首页 > 学术期刊知识库 > 时间序列异常检测论文

时间序列异常检测论文

发布时间:

时间序列异常检测论文

时间序列好发论文。根据查询相关公开信息资料显示,从系统论的角度看,时间序列就是某一系统在不同时间(地点、条件等)的响应,围绕时间序列预测、分类、异常检测、表示学习以及在医疗、生物、交通、音乐、金融等方向的应用。

动态图上的异常检测任务包括:发现异常的对象、关系、时点。动态图上的异常检测与静态图上的异常检测不同的地方在于:

本文首先将异常类型分为:anomalous vertices, edges, subgraphs, and events(or change),将使用的方法分为:community detection, MDL(minimum description length) and compression, decompression, distance, probabilistic, 按每种方法使用的异常类型进行了文献学分类。各方法的主要参考文献见表1:

本文假设不同时点的节点和边都有唯一标签从而不会混淆,定义 为图序列,其中 为总时间步, , 为节点集, 为边集, 时称 为图流。本文的主要记号见表2:

给定 ,节点集 ,打分函数 ,定义异常节点集为 ,使得对于 , ,其中 为得分 的摘要式统计。

一个典型的异常节点如图1,其可由基于社区检测的方法识别,即: 其中 为节点所属的社会划分, 为异或操作。

给定 ,边集 ,打分函数 ,定义异常边集为 ,使得对于 , ,其中 为得分 的摘要式统计。

一个典型的异常边如图2,可令 ,其中 为时间步 时 的权重,可以为边的概率。

给定 ,子图集 ,打分函数 ,定义异常集为 ,使得对于 , ,其中 为得分 的摘要式统计。

两种典型的异常子图如图3,其中(a)为图的收缩,(b)为图的分裂。图的收缩可根据子图中的的数量衡量,即 ,图的分裂可由不同时间点社区的数量衡量。

与异常节点、边、子图检测不同,异常事件或异常突变检测检验的是时点。

给定 ,打分函数 ,若时点 满足: , ,则称时点 为一个事件。

给定 ,打分函数 ,若时点 满足: , ,则称时点 为一个突变。

通常的异常检测都使用两步法:第一步,基于特征的图表示;第二,基于机器学习的异常检测。

基于社区检测的方法关注的是社区和关联节点的演化过程,特征向量的生成亦基于图中的社区结构。不同社区检测方法的区别在于:(1)社区结构的领域,如社区内的连接性.单个节点在每一步所属的社区;(2)社区结构的定义,如基于概率的软社区定义.硬社区定义。基于社区检测的方法可用于异常定点、子图、突变的检测。

基于软社区匹配并单独考察每一个社区,我们可以在连续时间步内计算每个节点归属的平均变化,如果某个节点归属的平均变化显著异于其他节点,则称其为演化社区异常点。

节点社区归属的变化可以构造一个时间模式,称为软时序模式。一些文献使用了最小描述长度(MDL)结合非负矩阵分解的方法来自动检测节点角色及构造转移模型。多数文献通过抽取图中不同节点的共同模式,并比较每个节点与共同模式之间的差异来定义异常节点。部分文献使用了交替迭代优化替代常用的两步法。部分文献使用了corenet的概念,该概念不同于单纯使用density,modularity,hop-distance等概念,而是使用了节点间的加权路径,即一个节点的corenet包含该节点与权重大于给定阈值的两跳邻居。假设两个强连接的节点通常属于同一社区,则如果移除一个节点的两个邻居,一个邻域具有较高的边权重,另一个具有较低的边权重,则移除较高权重邻居的影响应更大,在每一步,每个节点首先被赋予一个异常得分,该得分衡量了其corenet的变化,异常得分较高的 各节点将被视为异常节点。

文献【69】定义了六种基于社区的异常:shrink, grow, merge, split, born, and vanish。其使用图和社区代表(representatives)进行比较以减少计算量,图代表为出现在t时刻,同时还出现在t-1、t+1或t+1与t-1时刻的节点集,社区代表是出现在其他社区最少的定点集合,基于社区代表和图代表,基于规则,判断社区是否落在六种异常中。

文献【73】定义了一种基于社区的异常:comet,周期性出现或消失的社区,演化图可表示为一个张量,然后基于低秩张量分解和MDL原则进行comet检测。

文献【3】基于多种信息源构造时序复网络,识别跨时间和网络的稳定社区结构。行为相似的网络可以用聚类或前验知识分组,如何一个社区结构在组内跨时间步稳定,但在组外没有对应社区,则该社区即为异常,如何两个社区共享一定比例的定点则称为对应。

社交网络可以根据特定时间窗口内的发文量定义事件,一个经历共同事件的组即构成一个异常子图。

通过划分图流为一致的分割来检测,分割是依据划分的相似性。

通过将最新图的顶点分区与当前增长分割中的图的分区进行比较,可以在线找到这些分割。【67】基于可返回随机的相关矩阵和modularity最大化来进行定点划分,当新图的划分与当前分割的划分有很大不同时,一个新段开始,并将新图的时间点输出为检测到的突变。两个划分的相似度使用Jaccard系数定义。GraphScope思路类似,但基于MDL来指导划分和分割。

基于MDL原则和基于该原则的压缩技术利用数据中的模式和规律性实现紧凑的图表示,其主要通过将图的邻接矩阵表示为一个二进制串,如果矩阵的行和列可以重新排列使矩阵的二进制字符串表示的熵最小化,那么压缩损失(也称为编码损失)就会最小化。数据指向的特征都来自于图或其特定子结构的编码代价;因此,异常被定义为抑制可压缩性的图或子结构(如边)

对于一条边和对应子图,如果包含该边的编码损失比不包含该边的编码损失高,则称该边为异常边。

【74】使用了一种两步交替迭代法进行节点的自动划分,当节点划分的熵收敛时,根据包含和不包含该边的编码损失,该方法也给出了边的异常度得分。

突变检测的主要思路是:连续时间步间的图是相似的,因而可以分为一组,从而降低压缩比。压缩比的上升表明新一个时间步的图与已有的图差异明显,因此是一个突变。

该方法将图集合表示为一个tensor,在该tensor上进行矩阵分解或降维,基于分解或降维后的图发现其模式和规律性,该方法可以融合更多属性信息,最常用的方法是SVD和PARAFAC(广义SVD)。

矩阵分解可用于计算每个节点的活跃(activity)向量,如果某个节点的活跃向量在连续时间步间变化明显,则称为异常节点。

【87】首先抽取每个节点的边相关矩阵 ,即该节点的每个邻域都有一行一列,对于节点 的矩阵中的一个entry 代表了边 和 间加权频率的相关性,加权频率由衰减函数获得,时间越近权重越高。M的最大特征值和对应特征向量即顶点的活跃向量的summary及边的相关性。通过寻找这些值的变化而形成的时间序列用于计算每个时间步长中每个顶点的分数,得分高于阈值的顶点将被输出为异常。

基于分解的异常事件检测有两种方法:(1)先基于分解方法来近似原始数据,然后以重建损失作为近似优劣的指标。如果某个子张量、切片或元素的重建损失很高,则即可以视其与周围数据不同特征不同,将其标记为异常事件、子图或节点。(2)跟踪奇异值和向量,以及特征值和特征向量,以检测异常顶点的显著变化。

为解决 intermediate blowup 问题(即计算中输入和输出张量超过内存限制),【81】提出了momery-efficient tucker(MET)分解方法,该方法源于Tucker分解,Tucker分解将高阶tensor用一个core tensor和每个mode(维度)矩阵表示。【80】使用了Compact Matrix Decomposition(CMD),其可以用来计算给定矩阵的稀疏低秩矩阵。使用CMD对图流中的每个邻接矩阵进行分解,可得到重建值的时间序列,基于重建值序列可进程事件检测,典型应用有COLIBRI, PARCUBE,其中后者在斑点(spotting)异常中的表现更高效。

【84】使用了随机图模型进行基于概率模型的检测,其将真实图邻接矩阵和期望图的邻接矩阵间的差异构造为残差矩阵,对残差矩阵执行SVD,再使用线性Ramp滤波器,基于top奇异值即可进行异常时间窗口检测,通过检查正确的奇异向量来确定相应的顶点。

除以上方法,我们还可以基于分解空间的显著变化来识别事件。【77】通过对数据执行PCA,计算的特征向量可以分为正常和异常两个集合,方法是检验数据中的值映射到特征向量。在每个时间步,根据特征值对特征向量进程降序排列,第一个特征向量则包含一个在其余值的3个标准差之外的投影点,此后的每个特征向量,都构成了异常集。第二步即是将数据映射到正常和异常子空间,一旦完成了这些操作,当从上一个时间步长到当前时间步异常成分的修改超过一个阈值时,即将其视为一个事件。【83】扩展了该方法,提出了联合稀疏PCA和图引导的联合稀疏PCA来定位异常和识别对应的顶点。通过为异常集使用稀疏的成分集,可以更容易识别负责的顶点。顶点根据它们在异常子空间中对应行的值得到一个异常分数,由于异常分量是稀疏的,不异常的顶点得分为0。

图的活跃向量 为主成分,左奇异向量对应最大奇异值,奇异值和奇异向量通过对加权邻接矩阵进行SVD得到。当活跃向量大幅异于“正常活跃"向量时,即定义该时点为突变点,”正常活跃“向量由前序向量得到。

正常活跃向量 ,它是对最后W时间步中活动向量形成的矩阵进行SVD得到的左奇异向量。每个时点都定义一个得分 ,其代表了当前活跃向量与正常向量的差异。异常可以使用动态阈值方案在线发现,其中得分高于阈值的时间点被输出为变化。通过计算正常向量和活动向量之间的变化比率来找到负责的顶点,与变化最大的索引所对应的顶点被标记为异常,类似的方法也可以用于节点-节点相关矩阵的活跃向量,或基于邻居相似度的节点-节点相关矩阵。

基于距离的异常检测算法的不同点在于选择用于提取和比较距离度量,以及它们用于确定异常值和相应图的方法。

如果一些边的属性演化异于正常演化,则该边就是一个异常边。

边之间的权重使用衰减函数定义,在每个时间步长中,根据相似度得分的变化之和计算每条边的异常值得分,使用阈值或简单的 作为异常值标准。

将网络视为边的流,意味着网络没有固定的拓扑,一个边的频率和持久性可以用来作为其新颖性的指标,【48】定义了集合系统不一致性指标来度量频率和持久性,当一条边到达时,计算其差异,并与活动边集的平均不一致性值进行比较,如果边的加权不一致性大于平均不一致性的阈值水平,则声明该边为异常边,基于异常边,可以进一步识别其他异常图元素(如顶点,边,子图)。

具有许多“异常”边的子图即是异常的子图。

【52】将边的权重视为异常得分,每个时间步长上的每条边都有它自己的异常分数,给定了该边权值在所有图序列的分布,该分数表示在该特定的边上看到该特定权值的概率函数。或者,为网络中的边分配异常值分数的现有方法的输出可以用作为该方法的输入。后一种方法允许应用于任何能够为边分配异常值分数的网络,一旦完成每条边的异常打分,即可发现显著异常的区域(SARs),即一个窗口内的固定子图,其类似于HDSs。【112】提出了一种迭代算法,该算法首先固定子图发现最优时间窗口,然后固定时间窗口发现最优子图。【97】拓展了该方法,允许子图渐变,即在相邻时间步间增加或移除顶点。

定义函数 为测度图距离的函数,将其应用于连续图序列,即得到距离序列,基于该距离序列应用一些启发式算法(如基于移动平均阈值的 取值)即可得到异常事件。

称每个顶点及其egonet的特征为局部特征,整张图的特征为全局特征。每个顶点的局部特征可聚合为一个向量,基于该向量的各阶矩可构造signature向量,利用signature向量间的Canberra距离(归一化的曼哈顿距离)可构造图之间的距离函数【93】。【92】利用全局特征,定义了一种基于dK-2序列的距离测度,将高于阈值的特征视为异常点。

【96】使用了顶点亲和度(即一个顶点对另一个顶点的影响,可以用于快速信念传播)得分作为signature向量,其基于连续时间步技术顶点亲和度,基于马氏距离度量两个图的相似度,亲和度得分的变化反应并适应变化的影响水平,例如桥边的移除比正常边移除的得分更高。利用单个移动范围的质量控制,可以对相似度得分的时间序列设置一个移动阈值,如指数移动平均加权。

作为特征相似度的补充,我们也可以比较两个图的结构差异来度量突变的大小,这类方法致力于发现定义距离的函数而非发现特征向量。【88】计算了异常网络的10种距离函数,使用ARMA模型构造特征值的正常模型,然后基于正常模型计算时点的残差,残差超过给定阈值的时间即可标记为异常。10种距离函数中,基于最大共有子图的方法表现最好。【90】使用了五中得分函数(顶点/边重叠,顶点排序,向量相似度,序列相似度,signature相似度)来检测三种异常(子图缺失,顶点缺失,连通性变化),表现最好的方案是抽取每个顶点和边的特征构造signature向量,使用SimHash定义距离。

我们还可以通过计算每个图的稳健性序列来检测事件,稳健性序列是图连通性的测度,具有高稳健性的图即使在去除一些顶点或边的情况下,也能保持相同的一般结构和连通性,事件检测即发现稳健性值异常变化的时点【95】。【89】使用的是图半径的变体作为稳健性指标,图半径的定义是基于所有顶点的平均离心度,而非常用的最大离心度。

基于概率理论、分布、扫描统计学等方法可以构造“正常”样本的模型,偏离该模型的样本即视为异常,这类方法的主要区别在于构造方法、建模对象、离群值定义。

主要有两种方法:一,构造扫描统计时间序列并检测离均值若干标准差的点;二,顶点分类。

扫描统计常称为滑动窗口分析,其在数据的特征区域中发现测度统计量的局部最小或最大值。对某个特定图,扫描统计量可以是图不变特征的最大值,如边的数量。

【8】使用了一个适应测度统计量的变量,即每个节点的0-2度邻居数,然后对每个顶点的局部统计量使用近期值的均值和标准差进行标准化,图的扫描统计量即最大的标准化局部统计量。标准化可以解释每个顶点的历史信息,代表每个顶点的统计量只与自己的历史信息有关而与其他顶点无关。这保证测度的最大变化与变化的绝对量无关而与比例有关。基于扫描统计量标准化时间序列,将序列均值的五个标准差作为异常值。最负责的顶点被确定为为整个图的扫描统计值所选择的顶点。

类似于使用邻居进行扫描统计,我们还可以用Markov随机场(MRF)来发现节点的状态,并通过信念传播算法推断最大似然分配,其中,每个顶点标签取决于其邻居节点。【99】通过发现二部核来检测异常点(即犯),二部核定义为犯与从犯间的交互。利用边的插入或删除只影响局部子图这一事实,它在添加新边时逐步更新模型。在传播矩阵中,一个顶点可以处于三种状态之一:欺诈者、共犯者或诚实者。

边异常检测通常使用计数过程建模,统计上显著异于该模型的边标记为异常边。

【50】用贝叶斯离散时间计数过程来建模顶点间的通信次数(边权重),并根据新图更新模型。基于学习到的计数的分布,对新观测的边进行预测 值计算,基于 值标记异常顶点对。

首先用固定的子图,多重图,累积图来构造预期行为的模型,对模型的偏离可作为子图异常检测的依据。

【104】结合扫描统计量和隐马尔可夫模型(HMM)建模边行为,其使用的局部扫描统计量是基于两种图形状:k-path图和星型图,其将滑动窗口的扫描统计数据与其过去的值进行比较,并使用在线阈值系统识别局部异常,局部异常是所有统计上显著的子图(代表k个路径或恒星)的并集。

另一个建模动态图的方法是基于多重图,其中平行边对应于两个连续时间步顶点间的通信,初始的多重图可分解为多个针对每个时间窗口的叠套子图(TSG),TSG满足两个条件:(1)对于任何两个有共同点的边,首先开始通信的边最后完成通信;(2)存在一个根顶点r,它没有传入的边,并且有一条到TSG中每个顶点的路径。出现概率低的TSG视为异常子图。【102】

累积图即为包含直到当前时点的所有边的图,边权重依据衰减函数定义,通过识别“持久模式”来定义子图的正常行为。该持久模型识别模型如下:首先构造一种图,该图每个边根据时间来加权,然后基于该图迭代抽取最重连接成分来发现。随着累积图的发展,提取的子图将被监控,并将其当前活动与基于最近行为的预期活动进行比较来进行子图异常检测。【101】

事件检测可以基于偏离图似然模型或特征值分布的偏差来进行。

【103】提出了一种新的蓄水池抽样方法来抽取图流的结构摘要,这种在线抽样方法维持多个网络划分以构造统计上显著的摘要,当一个新图进入图流,每个边都根据不同分区的边生成模型计算出一种似然性,然后以这些似然性的几何均值作为全局图似然性。

【98】使用了类似的边生成模型,每个边 的概率都存储在矩阵 中,概率基于期望最大化估计,基于所有收发对的分布,然后为每个收发对给出潜在得分,基于所有边似然得分的均值即得到每个图的得分。

【100】计算了特征值和压缩特征等式的分布(而非计算收发对的分布),基于每个顶点都存在一个顶点局部特征时间序列的假设,可在每个时间步构造一个顶点-顶点相关矩阵,通过保留最大特征值和一组低维矩阵(每个顶点对应一个矩阵),可对相关矩阵的特征方程进行压缩,通过学习特征值和矩阵的分布,即可发现异常顶点和事件。当特征值偏离期望分布时,即认为发生了事件,当顶点的矩阵偏离矩阵分布时,可认为该顶点为异常顶点。

时序数据异常检测论文

1. 刘勰的时序论文:探索时序数据分析的机会与挑战2. 刘勰的时序论文:深入探索时序数据挖掘的新方法3. 刘勰的时序论文:时序数据挖掘在智能系统中的应用4. 刘勰的时序论文:基于时序数据的模式识别方法5. 刘勰的时序论文:时序数据挖掘的机器学习方法6. 刘勰的时序论文:时序数据挖掘的深度学习方法7. 刘勰的时序论文:时序数据挖掘的自然语言处理方法8. 刘勰的时序论文:时序数据挖掘的模式识别算法9. 刘勰的时序论文:时序数据挖掘的统计分析方法10. 刘勰的时序论文:基于时序数据的聚类分析方法

这是一篇发表于2015年SIGMODE数据管理国际顶会的论文,它主要针对时序数据的聚类问题,提出了K-Shape方法。与以往的方法相比,它优化了距离计算方法,质心计算方法,还引入了提取频域特征方法,以提升效率。 作者认为它是一种独立于领域、高精度、高效率的时间序列聚类方法。 我觉得相对于传统方法,它聚类效果更好;相对于DTW类方法,效果稍差,但速度快很多。毕竟从原理来看,K-Shape只考虑了纵向拉伸和横向平移,而DTW还考虑了横向拉伸。 K-Shape原理和K-means相似,不同在于它改进了距离计算方法,并优化了质心计算方法。一方面支持振幅缩放和平移不变性,另一方面计算效率也比较高,并且不用手动设置参数,便于扩展到更多领域。 距离算法用于计算两组时序数据的差异,其中的核心问题是如何处理时序数据的形变,论文中的图-1 展示的心电图数据被分为A/B两类: 其中A类的特点是:上升->下降->上升,而B类的特点是:下降->上升。图-1 的右下图展示了理想的建模效果,它识别到了相同的模式,而忽略了幅度和相位的差异。人们也更倾向使用这种方法计算距离,很多时候甚至认为距离计算方法比聚类方法更加重要。一般来说,支持振幅缩放和平移不变性的方法,计算成本较高,难以对大数据量建模。 K-Shape之前的主流距离算法如下: K-Shape用互相关方法计算两个时间序列的距离。假设有X和Y两个时间序列,序列长度均为m。为实现平移不变性,Y不变,一步一步划动X,并计算每一步X与Y的差异。 如上图所示:假设绿色区域为Y,白色区域为划动的X,每一行s(step)向前划动一步,序列长度为m=4,s∈(-3,3)共7种取值,w是所有移动的可能性2m-1=7次,w-m=s=k,也就是下面公式中的对齐位置(对齐逻辑贯穿整个算法)。 定义互相关系数CC: 利用R来计算x和y在每一步的相似度,在对的上(在X,Y中都存在)的位置计算点积,最终R是有效区域的点积之和(对每个对上的小块加和)。可以说,R越大两个序列越相似。 由于对比的每个子序列振幅不同,块数也不同,所以在对比时需要进行归一化,归一化方法有三种, 第三种使用了互相关方法,效果最好。 归一化效果如下图所示: 其中图(a)使用z-normalization只做了对振幅的归一化,没有平移,可见在上述情况下,不平移(正对上)时对齐效果最好。从(b)(c)(d)可以看到:(d)图使用第三种方法,在最中间的点上相似度值最大(s=0时),即正对上的时候,其相似度最大,这与(a)呈现出的效果一致。而(b)(c)都认为最相似的情况出现在右侧,这明显不太对。 文中定义了基于形态的距离SBD(Shape-based distance),块重叠越多形状越像CC越大,对比所有可能位置的相似度值,取最相似的max(CC),然后用1-max(CC)得到SBD,也就是说形状越相似,距离SBD越小,归一化后的NCC值在[-1,1]之间,因此,SBD值在[0,2]之间。 可以看到,用以上方法时间在序列较长时复杂度比较高,当序列较长时,计算量也会很大,为解决这一问题,作者提出使用傅里叶变换将序列由时域转到频域再比较,以节约计算量。 定义了距离之后,还需要根据距离逻辑来调整质心算法。 从图-4 可以看到:时序数据的质心也是一条时序变化线,图中的蓝色线使用均值方法(计算每个点的均值)来计算质心;由于错位,波峰和波谷被拉成了直线,因此不能正确地表达形状趋势。 K-Shape使用基于SBD的方式计算质心。 该公式的目标是寻找μk*,使质心μk与该簇Pk中各条序列xi的相似度NCC最大。 算法一:先使用SBD() 函数计算dist和y',dist是时序x,y之间的距离,y'是y中与x最匹配的子段。使用这种方法解决了波峰波谷对不齐,以致相互抵消的问题。 然后用基于线性代数方法,将公式13展开成公式15: 最终可利用瑞利商公式加以简化: 瑞利商R(M,x)的一个重要的性质是:R的最大值等于矩阵M最大的特征值,最小值等于矩阵M最小的特征值。此时,就不用太考虑R(M,x)中的x(即本问题中的uk)。公式13被简化成以下算法: 算法二:ShapeExtraction()根据簇的当前质心C和簇内的所有点X,计算更合理的质心C'。 line2: 遍历簇内所有的点X(i) line3: 计算各点与质心的距离dist以及其中与质心最为相似的片断x' line4: 将最为相似的片断加入X' line5: X'转置与X相乘生成一个方阵(X的平方) line6: 创建用于正则化的矩阵Q line7: 正则化后生成矩阵M line8: 取矩阵M对应最大特征值时的特征向量,以实现对X'的特征抽取 (以上说明为个人理解,不一定对,仅供参考) 最终的聚类方法通过迭代实现,每次迭代分为两步:第一步重新计算质心,第二步根据每个序列与新质心的距离将它们重新分配到不同的簇中;一直循环迭代到标签不再变化为止。 算法三:聚类的完整过程由 k-Shape() 实现: 其中X是所有序列,k是簇的个数,IDX是标签。 line3: 在标签稳定前&迭代次数不超过100次的条件下,不断迭代 line4-10:根据簇中的元素重新计算每个簇的质心C line11-line17:计算每个序列与各个质心的距离,并将它分配到新的簇中(重新打标签)。 K-Shape算法每次迭代所需时间为: O(max{n·k·m·log(m), n·m^2, k·m^3}) 其中n是实例个数,k是簇个数,m是序列长度。可见,该算法大部分的计算代价依赖于时间序列的长度m。然而,这个长度通常比时间序列的数目小得多,因此,对m的依赖不是瓶颈。在m非常大的极少数情况下,可以使用分段或降维方法来有效地减小序列的长度。 图-5对比了K-Shape、ED和DTW模型效果,可以看到绝大多数情况下,SBD好于ED,部分情况下SBD好于DTW。但SBD比DTW好在它速度更快。

STL 表示基于损失的季节性分解的过程。该技术能够将时间序列信号分解为三个部分: 季节性变化(seasonal)、趋势变化(trend)和剩余部分(residue) 。

顾名思义,这种方法适用于季节性的时间序列,这是比较常见的情况。

这里不太明显的地方是,我们为了得到更可靠的异常检测结果,使用了 绝对中位偏差 。该方法目前最好的实现是 Twitter 的异常检测库 ,它使用了 Generalized Extreme Student Deviation (广义的 ESD 算法)测试残差点是否是一个离群点。

该方法的优点在于其简单性和健壮性。它可以处理很多不同的情况,并且所有的异常情况仍然可以直观解释。

它主要擅长于附加的异常值检测。如果想要检测一些水平变化,则可以对移动平均信号进行分析。

该方法的缺点是在调整选项方面过于死板。你所能做的只有通过显著性水平来调整置信区间。

当信号特征发生了剧烈变化时,该方法就失效了。例如,跟踪原本对公众是关闭状态的,却突然对公众开放的网站用户数量。在这种情况下,就应该分别跟踪在启动开放之前和开放之后发生的异常。

分类回归树(CART)是目前最稳健、最有效的机器学习技术之一。它也可以应用于异常检测问题。

分类树学习的最流行实现是 xgboost 库 。

这种方法的优点是它不受信号结构的任何约束,而且可以引入许多的特征参数进行学习,以获得更为复杂的模型。

该方法的缺点是会出现越来越多的特征,这很快会影响到整体的计算性能。在这种情况下,你应该有意识地选择有效特征。

自回归移动平均模型(ARIMA)是一种设计上非常简单的方法,但其效果足够强大,可以预测信号并发现其中的异常。

该方法的思路是从过去的几个数据点来生成下一个数据点的预测,在过程中添加一些随机变量(通常是添加白噪声)。以此类推,预测得到的数据点可以用来生成新的预测。很明显:它会使得后续预测信号数据更平滑。

使用这种方法最困难的部分是 选择 差异数量、自动回归数量和预测误差系数。

该方法的另一个障碍是信号经过差分后应该是固定的。也就是说,这意味着信号不应该依赖于时间,这是一个比较显著的限制。

异常检测是利用离群点来建立一个经过调整的信号模型,然后利用 t-统计量 来检验该模型是否比原模型能更好的拟合数据。

该方法最受欢迎的实现是 R 语言中的 tsoutliers 包。在这种情况下,你可以找到适合信号的 ARIMA 模型,它可以检测出所有类型的异常。

指数平滑方法与 ARIMA 方法非常相似。基本的指数模型等价于 ARIMA (0, 1, 1) 模型。

从异常检测的角度来看,最有趣的方法是 Holt-Winters 季节性方法 。该方法需要定义季节性周期,比如周、月、年等等。

如果需要跟踪多个季节周期,比如同时跟踪周和年周期,那么应该只选择一个。通常是选择最短的那个:所以这里我们就应该选择周季节。

这显然是该方法的一个缺点,它会大大影响整体的预测范围。

和使用 STL 或 CARTs 方法一样,我们可以通过统计学方法对离群值进行统计来实现异常检测。

与 CART 方法一样, 神经网络 有两种应用方式:监督学习和无监督学习。

我们处理的数据是时间序列,所以最适合的神经网络类型是 LSTM 。如果构建得当,这种循环神经网络将可以建模实现时间序列中最复杂的依赖关系,包括高级的季节性依赖关系。

如果存在多个时间序列相互耦合,该方法也非常 有用 。

在线的时间异常检测论文及代码

close all; clear all; X=-6:; %设置采样范围及精度 pw1=;pw2=; %设置先验概率 u1=-2;sig1=;u2=2;sig2=4; %设置类条件概率分布参数 y1=(1./sqrt(2*pi*sig1))*gaussmf(X,[sqrt(sig1) u1]);%计算类别一(正常细胞)的类条件概率...

单从学术角度来说,论文写的代码不会是查重,里面包含了字母和公式的代码。有些论文查重系统写论文就认不出来了,当然也有学校要求查重。那么当我们知道论文代码时,是否会查重,还是要结合实际情况来进行判断。

原码不会是查重的原因是原码重复率低。其实我们也可以在写作的过程中把别人的代码改成一些基本的内容。只要把代码加起来,然后使用自己的原格式写,那么可以有效降低重复率的,这样对于整个论文的影响也不会很大。代码会不会是查重这个问题真的需要从多方面详细分析,才能更好的帮助你了解更多关于论文查重的知识。

避免论文的高重复率,写代码的时候,千万不要抄袭别人的相同代码,只要内容相同,就会判断查重率更高。同学们在写毕业论文的时候,可以考虑这些基本情况,比如论文代码的编写过程中需要注意哪些事项。代码的格式应该是正确的,只是需要按照一定的规则编写。为什么论文要进行查重?

结合以上情况,我们也可以在搞清楚论文代码的时候,搞清楚我们是否会进行查重。不仅要用正确的格式写代码,而且不要抄袭别人的内容。内容相似肯定会导致论文重复率高,有的学校对于代码也有查重要求,所以我们要考虑到学校的实际要求,才知道怎样去操作。

首先用浏览器打开知网论文查重官网入口,选择适合自己的知网查重系统,本科阶段一般采用pmlc检测系统,硕士博士一般采用vip检测系统。然后点击“立即检测”按钮,就可以进入知网查重提交的页面,输入自己论文的标题和自己的姓名,上传自己的论文文档就可以提交检测了。提交查重之前需要支付一定的费用,如果是高校发放的账号,则不需要。付款之后等待2-3个小时就可以下载知网查重报告了。

首先,找到一个靠谱的论文查重系统,之后按照系统的提示一步步提交操作,把论文内容提交到框中,然后点击检测,等待检测结束后生成报告。最后按照检测报告中的重复部分进行修改,达到学校的标准为止。

时间序列做预测毕业论文

我了解更多,选择明白这个道理

预测宏观,你的变量永远是不够的。预测GDP其实啥意义都没有,但是,写文章的话,就说指导生产、分析经济发展中的不足等等等。总之怎么说都行的啊。时间序列的话,就更多的往经济周期、产业结构上说。虽然话是这么说,但是滞后期是你自己选的,这经济周期怎么都容易往上靠,方便解释,一般的文章建议你往这上面说。如果是毕业论文建议你方法要改良,否则答辩时候会被喷的

力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。

时间序列毕业论文论文

论文的摘要是对整篇论文的归纳和总结,摘要里要表现出你的首要观念,简略归纳你的证明进程,写出你的首要定论,最佳列出你的论文的立异点,让读者对整篇论文有大致了解。我给你一篇自个写的。助人为乐。

我了解更多,选择明白这个道理

力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。

五年以内。最好是五年以内的研究的期刊或者论文,因为这是这个领域里面最新的资讯,作为你论文的佐证是最好的。实在没有办法的话用10年以内的也是可以的,当然了,如果有很早以前的,但是又是必须的也可以加上,但是我建议不要用是最好的。

  • 索引序列
  • 时间序列异常检测论文
  • 时序数据异常检测论文
  • 在线的时间异常检测论文及代码
  • 时间序列做预测毕业论文
  • 时间序列毕业论文论文
  • 返回顶部