要发展趋势,其优点是设备费用低,操作灵活,喷吹时间短,铁水温降小。相比KR法而言,一次投资少,适合中小型企业的低成本技术改造。喷吹法最大的缺点是,动力学条件差,有研究表明,在都使用CaO基脱硫剂的情况下,KR法的脱硫率是喷吹法的四倍。 KR法与喷吹法的发展及现状 从前面分析二者的方法和特点可以知道,它们互有长短、各具特色,这也决定了它们的发展历程和现状必然是不同的。进一步了解它们的发展和现状,将更有利于理解各自技术的特点。 从时间上来看,喷吹法的研发及应用要早于机械搅拌法。喷吹法主要有原西德Thyssen的ATH(斜插喷枪)法、新日铁的TDS(顶吹法)和英国谢菲尔德的ISID法,早在1951年,美国钢厂就已成功地运用浸没喷粉工艺喷吹CaC2粉进行铁水脱硫。直至今日,尽管两种脱硫工艺方法在技术上都已相当成熟,全世界绝大多数钢铁厂广泛采用仍是铁水喷粉脱硫工艺。机械搅拌法有原西德DO (Demag-Ostberg) 法、RS (Rheinstahl) 法和赫歇法, 日本新日铁的KR (Kambara Reactor) 法和千叶的NP 法,其中,以KR法工艺技术最成熟、应用最多。KR法搅拌脱硫是日本新日铁广钿制铁所于1963年开始研究,1965年才实际应用于工业生产,之后迅猛的发展趋势表明,它具有投入生产使用较早的喷吹法无可比拟的某种优势。 在冶金工业中喷吹这种形式应用非常广泛,比如在转炉及精炼工艺中的各种顶吹、底吹和复吹技术等。当铁水预处理时,使用喷吹法把脱硫剂加入铁水中进行脱硫,这显然是可行的且易于人们接受。最早脱硫剂是以氧化钙基为主,辅助添加CaC2,而且喷吹过程也很难获得较好的动力学条件,这时主要面临两个问题:一是,如何保证CaC2的安全存贮运输和脱硫剂的脱硫效果;二是,怎样解决因动力学不足导致的脱硫效率低下,不能实现深脱硫的问题。 第一个问题侧重于开发使用更具有脱硫效率且安全的脱硫剂,于是出现了镁基复合喷吹法,脱硫效果有所改善却成效不大,而且镁粉在运输、储存、使用中同样存在很多的安全隐患,给生产带来诸多不便。然而,新型脱硫剂——钝化颗粒镁的开发成功,使纯镁喷吹脱硫技术得以实现,达到了真正高效安全的工艺目标,目前,镁系脱硫剂已经成为世界铁水预处理中的主导脱硫材料。针对第二个问题,如何才能获得更好的动力学条件呢?从工艺模式着手,技术人员研发出了具有实际应用价值的机械搅拌脱硫法,其中以KR法为典型,在根本上改善了脱硫过程中的动力学条件,并可以在脱硫剂中不加CaC2而主要采用CaO,避免了生产中使用CaC2而带来的不便和危险。然而,在工业应用时却又出现许多技术难题,比较突出的如,搅拌头的使用寿命较短;单工位操作设备导致更换搅拌头的同时无法进行铁水脱硫等。可最终这些难点还是被陆续攻破,解决了搅拌头的寿命问题,使其从原来的几十炉提高到现在的几百炉,而且摸索出了氧化钙基脱硫剂应该有一个最佳的指标要求,可以达到最理想的脱硫效果。目前,KR法已经完全可以达到深脱硫的要求,即把铁水中的硫脱至小于。同时,双工位布置形式的出现克服了单工位的不足,使生产的连续化程度得以提高。很长时间,KR法成本问题(尤其是前期投资)加上其过程时间较长,以及不适应于大型铁水罐,故发展缓慢;直至二十世纪后期,其投资降低后,加上运行费用低廉,所以又受到了重视。 KR法与喷吹法的比较 从铁水脱硫工艺倍受人们的重视以来,KR法与喷吹法技术一直处于发展之中,目前虽仍需完善可也已趋近于成熟,这样两者之间才更具备可比性,本文主要从以下几文面进行具体比较。 1 技术与设备 在喷吹法中,单吹颗粒镁铁水脱硫工艺因其设备用量少、基建投入低、脱硫高效经济等诸多优势而处于脱硫技术的主要发展趋势之一,可在相当长的时间我国都是引进国外的技术和设备。到2002年10月国内才首次开发出铁水罐顶喷单一钝化颗粒金属镁脱硫成套技术设备,整套装置中,除重要电器元器件采用进口或合资的外,其余机电产品100%实现了国产化,包括若干最关键的技术设备。喷吹技术和设备的国产化直接降低了建设投资和运行操作的成本,从前期的一次性投资来看,要比KR法略有优势。 虽然搅拌法的技术专利也是国外拥有,可从其设备和技术本身而言并没有难点,机械构成是常规的机械传动和机械厂提升;加料也采用的是常规大气压下的气体粉料输送系统,可以说在系统的机、电、仪、液等方面的技术应用都是十分成熟。尽管如此,KR 法设备仍然是重量大且较复杂,可它的优势是运营操作费用低廉,由此所产生的经济效益完全可弥补前期的一次性高额投资。根据有关推算,一般3~5年即可收回所增加的投资。2000年武汉钢铁设计研究院针对武钢二炼钢厂的情况,对KR 法和喷吹法两种方案的投资进行了估算,KR 法的投资估算比喷吹法投资估算多200万元。 2 脱硫效果 实际生产过程中的铁水脱硫效果,不仅与设备有关,而且受脱硫剂、操作工艺水平、时间及温度等诸多因素影响,本文主要考虑的是纯镁喷吹法和CaO基KR法。一般对铁水预处理的终点硫含量要求是不高于50ppm,工厂生产和实验研究结果表明,喷吹法因其脱硫剂Mg的较强脱硫能力,KR法由于其表现出色的动力学条件,在可以接受的时间内(一般≤15min),它们都能达到预处理要求的目标值。国内各大钢厂的具体脱硫数据可见表1。在喷吹法中,复合脱硫剂使用CaO比例越高,脱硫效果越差,使用纯镁时脱硫率最高;KR法使用CaO脱硫剂,脱硫率只是略低于喷吹纯镁。 处理容器 脱硫剂 脱硫剂消耗/kg·t -1 脱硫率ηS/ % 最低硫/ ppm 纯处理时间/ min 处理温降/ ℃ 铁损/ kg·t-1 钢厂 机械搅拌法- KR 法 100t铁水罐 CaO ≤20 5 28 - 武钢二炼 CaO 基喷吹法 280t混铁车 CaO基 75 60 - 宝钢一炼 CaC2 + CaO喷吹法 140t铁水罐 50% CaO+50% CaC2 40 - 31 - 攀枝花 Mg +CaO混合喷吹 100t铁水罐 20% Mg+80% CaO - 7 武钢一炼 Mg +CaO复合喷吹 300t铁水罐 Mg + CaO(1:3) Mg < 10 - - 宝钢 Mg + CaO复合喷吹 160t铁水罐 Mg + CaO(1:2~3) Mg 90 ≤50 8~14 - 本钢 纯Mg 喷吹 100t铁水罐 Mg ≥95 ≤10 5~8 武钢一炼 3 温降 铁水温降的消极影响是降低了铁水带入转炉的物理热,主要体现在转炉吃废钢的能力下降,导致转炉冶炼的能耗和物料消耗升高,直接影响了冶炼的经济成本。KR法因动力学条件好,铁水搅拌强烈,而且CaO的加入量较大,导致温降也大,目前国内KR法工艺应用较成熟的武钢可以使温降控制在28℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。 4 铁损 铁水预处理脱硫过程的铁损主要来自于两部分:脱硫渣中含的铁和扒渣过程中带出的铁水。由于两种工艺模式的不同,实际渣中含铁和扒渣带出铁量都有较大的差别,目前没有公开发表的详细对比数据。一方面,较少的脱硫剂产生的脱硫渣少,则渣中含铁量也低,由此颗粒镁喷吹脱硫的铁损要少一些;另外,颗粒镁喷吹脱硫的渣量少,扒净率相对低,而KR法的脱硫渣扒净率相对高。就扒渣的铁损而言,由于还取决于高炉渣残留量及扒渣过程,综合考虑看KR法与喷吹法区别不大。究竟哪个是主要因素,与各钢厂的实际操作有很大的关系,通过换算,得出具体数据可见表2。可见,喷吹法时,采用脱硫剂的CaO含量越高,则扒渣铁损越大;而KR法使用CaO作为主要脱硫剂成分,其铁损只是略高于喷吹镁脱硫铁损。 5 脱硫剂 铁水预处理过程中,脱硫剂是决定脱硫效率和脱硫成本的主要因素之一。根据日本新日铁曾做的计算,脱硫剂的费用约为脱硫成本的80%以上,所以,脱硫剂种类的选择是降低成本的关键。然而,选择时必须得结合考虑不同工艺方法的特点。 基于动力学条件和脱硫效率,目前喷吹法主要采用的是镁基脱硫剂,KR法采用的是石灰脱硫剂。根据理论计算,在1350℃,镁脱硫反应的平衡常数可达×103,平衡时的铁水含硫量可达×10-5%,大大高于CaO的脱硫能力。然而,上文已经把两种脱硫剂在各自工艺中的脱硫效果进行了对比,表明,结合实际生产工艺后它们都能达到用户对脱硫的最高要求。 在脱硫方式选择时还要考虑脱硫剂的一个因素,就是脱硫剂的来源问题。一般而言,大部分钢铁生产企业都要使用石灰石,要么有自己的石灰厂,要么有稳定的协作供货渠道,来源稳定,成本稳定,而且供货及时,不用考虑仓储问题。虽然我国的金属镁资源丰富,可是相对钢铁企业来说,获得搅拌法所需的CaO基脱硫剂更为容易,钝化颗粒镁就不具备这些有利因素。℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。
化工企业管理论文范文篇二 石油化工企业安全管理浅谈 摘要:企业安全管理是一项非常复杂的系统工程,单凭向本质安全化管理一方面发展是不够的。还需要采取各种措施,提高作业人员的安全素质(安全技能和安全意识),增强职工执行安全规章的自觉性和自我保护能力。本文对石油化工企业安全管理进行论述。 关键词:石油化工;安全管理; 中图分类号: TU714 文献标识码: A 一、目前石油企业安全管理存在的问题 1、安全管理意识淡薄 目前我国石油化工企业的发展参差不齐,对于一些较大型的石油化工企业,其在安全管理方面都具有较高的水平,具有非常好的安全管理意识,无论是在技术还是人员、设备的管理上都较为完善,发生事故的几率也非常低。但对于一些小型的化工企业,由于管理人员没有强烈的安全管理意识,企业的安全管理工作基本上是呈一种粗放式模式,在生产上没有先进的技术支撑,同时在各项管理工作中存在着许多不科学的地方,从而使其安全管理工作落实不到位,使企业的各个环节中都存在着严重的安全隐患。同时企业管理人员把更多的精力放在片面的追求企业经济效益上面,对企业的安全管理工作较为忽视,因此在这些化工企业的生产过程中,安全隐患较多,从而也导致安全事故发生的几率也较为频繁。 2、在安全管理上投入资金较少 这主要是源于部分石油化工企业的管理人员对企业的安全管理工作缺乏足够的认识,所以在实际生产中对安全管理不重视,这样就导致用于安全管理方面的投入较少,不仅在安分管理人员的数量上较少,没有完善的安全管理制度,同时在应该设置安全警示标志和安全设备的地方也没有进行设置,从而导致企业在生产过程中安全系数较低,存在较大的安全隐患,安全事故频繁发生。 3、人员素质较低 这主要体现在一些乡镇级的石油企业当中,这部分石油化工企业中的无论是生产技术人员不是企业的安全管理人员普遍都存在着素质低下的问题,这也是导致这部分石油化工企业安全事故频繁发生的重要原因。这部分企业中的生产技术人员由于在专业知识上的欠缺,无法在生产中做到安全管理的要求,一旦在生产过程中碰到一些紧急情况,无法进行冷静的判断和处理,最终酿成悲剧的发生。另外在这部分企业当中的安全管理人员多数都没有进行过系统的管理知识的学习和培训,在进行安全管理工作时,法律知识缺乏,不能科学合量的制订相关的安全管理制度,没有严格、规范的制度约束,从而导致生产过程中各项隐患不能进行及时有效的处理,从而导致安全事故的发生。 4、惩罚力度不够 从我国目前对于石油化工企业发生安全事故的惩处上来看,存在着惩罚较轻的问题,由于惩罚的力度不够,从而更加重了部分企业对于生产过程中的安全管理的不重视。这在很大程度上成为导致安全事故频繁发生的重要原因。石油产品是易燃、易爆的高危险产品,所以安全是石油化工企业必须重视的问题。但在实际生产中,部分企业由于经济效益的驱使,往往忽视安全而去片面的强调生产效率的提高。从而导致安全隐患越来越多,致使安全事故的发生。但国家对安全事故的处罚力度较轻,更促使这部分企业对安全管理的漠视,因此导致石油化工企业安全事故长期的居高不下的局面。 二、加强石油化工企业安全管理的对策 1、高度重视企业的安全生产管理问题 要想从根本上改变石油化工企业安全生产意识淡薄的现实,必须从管理层到基础员工都高度重视安全生产管理问题,防患于未然,将问题熄灭在萌芽阶段。将政府提倡的安全责任制落到实处,把每个员工的利益和安全问题联系起来,向员工强调企业安全对企业长治久安的决定性作用。加强企业内部培训工作,不可眼高手低,必须从实际操作中训练每一名员工,只有通过了培训和审查的员工才能上岗工作。 2、健全安全管理机构 石油化工产品在生产过程中具有较大的危险性,需要更加严格的安全管理工作来保证生产的安全。这就需要一个非常完善的石油化工企业管理部门,做为一个完善的管理机构则需要有决策、职能和管理三个部门相互辅助完成整个安全管理工作,决策机构负责审查、评估和指导各项工作的进行,职能机构负责落实决策机构的下达的各项安全管理事务,负责企业安全生产管理制度的制定工作,管理机构则负责各项安全管理工作的落实,并在落实中做好管理和监督,其也是整个安全生产中的重点部门。从而形成一个健全的安全管理机构,负责石油化工企业的生产安全。 3、构建科学的安全管理模式 长期以来我国的石油化工企业都是把安全管理工作重点放在对事故的管理上,这是一种事后管理,缺乏一定的科学性,所以应转变思路,把安全管理工作重点放在对事故的发生隐患的管理上,在平时生产过程中,制定各种合理的措施,起到有效的防止隐患发生及及时消除隐患的目的,这样把隐患消灭在萌芽状态中,才会有效的避免安全事故的发生,所以企业应根据自身的特点,选择科学有效的安全管理模式,从而减少企业的经济损失,使企业的生产得以顺利进行。 4、加强企业安全培训工作 首先,企业应该针对企业员工开展安全培训工作,提高企业员工安全意识,杜绝个人因素导致安全事故的发生。目前,我国部分石油化工企业职工生产技术方面和个人素质方面都存在非常大的问题,违规操作是导致安全事故发生的重要原因。企业在安全培训工作开展过程中,应该制定详细的安全培训计划,帮助企业员工了解安全生产的重要性,做好员工的生产技能指导工作,使员工掌握正确的生产技术,端正员工的工作态度。同时,企业还应该帮助员工掌握对一般生产事故的处理方式,在保证人员安全的前提下,如何降低生产事故的影响。此外,石油化工企业需要加强对安全管理人员的引进和培训工作。石油化工企业属危险系数较高企业,安全管理人员必须具备丰富的管理知识,因此,企业必须要加强同专业院校的合作与交流,加强对专业性人才的引进工作,以提高石油化工企业安全管理团队的整体素质水平,确保安全管理工作的有效开展;开展石油化工企业安全管理人员的培训工作时,需要有针对性,帮助管理人员了解和掌握正确的管理方法,如何进行安全隐患的排查,针对常见安全事故如何进行预防和处理,并帮助安全管理人员及时补充安全管理知识,了解先进的安全管理模式,促进安全管理工作的顺利开展。 5、安全管理评价体系的设立 整体的生产过程安全与否受系统安全的影响,因此,在安全管理体系里面,系统安全评价非常重要。对于安全管理系统的综合性能,石油化工企业应该积极地进行安全评测,找出其中的不足之处甚至漏洞。提高信息体系,可以对各级的安全管理工作进行一定程度上的约束监督,同时也为决策层的决策提供了根据。系统而完整的安全评测对石油化工企业来说是十分重要的,安全管理效率、整体安全监控等都可以通过安全评价来进行提高与实施。 火灾、爆炸以及毒气的设备和车间都属于石油化工企业进行安全测评的范围,所以对石油化工企业来说,其进行安全评测的目的就是预测出可能产生的爆炸事故、机械事故、特大火灾、高空坠落以及中毒事件等。 结束语 经过本文的分析,我们可以清楚地认识到一个石油企业的生命线就在于其能否将安全管理问题解决,总是带着安全隐患的企业不但无法在市场上立足,而且严重威胁到国家和群众的生命安全。因此,企业必须运用最有效的管理方法,建立完善的管理体制,才能使我国石油化工企业实现规范化管理,彻底解决生产安全问题。 参考文献 [1]刘炳新,马向民.浅谈石油石化企业安全管理模式的转变[J].中国科技信息,2010,(01). [2]刘寅生.安全评价在某化工企业中的应用研究[D].复旦大学,2013. 看了“化工企业管理论文范文”的人还看: 1. 化工企业安全管理论文 2. 有关化工类毕业论文范文 3. 化工企业安全生产论文范文 4. 化工论文范文 5. 化工毕业论文范文大全