1. [期刊论文]产教融合视域下汽车智能技术专业人才需求分析 期刊:《内燃机与配件》 | 2021 年第 002 期 摘要:在国务院印发《国家职业教育改革实施方案2. [期刊论文]汽车智能技术专业群"1+X"课证融通的探索与实践 期刊:《时代汽车》 | 2021 年第 011 期 摘要:职业教育改革中重点关注3. [期刊论文]汽车电子技术中的智能传感器技术分析 期刊:《电子测试》 | 2021 年第 002 期 摘要:现代电子信息技术的大力发展,使得各行各业的
随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!
人工神经网络的发展及应用
摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。
关键词人工神经网络;发展;应用
随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。
1人工神经网络概述
关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。
2人工神经网络的发展历程
萌芽时期
在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。
低谷时期
在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。
复兴时期
美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。
稳步发展时期
随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。
随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。
3人工神经网络的应用
在信息领域中的应用
人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。
在医学领域的应用
人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。
在经济领域中的应用
经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。
在其他领域的应用
人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。
4总结
随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。
参考文献
[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.
[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.
[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.
[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.
[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.
下一页分享更优秀的<<<人工智能神经网络论文
随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!
人工神经网络的发展及应用
摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。
关键词人工神经网络;发展;应用
随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。
1人工神经网络概述
关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。
2人工神经网络的发展历程
萌芽时期
在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。
低谷时期
在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。
复兴时期
美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。
稳步发展时期
随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。
随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。
3人工神经网络的应用
在信息领域中的应用
人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。
在医学领域的应用
人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。
在经济领域中的应用
经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。
在其他领域的应用
人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。
4总结
随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。
参考文献
[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.
[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.
[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.
[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.
[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.
下一页分享更优秀的<<<人工智能神经网络论文
人工智能下财务会计向管理会计转型论文
在学习、工作中,大家都不可避免地会接触到论文吧,借助论文可以达到探讨问题进行学术研究的目的。相信很多朋友都对写论文感到非常苦恼吧,以下是我为大家整理的人工智能下财务会计向管理会计转型论文,仅供参考,希望能够帮助到大家。
摘要:
随着人工智能在各领域的全面普及以及市场竞争的加剧,企业迫切需要通过应用管理会计来提高自身的管理水平和决策能力;另一方面,人工智能已代替人工完成繁杂、重复的基础财务工作,并自动收集和存储大量业财数据,使得大量财务人员能有更多时间和精力,通过利用、分析业财数据,转型参与到企业管理与决策之中,并为之提供有价值的信息。因此,人工智能背景下财务转型势在必行。然而目前,企业财务转型并不顺利,为此,本文在解析管理会计和财务转型内涵的基础上,深入研究了目前企业在财务转型过程中出现的问题和面临的困难,并探讨解决对策,希望能为推进企业财务转型提供参考与借鉴。
关键词:
人工智能;财务会计;管理会计;财务转型
引言:
在这个信息科技高速发展的时代,人工智能技术在各行业、各领域的应用越来越广泛,对企业的财务会计工作影响也很大,财务会计中简单又重复的基础工作已被人工智能逐渐取代,财务会计向管理会计的转型是必然趋势,但由于传统的财务会计思想根深蒂固,转型过程中困难重重,面临的问题也较多,转型整体推进较为缓慢,本文通过分析转型过程中出现的问题,研究解决对策,以推动企业加速向管理会计转型,更好适应新时代的发展。
一、管理会计的内涵及与财务会计的关系
管理会计(ManagementAccounting)是从传统的会计系统中分离出来的,是与财务会计并列的,着重给企业管理层提供合理决策建议,用来改善企业经营管理,提高企业经济效益的一个会计分支。管理会计是根据企业编制的计划、作出的决策以及不同的经济活动,运用管理会计的相关工具,参与到企业的规划、决策、评价等活动中,进而推动单位实现战略规划。,财务会计是对企业过去发生的经济业务或事项,用书面的形式进行确认、记录、计量和报告,为企业利益的不同相关方提供财务会计报告,因此财务会计是对外报告会计。而管理会计是以财务会计信息为基础,利用专门的工具方法分析处理业财数据,为企业的经济活动进行事前规划决策、事中监督控制、事后评价考核提供有效的信息,因此管理会计是对内会计,对于提高企业管理水平和决策能力都具有非常重要作用。
二、财务转型的内涵及必要性分析
(一)财务转型的内涵
财务职能转型是由原来的核算型会计转变为管理型会计,利用先进的信息技术,将会计人员从大量重复繁杂和基础的会计工作中解放出来,这样可以让会计人员有更多时间和精力参与企业的管理与决策活动,并为这些活动提供有价值的信息。如从事战略规划、项目决策、成本管理、业绩管理等那些具有高附加值、有创造性的工作,因此财务会计向管理会计转型是以信息技术为依托的,是信息技术发展的必然结果。企业财务转型的目标主要是为了有效地支撑企业经营活动的全过程,从而逐步由日常简单核算为重点的财务会计向以资源整合、决策支持为重点的管理会计转型,同时做到有效引导,积极协助有关部门能够对经营活动的全过程做到较好的价值管理,从而不断提升企业经济增加值。财务转型也不是一蹴而就可以完成的,需要有一个漫长的过程,是企业在不断自我变革中实现科学发展、可持续发展的必然过程。一般而言,财务转型的主要方向有以下几种:
1.战略财务模式
战略财务是将企业的长期目标和行动计划数字化为可预测的财务模型,假定在不同的经营、投资及筹资的条件下,模拟分析目标企业的经营盈利等情况,利用企业价值评估方法对企业和股东价值进行评估,让高层管理人员看到不同的战略对企业会产生不同的财务影响,从而选择对企业具有最佳财务战略的方案。在新的经济形势下,财务不能再被动的接受企业管理变革,因为企业的经营战略和财务战略的联系日益紧密,战略财务的模式也越来越被较多的企业所认可。
2.共享财务模式
共享财务模式是指集团公司将分布在不同地区或不同国家的经济业务,集中在财务共享中心来进行处理,这是一种常见的将财务工作和企业战略管理统一结合在一起的管理方式,对于促进更多的企业将其统一的财务业务以及相关工作结合在一起共同解决,如此不仅保证了会计记录和报告的规范、结构统一,提升了工作的效率,也在最大程度上推进集团企业资源的利用效率,在推进企业不断实施新的战略计划提供了有力的保障。对于促进企业的不断扩张以及海外市场的探索具有深刻意义。与普通企业的财务处理模式最大不同在于,财务共享服务中心可以利用其规模效应大大降低人力成本,提供工作效率,同时可以快速提高财务人员的`业务水平,进而提升企业的核心竞争能力。
3.精益业务管理财务
精益业务管理财务就是把财务逐渐延伸到业务工作中。财务部门利用业务部门的精益管理思想和财务管理思想进行高度融合,将财务部门的传统财务预算、会计核算和财务分析的职能部门转化为利润中心。通过精益化的成本核算,掌握生产环节的每个步骤或工序的具体成本组成,包括固定成本、可变成本以及生产纯成本和管理不善成本等,从而可以有针对性的提出有效节约成本的建议,进而达到指导或建议生产部门实施降低产品总成本的目的。财务部门可以针对生产环节实施前后进行产品成本差异分析,按照标准产品价格计算为企业多产生的利润。
(二)财务转型的必要性分析
1.企业当前的客观需求
21世纪,经济全球化以及新兴经济体的井喷,使得各国经济之间相互交融,增加了经济发展的复杂性。在此背景下,企业发展面临着诸多不确定因素,要求管理者对可能面临的风险做出准确的判断,同时要求企业不仅要具备强大的核心经营能力,还要具备一流的管理能力,企业要想提升这些能力,就需要财务部门从财务视角为企业管理与决策提供价值相关信息,因此,竞争倒逼企业迫切需要财务转型,即由核算型会计转为管理型会计,加强对管理会计的应用,提升企业经营管理能力。
2.会计核算方式发展为转型提供了条件
自计算机普及以来,经过几十年的高速发展,特别是财务处理软件的应用,对各种会计信息进行加工处理,甚至开始运用编程来实现某些数据的自动分类和归集,为管理会计的应用提供了大量、有价值的数据,为管理会计的应用奠定了基础,因此财务会计向管理会计转型的基础条件之一已经具备。
3.人工智能的应用为财务转型提供了条件
近年来,人工智能开始广泛应用于会计领域,计算机人工智能自动完成日常会计核算工作,诸如自动生成凭证、利用AI图片识别技术来对原始单据进行初步审核、批量文件处理等,节省出大量财务人员,使他们能把更多的时间和精力放在对经营活动的分析和预测上,即放在管理会计上,因此人工智能在财务会计领域的应用为财务转型提供了另一个条件。当企业既有内在需求,又有外在条件时,财务会计向管理会计转型成为必然。
三、目前企业财务转型面临的问题
(一)对财务转型重视程度不够
在多数企业中,一般地,核心部门是销售、研发等部门,而财务部门处于非核心职能部门地位。财务部门在企业经营决策中的参与度较低,一些企业管理者对会计的认识还停留在记账、核算、报税等初级层面。由于领导层对管理会计的重要性认识不够充分,导致目前财务会计向管理会计转型困难重重,特别是部门之间的配合工作推动困难比如人事部门并不能从相关人员安排和岗位设置上进行很好的配合,业务部门也会狭隘的认为财务转型使得业务部门的工作量增加,并对财务人员深度介入业务有抵触情绪;财务部门人员也感觉难以取得相关业务数据,理解不了业务实质,很难进行深度挖掘和分析,打消了主动参与财务转型的积极性。最终结果是财务转型工作流于形式,管理会计信息没有在企业经营决策中发挥实质作用。
(二)缺乏开展管理会计工作的相关机制
要想深度发挥管理会计的优势,必须大力推进业财融合,将财务工作嵌入业务前端,从事后管控前移至事前规划、事中管控,做到财务全流程参与,及时发现业务流程中出现的风险,并及时有效进行风险管理。但是由于业务部门和财务部门关注的绩效指标天然存在差异,财务部门往往比较关注资产负债表、投资收益率、预算执行情况等企业整体性的经营指标。而业务部门则重点关注销售额、市场占有率、款项回笼情况等。并且,财务部门比业务部门更关注风险防控,而业务部门为了做大销售,往往愿意冒更大的风险进行大规模赊销活动,拓展业务。这些都会导致业财融合工作中出现互相争执不下,甚至出现冲突和摩擦,最终影响财务转型的效果。导致该问题的主要原因在于企业缺乏业务与财务部门对接机制,缺乏必要的开展管理会计工作的制度安排,即缺乏必要的业财融合制度安排。
(三)专业管理会计人才缺乏
当前我国低层次的财务会计人才已明显过剩,但是复合型管理人才却十分紧缺。在当前人工智能时代,要想胜任专业的管理会计工作,不仅需要厚实的专业知识功底,还要精通信息技术、统计学、运筹学等相关知识,更需要熟悉企业的相关业务流程。企业现有的财务人员本身就不多且水平有限,能够熟悉业务并且熟练运用大数据技术开展管理会计工作的人才更是十分稀缺,这也是制约财务转型的一个重要因素。
(四)信息化建设水平不足
目前一些规模较大的企业都有诸多信息系统,分属不同的业务线和不同部门,且各系统的软件厂商也不同,分别产生各领域的数据和报表,相互独立,不同系统之间没有有效衔接,产生大量信息孤岛,造成数据传输效率低、抽取困难,准确性较差,数据之间相关性较弱。而财务转型要求信息口径统一的数据,且需要这些数据能够实施共享,这样财务部门才能实时获取并处理分析这些数据,以获取价值相关信息,为管理层决策提供依据,因此信息化建设的不足降低了管理会计信息对经营决策的支撑作用,甚至对决策造成负面影响。
四、推进企业财务转型的对策建议
(一)企业领导重视,强化财务转型意识
企业财务转型不仅仅是财务部门自己的事情,而是需要得到企业各层级各部门的大力支持配合,这更是对企业综合管理行为的重塑,将影响着企业的组织、流程、制度、业务等方方面面。领导层的重视是财务转型顺利落地的重要保障,因此企业应将财务转型作为“顶层”设计,必须得到“一把手”的高度重视,必须在企业宏观层面建立财务转型意识。由企业高层领导牵头,统筹协调,自上而下推进转型工作,减少实施阻力,最大程度形成合力,为财务转型创造良好的氛围。同时,财务人员也要自觉提高转型意识,认识到财务转型的重要性和必然性,提高参与转型工作的积极性,提升自身综合素质,在时代的变革浪潮中主动进行角色转换升级。
(二)优化激励机制,促进业财融合
为减少财务转型落实过程中各部门之间的冲突和阻力,企业应建立确保管理会计工作开展的相关制度,如业务部门与财务部门对接机制,促使业务部门与财务部门沟通协作,推进业财融合。此外,企业还应优化完善现有的激励考核机制,特别是考虑一些跨部门工作人员的实际情况,将个人绩效与协作绩效挂钩,使相关各方利益都得到尊重和保障,鼓励员工勇于担当,主动作为。充分调动各方人员参与的积极性,信息共享,相互合作,增强层级及部门间的配合度,深度推动业财融合,为财务转型创造良好激励条件。在具体考核指标的设置上,对于一些部门考核指标之间有冲突的,应增进部门协调,完善考核体系,做到部门利益与企业整体利益统一;既要考虑本部门员工完成本职工作,又要兼顾为其他部门提供的协助和支持。让员工能实实在在享受到企业价值增值带来的成果,提升员工工作价值感,留住和吸引优秀人才,积极鼓励员工攻坚克难,提升效率,加快推进业财融合和财务转型。
(三)加强学习培训,更新财务人员知识结构
在财务会计向管理会计转型及业财融合的变革中,财务部门扮演的是发起人角色,财务人员必须主动学习、主动改变。在知识结构方面,除了原有的财务会计专业知识外,财务人员还需要学习和了解的领域主要有:管理会计知识,如量本利、盈亏平衡点、作业成本法等分析方法;企业管理、企业战略相关知识,拓宽视野,培养大局思维;了解行业的现状及发展趋势,熟悉本企业业务流程、深刻理解业务本质;大数据分析相关技能,如数据库软件ACCESS、统计软件SPSS、基本编程Python等。学习形式可以灵活多样,比如针对性的培训、讲座、引进高端复合型人才对原有财务团队进行传帮带、部门内部及甚至跨部门轮岗交流等等。财务人员应主动学习,向管理型、价值创造型、决策型复合人才转变,实现职业生涯的华丽转身。
(四)健全信息系统,为财务转型提供数据支撑
健全的信息系统有助于财务转型的顺利实施,提升企业的价值创造能力和竞争优势。企业应对现有的信息系统进行全面细化梳理和高效整合,并实现对数据信息的专业化术语及数据口径的标准统一,规范管理流程,完善管理制度,提高数据准确性及相关性;各部门子系统之间要实现无缝衔接和有效传输,真正打破信息孤岛和信息壁垒,确保各类信息共享互通,保障信息的全面性、多样性、及时性,全面提供信息质量,为财务转型工作开展夯实数据基础,从而为企业的经营决策提供更有效的信息支撑。人工智能时代背景下,财务会计向管理会计转型已经刻不容缓,而转型工作的具体落实则需要采取科学有效的策略。本文在深入研究了目前企业在财务转型过程中存在的问题和面临的困境的基础上,提出了只有树立转型意识、促进业财融合、更新财务人员知识结构、完善信息系统才能实现转型工作的顺利推进,拓展财务的工作领域,提升财务工作水平,创造财务工作价值。随着我国经济的不断发展,以及信息技术、人工智能等在企业的不断应用,未来企业在财务转型过程中还会遇到各种各样的困难和问题,但是管理会计的应用是必然的,未来还需要我们不断发现问题,并及时探讨解决对策,为推动企业健康稳步发展建言献策。
参考文献:
[1]丁双奎.人工智能背景下财务会计向管理会计转型分析[J].中国乡镇企业会计,2021(07):162-163.
[2]马怀玉.基于人工智能时代的财务会计向管理会计转型研究[J].企业改革与管理,2021(12):182-183.
[3]张颖.人工智能下财务会计向管理会计转型[J].纳税,2021,15(19):69-70.
[4]程燕茹.人工智能时代财务会计向管理会计的转型探讨[J].现代商业,2021(16):166-168.
[5]丁建华.人工智能时代财务会计向管理会计的转型[J].纳税,2021,15(19):57-58.
[6]王宏翆.浅谈人工智能时代财务会计向管理会计的转型[J].商业会计,2020,02(b):200-201
ai小微智能论文怎么样介绍如下:
小微智能论文是一款非常实用的论文写作工具,可以帮助用户提高写作效率和论文质量。
使用小微智能论文,只需要输入论文的主题和关键词,系统就会自动生成一篇符合要求的论文草稿,您可以根据自己的需求进行修改和完善。小微智能论文具有自动摘要、自动参考文献、自动排版等功能,可以大大提高用户的写作效率和论文质量。
但是,使用小微智能论文也需要注意一些问题,例如不能完全依赖系统生成的内容,需要自己进行审查和修改。总的来说,小微智能论文是一款非常实用的论文写作工具,可以帮助用户提高写作效率和论文质量。
拓展介绍:
近年来我国人工智能产业呈现出了蓬勃发展的良好态势。一是部分关键应用技术特别是图像识别、语音识别等技术,处于全球相对领先的水平,人工智能论文总量和高倍引用的论文数量,也处在第一梯队,据全球相对前列。二是产业整体实力显著增强。全国人工智能产业超过一千家,覆盖技术平台、产品应用等多环节,已经形成了比较完备的产业链。
京津冀、长三角、珠三角等地区的人工智能产业急剧发展的格局已经初步形成。三是与行业融合应用不断深入。人工智能凭借其强大的赋能性,正在成为促进传统行业转型升级的重要驱动力量,各领域智能的新技术、新模式、新业态不断涌现,辐射溢出的效应也在持续增强,人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。
但也要看到,在快速发展过程当中,我国人工智能的基础技术,还有较大欠缺,能够真正创造商业价值的还比较少。传统行业与人工智能的融合还存在较高门槛,有数据显示,今年人工智能领域投融资比前两年特别是跟去年相比,也有比较大幅度的下调。
中国人工智能应用具有领域广、渗透深的特点,在产业化方面具有独特优势,但也面临巨大挑战,尤其是在基础理论和算法方面,原始创新能力不足,在高端芯片、关键部件等方面基础薄弱,高水平人才也不足。随着全球人工智能加速发展,各国在认知智能、机器学习、智能芯片等方面将不断取得突破。
1. [期刊论文]产教融合视域下汽车智能技术专业人才需求分析 期刊:《内燃机与配件》 | 2021 年第 002 期 摘要:在国务院印发《国家职业教育改革实施方案2. [期刊论文]汽车智能技术专业群"1+X"课证融通的探索与实践 期刊:《时代汽车》 | 2021 年第 011 期 摘要:职业教育改革中重点关注3. [期刊论文]汽车电子技术中的智能传感器技术分析 期刊:《电子测试》 | 2021 年第 002 期 摘要:现代电子信息技术的大力发展,使得各行各业的
在acm图书馆(ACM电子图书馆)找到想要的文献在这里插入图片描述(我使用作者+年限限定的方式找到了文章)2、复制文献对应编号(蓝色所示)粘贴到文献小站(文献小站)在这里插入图片描述3、下载,搞定在这里插入图片描述打开CSDN APP,看更多技术内容ACM集训队论文合集_lhfl911的博客_acm集训队论文2021距离ACM/ICPC的时间越来越少了,选择性地看一些集训队论文是很有必要的。 (在此给已经看过所有论文的神牛跪了= =) 所以,我在此整理了一下,供大家参考。 组合数学 计数与统计 2001 - 符文杰:《Pólya原理及其应用》 2003 - 许智磊...继续访问...会议和期刊论文的下载方法_zffustb的博客_aaai论文下载在以下的网站上选择需要下载的年份的会议。 WWW Conference - Proceedings ()在2022年时,5月6日时可以从该网站上下载WWW 2022的论文了。 ACM MM 在bing国际版上搜索[year] ac...继续访问ACM经典论文,这是acm经典论文集。acm常用算法,这是acm经典论文集。里面主要是2009年的国家集训队的acm培训资料。最新发布 学计算机不知道ACM数据库文献下载,那你就OUT了ACM数据库文献如何下载继续访问ACM最佳论文专业指导文档类资源-CSDN文库ACM会议模板,内含“”文件 本资源参考网址: 解压本资源后,用WinEdt打开“”文件,直接点“PDFTeXify”即可编译... ACM国家集训队论文集...继续访问最新CCF A 类人工智能会议论文下载汇总 (含2022)_Phoenixtree_DongZha...ACMMM2021 :ACM Multimedia 2021 NeurIPS2021 :Accepted Papers 2020 年前部分 CCF A 类会议论文下载地址汇总 NeurIPS(1987-2020) :List of Proceedings ICML(2013-2020) :Proceedings of Machine Learning Research | The Proceedings of...继续访问ACM论文格式化下载「ACM Paper Formatted Download」-crx插件下载文件名称 插入“一键下载”链接, 这将把PDF保存为格式化的文件名。 防爆 “140418_EA CHI'13_TuringRings-可嵌套的圆形” 而不是“” 支持语言:English如何免费下到IEEE ACM的论文(SCI-HUB的使用)记住这个网址 : (或者谷歌 sci-hub) 这是主页,看到 URL, PMID/DOI ,search string 在acm论文的地址粘贴在主页的search输出框,然后search查看pdf并下载继续访问ACM官方论文模板,英文投稿必备_acm英文论文格式-机器学习文档类...这是ACM给出的英文投稿模板,投稿必备。里面详细给出了章节、图片、表格、公式、数据、定理证明格式、引acm英文论文格式更多下载资源、学习资料请访问CSDN文库频道.继续访问如何免费下载英文论文_sa726663676的博客如何免费下载英文论文 如何免费下到IEEEACM的论文(SCI-HUB的使用): SCI-Hub科研论文全文下载可用网址 - 自动更新:...继续访问查找和免费下载文献的方式汇总目录1 查找文献的网站(1)Google Scholar(2)Semantic Scholar(3)Springer LInk(4)IEEE Xplore(5)ACM Digital Library(6)计算机数据库DBLP(7)知网(8)百度学术(9)万方数据库2 免费下载文献的方法(1)SCI-HUB(2)登录校园网(3)谷歌搜索(4)百度学术 本人是计算机专业,以下介绍的部分数据库是针对计算机和电子方向的,这几种常用的大众数据库一般足够使用,还有更过的小众的数据库就不一一介绍,如果想了解更多的通过校园继续访问ACM Digital Library访问及完整联动ZoteroThe ACM Digital Library(Association for Computing Machinery)创立于1947年,是全球历史最悠久和最大的计算机教育、科研机构。数据库收录了美国计算机协会的各种电子期刊、会议录、快报等文献的全文信息,还可以看到出版物信息。个人注册的账户不可以免费访问获取。尝试了几个第三方网站,也还凑合,最好的方式肯定是通过学校VPN的资源访问。所以一直是下载然后手动添加pdf,偶然发现,如下图,在pdf界面点击Zotero Connector插件,继续访问[转]如何免费下到IEEE ACM的论文(SCI-HUB的使用)记住这个网址 : (或者谷歌 sci-hub) 这是主页,看到 URL, PMID/DOI ,search string 在acm论文的地址粘贴在主页的search输出框,然后search查看pdf并下载 参考 ...继续访问ACM文献citation批量下载ACM批量下载citation继续访问超详细的免费下载论文方法作为一名大四生必然逃不过论文的刁难,一般学校都是买了中国知网、万维网等版权,但是回到家的同学没有校园网可以用这些免费的网站。 推荐网站: 2.谷歌学术 (主要用于下载英文文献) 知网虽然没有会员无法下载也无法在...继续访问acm程序参考文献参考本人上传一份acm程序参考文献,提供大家参考。。。国家集训队论文分类假期要将论文扫一遍。 组合数学 计数与统计 2001 - 符文杰:《Pólya原理及其应用》 2003 - 许智磊:《浅谈补集转化思想在统计问题中的应用》 2007 - 周冬:《生成树的计数及其应用》 2008 - 陈瑜希《Pólya计数法的应用》 数位问题 2009 - 高逸涵《数位计数问题解法研究》 2009 - ...继续访问一篇ACM上的文章主要介绍了一种新型的DNS结构;ACM CCS 2017论文集 PART1ACM CCS 2017会议论文集 The ACM Conference on Computer and Communications Security (CCS) is the flagship annual conference of the Special Interest Group on Security, Audit and Control (SIGSAC) of the Association for Computing Machinery (ACM).热门推荐 ACM 下会议的最新Latex模板的使用方法和投稿注意事项ACM 下会议的最新Latex模板的使用方法和投稿注意事项 1. ACM 会议的最新Latex模板的使用方法 解压从ACM会议指定官网下载的压缩包,一般使用sample-sigconf模板。新建一个文件夹将acmart-master中 、、及samples文件夹下sigconf拷入,编译即可。报错是因为没有考入sample下的图片。另外。Texstudio的编译改为Xelatex继续访问多媒体领域顶会--ACM MM 2020 会议论文打包下载点击上方,选择星标或置顶,不定期资源大放送!阅读大概需要15分钟Follow小博主,每天更新前沿干货ACM International Conference on Multimedia ...继续访问如何免费下载论文?声明:博客里只提供正规方法。首先,一般检索论文的搞研发工作的学生或者学者,而一般学校和研究所都会购买IEEE Xplore、中国知网、百度文库等比较常用的数据库,所以一般情况下先去这三个地方搜。其中:IEEE用来检索大多数的英文文章(打开相对来说有个几秒延迟);知网用来检索大部分的中文文章;百度文库里面有时候会有一些学生上传的毕业论文(大论文),一般不会去百度文库检索。其次,如果你在以上网站检索不...继续访问多媒体领域顶会,ACM MM 2020 会议论文下载ACM International Conference on Multimedia (ACM MM) 是多媒体领域顶会,研究内容覆盖图像、视频、音频、人机交互、社交媒体等,今年的ACM...继续访问acm论文下载写评论72619踩分享
1。 Frosini A, Gori M, Priami P (1996) A neural network-based model弗罗西尼甲,普里亚米P(下1996)哥里的神经网络的M -基于模型for paper currency recognition and verification.为纸币识别和验证。 IEEE Trans Neural电机及电子学工程师联合会跨神经Network 7:1482-1490网络7:1482-14902. 2。 Kosaka T, Taketani N, Omatu S (1999) Classification of Italian小坂吨,武谷ñ,Omatu工作主任(1999年)意大利分类bills by a competitive neural network.法案通过有竞争力的神经网络。 Trans Inst Elec Eng Jpn中国科学院利安达反英Jpn119-C:948-954 119 - ç :948 - 9543. 3。 Fukunaga K (1972) Introduction to statistical pattern recognition.福永度(1972年)介绍统计模式识别。Academic, New York学术,纽约4. 4。 Tipping ME, Bishop CM (1999) Probabilistic principal component小费我,主教厘米(1999年)的主要组成部分概率analysis.分析。 J Roy Stat Soc B 61:611-622 ĵ罗伊统计芯片乙61:611-6225. 5。 Haykin S (1999) Neural networks. Haykin工作主任(1999年)神经网络。 Prentice Hall, New Jersey普伦蒂斯大厅,新泽西6. 6。 Kohonen T (1995) Self-organization maps.基于Kohonen T(下1995)自组织地图。 Springer, Berlin施普林格,柏林Heidelberg New York海德堡纽约7. 7。 Rabiner LR (1989) A tutorial on hidden Markov models and拉比娜的LR(1989)关于隐马尔可夫模型和教程selected applications in speech recognition.在语音识别选定的应用程序。 Proceedings of IEEE诉讼的IEEE77:257-286 77:257-2868. 8。 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy Kohavi住宅(1995年)的交叉研究,验证和引导的准确性estimation and model selection.估计和模型选择。 Proceedings of the 14th International程序的第14届国际Joint Conference on Artificial Intelligence IJCAI,联席会议人工智能IJCAI,Montreal, Canada, pp 1137-11加拿大蒙特利尔,第1137至1111年
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!
对《人工智能》专业选修课教学的几点体会
摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.
本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。
下一页分享更优秀的<<<人工智能结课论文
人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!
摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。
关键词:人类智能,人工智能,认知,心理学
人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?
1.你在和谁说话?
“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?
. 人工智能的定义
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。
. 人工智能技术的发展
几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。
. 人工智能的研究领域
人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。
现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。
2.机器真的可以思考吗?
机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。
. 人类意识的本质
意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。
. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。
意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。
. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。
意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。
. 人类意识与人工智能的关系
认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:
l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。
l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。
l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
3. 人工智能的未来
人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。
在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。
人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。
【参考文献】
1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页
2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页
3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年
4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年
5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年
下一页分享更优秀的<<<人工智能的期末论文
人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!
摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。
关键词:人类智能,人工智能,认知,心理学
人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?
1.你在和谁说话?
“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?
. 人工智能的定义
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。
. 人工智能技术的发展
几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。
. 人工智能的研究领域
人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。
现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。
2.机器真的可以思考吗?
机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。
. 人类意识的本质
意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。
. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。
意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。
. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。
意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。
. 人类意识与人工智能的关系
认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:
l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。
l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。
l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
3. 人工智能的未来
人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。
在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。
人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。
【参考文献】
1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页
2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页
3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年
4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年
5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年
下一页分享更优秀的<<<人工智能的期末论文
有《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》等等。据查询相关公开信息《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》均属于人工智能与会计电算化参考文献。受时代发展人工智能得以更加便捷系统地处理、呈现财务信息。这意味着人工智能将渐渐取代基层会计人员。