首页 > 学术期刊知识库 > 高中立体几何解题论文开题报告

高中立体几何解题论文开题报告

发布时间:

高中立体几何解题论文开题报告

数学研究生开题报告

导语:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。下面和我一起来看数学研究生开题报告,希望有所帮助!

论文题目:高中数学研究性学习的实践探索

一、选题背景

随着社会的发展,人们深刻地认识到,想要一个国家向前不断的迈进,其源源不竭的动力就来源于一种精神,即创新精神。新一轮有关基础教育的课程改革中,我们国家教育部出台了有关以全面推进素质教育为目的的深化教育改革的文件,其明确地提出了要符合当今时代的发展要求,注重对学生个性的发展,以培养学生的创新性精神和实践性能力作为其重点内容。

经过十年的实践,对课程的改革取得了明显的效果,并且为了贯彻落实《国家中长期教育改革和发展规划纲要》,适应新时期全面实施素质教育的要求,我们国家教育部专家对义务教育阶段各个学科的课程标准进行了修订和完善,新增了创新意识作为关键词,将创新意识的培养作为了现代化教育的基本任务。而研究性学习是我国基础教育课程的重大突破,是当前教育改革的重点和热点内容,也是当今国际上比较普遍认同和实施的一种新的学习方式,对于调动学生的积极主动性、培养学生的创新性精神和实践性能力,开发学生的内在潜力,具有重要的价值意义。

国外对研究性学习的研究可追溯到苏格拉底,他将教师比喻为“知识的产婆”,并在教育方面做出的重大贡献是提出了要注重启发学生学习与思考的方法。从18世纪起,研究性学习就得到人们的广泛认识。18世纪末到19世纪,法国启蒙学者卢梭提出了要遵循着人类的天性发展。继卢梭之后,著名的教育家裴斯泰洛齐提出了“教育心理化”,他倡导在活动过程当中,要对儿童内在的能力得以培养和发展的同时,还要注重儿童的心理发展特点以及儿童之间的个别差异性;他们的思想都为今天的研究性学习奠定了一定的思想基础。

在20世纪左右,美国的杜威、克伯屈等人在这方面同样进行了研究,影响最大的是美国着名哲学家、教育家杜威,他主张“从做中学”,认为学生仅仅通过教师讲解或者看书所获取的知识都是虚无飘渺的,只有通过“活动”获取的知识才是实实在在的知识、才能真正的促进学生的身心以及未来发展。在20世纪中期,布鲁纳提出了认知发现学习理论。他认为学生非被动的接受知识,而应该主动的去探究知识;施瓦布也提出了“探索研究性学习”,他倡导通过探索研究来进行对所学知识的掌握,从而使得学生探索研究的能力得以发展。

二、研究目的和意义

21世纪初,新一轮的基础教育课程改革由教育部正式的开启了,将“研究性学习”融入高中必修课之中,以此,作为我国高中课程改革的一项重大举措。从此之后,“研究性学习”成为我国基础教育变革当中一门独树一帜的课程,它掀开了基础性教育的新一页,无可置疑,它已成为我国当前课程变革中最吸引眼球的一项举措。

在高中数学的学习过程中安排了研究性学习课程,不但对于学校构建符合素质教育思想和迫切需要的新型人才培养模式是一种突破性的改革,而且还可以丰富教学模式,从而使得教师和学生在知识、技能、实践等方面更上一层楼。

具体来讲:

第一,有作用于课程的变革。革新到目前为止,研究性学习已经不言而喻地成为了我国基础教育课程变革的突出点。作为一门基础学科的数学,它是中小学革新的龙头,所以开展数学研究性学习对于课程的变革具有重大的意义与价值。

第二,有作用于教师教学方式的变革。教育文件提出了要注重对教师由强硬灌输到鼓励、引导等教学方式进行转变。

第三,有作用于学生学习方式的革新。教育出台了有关在课堂中,针对学生死记硬背进行变革的文件,具体内容为不仅要倡导学生自己积极参与、还要培育学生获取未知知识的能力、分析和解决问题的能力,收集和处理信息的能力以及与人沟通交流的能力等。因此,怎样让学生从被动的学习方式变更为积极主动探索的学习方式,成为教育一线工作者乃至科学家们进行研究性学习研究的重要原因。

三、论文研究涉及的主要理论

数学研究性学习是指学生在数学教师或者相关学科教师的指引下,从各类学科以及实践活动中选取并设定为研究性学习的课题,运用类似于数学学科的科学研究方法去积极主动的获取数学知识、并应用数学知识来解决相关问题,使得学生对数学知识把握的同时,体验、了解、学会和应用数学学科所蕴含的研究方法,以及对学生科学精神的培养以及科研能力发展的一种学习方式。

在数学研究性学习的实施过程当中,学生不仅明确地了解了活动的程序,还深深地体会到数学这门学科所带给人们的奇妙之处,更加关键的是改变了学生学习的传统思维模式,培育了学生独立自主的学习能力、勇于探索的科学精神以及相互协作的团队意识。其活动过程的实施,对于传统的教师模式也提出了一定的挑战,具体来讲,就是教师主要起着指路人的'作用,对学生活动过程中的具体表现给予适时的正确评判,督促学生有效的完成各个阶段的活动任务,从而使学生的主动性得以充分调动。

四、论文研究的主要内容及研究框架

由于没有研究性学习的具体教材做支撑,那么,对于一线教师而言,确定研究性学习内容是十分困难的事情,但是我们知道类比方法可以引出很多的内容,从中可以启发我们通过研究性学习相关理论的学习,运用类比的方法,从如下两个不同层次进行研究性学习的实践探索,分别为从三角形到四面体已知类比开展的研究性学习活动作为层次一;

从三角形角平分线和旁切圆半径的不等式分别类比到四面体以获得四面体中新成果为目的所开展的研究性学习活动作为层次二。

并且层次一从活动的组织与安排、资源的收集、分析与利用以及三角形与四面体已知形式与证法的类比情况等方面都为层次二做了一定的铺垫,而层次二也是对层次一的升华。

具体针对层次一开展研究性学习实践探索的研究思路,简要地做如下介绍:

第一,让学生从已学过到的有关三角形与四面体的已知知识中选定研究课题;

第二,通过指导教师提供有关研究性学习活动方案的一般步骤作为参考,引导学生完成该课题活动方案的设定;

第三,在本层次中,由于学生可以通过收集、分析信息,采用小组合作的学习方式完成该课题的研究,因此具体活动实施根据每组情况在课后完成;

第四,每个小组选取代表针对于小组成员的参与程度、取得的主要成果、得到的新猜想、没有解决的问题等进行相关汇报;

最后,针对每组出现的问题,进行组间与师生间的相互交流,从而完善课题以及深化课题。

针对层次二的第一个课题开展研究性学习实践探索的研究思路,简要地做如下介绍:第一,由指导教师提供给学生有关三角形内角平分线的两个不等式,通过文献的检索与查新,确定到目前为止其对应在四面体中仍没有被研究,从而将其确定为所研究课题的背景;

第二,根据课题背景,帮助学生选定研究课题为三角形角平分线的两个不等式到四面体二面角平分面不等式的推广;

第三,通过师生间的共同分析,从而确定活动的目标与重难点;

第四,将对课题内容感兴趣以及数学成绩优异的学生组成活动兴趣小组来开展研究性学习;

第五,收集、学习、研讨三角形中不等式的主要5种证法,深刻的领会其证明思路、相关内容与研究方法;

第六,广泛收集并学习四面体中有关的理论知识,为接下来开展研究工作做好充分的准备;

第七,利用类比猜想出四面体中相应不等式的形式;

第八,通过指导教师的引导,并利用类比尝试给出四面体中相应不等式的证明过程。

层次二的第二个课题所开展的研究性学习实践探索与本层次第一个课题相类似,所以由学生尝试着独立地去完成,指导教师进行适当的指导。

五、写作提纲

第一章绪论

研究背景

研究目的

研究思路

第二章研究性学习理论的相关概述

研究性学习的相关概念

研究性学习的特点

研究性学习的目标

数学研究性学习课题的选取

数学研究性学习的实施

类比与数学研究性学习

第三章以三角形到四面体已知类比开展研究性学习

学情与目标分析

学习活动设计

第四章以三角形到四面体类比开展研究性学习获得创新成果

从三角形角平分线到四面体二面角平分面类比开展研究性学习

从三角形旁切圆半径到四面体旁切球半径类比开展研究性学习

第五章结语

研究的基本结论

研究的主要反思

六、目前已经阅读的主要文献

[1]着,单墫译.几何不等式[M].北京:北京大学出版社.1999:77.

[2]陆高原.研究性课题选择的策略[M].上海:上海大学出版社,2000(11):20.

[3]沈文选.单形论导引--三角形的高维推广研究[M].长沙:湖南师范大学出版社,2000:35.

[4]应俊峰.研究型课程[M].天津:天津教育出版社,2001:44.

[5]中华人民共和国教育部.基础教育改革纲要(试行)[M].北京:人民教育出版社,2001:1-24.

[6]王升.研究性学习的理论与实践[M].北京:教育科学出版社,2002:155-161.

[7]霍益萍.让教师走进研究性学习[M].南宁:广西教育出版社,2002:4.

[8]李伟明.研究性学习案例集[M].桂林:广西师范大学出版社,2002:42.

[9]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004:40-105.

[10]杨路,张景中.预给二面角的单形嵌入nE的充分必要条件[J].数学学报,1983,26(2):250-254.

[11]苏化明.预给二面角的单形嵌入nE的充分必要条件的一个应用[J].数学杂志,1987(1):10-13.

[12]杨世国.单形的构造定理[J].数学季刊,1991,6(4):102-103.

[13]苏化明.关于单形二面角平分面面积的不等式[J].数学杂志,1992(3):315-318.

[14]苗国.四面体的五“心”重心、外心、内心、旁心、垂心[J].数学通报,1993(9):21-24.

[15]林祖成.关于n维单形的一类不等式[J].数学的实践与认识,1994(3):50-56.

[16]王庚,杨世国.预给二面角的单形在nE中的嵌入[J].安徽师范大学学报(理科版),1994,17(4):11-16.

[17]李永利.关于四面体的两个不等式[J].数学通讯,2001(9):30-31.

[18]王建华.从三角形到四面体-类比与推广思维的一个尝试[J].中学生数学,2002(8):3-4.

[19]杨世国.关于内接单形的一个不等式[J].数学杂志,2003(2):218-220.

[20]陈安宁.关于对学生“问题意识”的培养[J].九江师专学报(自然科学版),2003(5):35.

[21]钱旭升.我国研究性学习的研究综述[J].教育探索,2003(8):22.

高中就写论文啦?

去找导师啊,想当年我毕业论文网上都搜不到什么,导师给一部分,自己做一部分,在就差不多啦

这篇挺合适的,改改应该可用: 立体几何的归纳推理,定义,归纳法 学生姓名:林新彰 就读学校:国立台南第一高级中学 指导教授:柯文峰教授 壹,学习目的 Laplace曾说过,在数学里发现真理的主要工具是归纳和类比.我们可从立 方体,三稜柱,五稜柱,方锥,八面体,来推知F + V = E + 2的欧拉公式,这 就是归纳的基本要件,从塔顶及截角立方体之几何图形做类比.我们学习几何 学的目的,从实质来看,是为了将周遭摸得到看得到的东西,作研究推理,深 一层则是为了,促进平面空间的概念,增加思考逻辑的灵活性归纳法部份,则 是将算术,几何,集合等数学单元,作直觉性的观察今日所知的数之多种性质, 大部份系经由观察法所发现,而严格证明则需经过数十年甚至数百年才诞生. 贰,学习方法 藉由教授的讲解,同伴的讨论,或者上去黑板试著讲解给新来的学弟妹听, 能更进一步的去探索逻辑,几何和立体几何的观念,也能从归纳推理的过程中 得知公式的来龙去脉,而不是只知道F + V = E + 2的欧拉公式. 参,学习过程与结果 一,观察归纳法即科学家处理经验的步骤.在使用观察归纳法建立猜测时,必 须坚守以下三原则:第一,必须能随时修正自己的见解.第二,如果有不 得不改变自己的见解时,就必须当机立断改正.第三,不在没有充份理由 支持下,盲目的改变见解.即使多数人我们持有不同意见,也不西瓜靠大 边. 二,在分割元素这个部份看似没啥新鲜的(当它分割元素的个数不大时) ,但到 了大一点点的数时,就开始搅尽脑汁,还是没什麼头绪.还好最后从分割 个数少的,推到个数大的.举例来说,从直线被点分割的个数1,2,3,4, 5,6,…,推到平面被直线分割的个数1,2,4,7,11,16,…,最后就 可以推到空间被平面分割的个数1,2,4,8,15,26,…. 肆,讨论及建议 一,使用观察归纳法也须有耐心,不太快下结论.例如:法国数学家费马认为 2的2之n次方 + 1皆为质数.但他只算n = 1,2,3,4均为质数,就推 测当n = 5,6...等等皆对.但欧拉却真的把n = 5代入,发现它可被 641整除,因而不是质数. 二,从实作我们可以学到很多东西,就速成的眼光而言,实作是花时间的,但 实作却有慢工出细活的优点.举个例子来说,碳60,俗称巴克球,是最近 才发现的碳之同素异形体.有一天上课时,柯教授叫我和另一名同伴作一 个巴克球,费了九牛二虎之力摺一个歪七扭八的球形,但藉由它,我得知 它有12个正五边形,20个正六边形,并得到一些附属品90个sigma键及 30个pi键.

高中立体几何论文答辩题目

1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广

关于高中数学立体几何学习的研究与实践如需要全文,可以再联系

最小公倍数和公因数

教育专业论文答辩自述范文

毕业论文答辩是答辩老师和撰写毕业论文的学员面对面的,由答辩老师就论文提出有关问题,让学生当面回答的活动。下面是我为您搜集整理的教育专业论文答辩自述范文,希望能对您有所帮助。

各位老师、同学:

大家好!我的论文题目是《高中立体几何空间向量教学实践探索》,本篇论文是在xx教授的指导下完成的。

在此,我十分感谢他长期以来对我的精心指导和大力帮助,同时也感谢各位评审老师对我这篇论文的审阅并出席本次答辩。

一、选题缘由、目的

向量进入中学数学教材,是近几十年来国内外教学改革的一个主要特征。空间向量引入立体几何是数学课程改革的重点之一,它是一个具有几何和代数双重身份的概念,具有特别广泛的教育价值。用它来解决部分立体几何问题,可以大大降低难度,激发学生的学习兴趣,有利于学生在学习中获得成功的体验。我们的教师在空间向量这一部分的教学中的难点和焦点在于:空间向量在立体几何中如何运用?空间向量在立体几何教材中怎样安排?如何在立体几何的教学中,正确处理好空间向量和传统方法的关系?怎样设计这部分知识的教学才能帮助学生更好地理解本部分的内容?为此我进行了高中立体几何空间向量教学实践探索。

二、资料收集准备工作

自选定题目后,本人结合自身教学实践,阅读资料,拟定提纲,问卷调查与分析,写开题报告初稿、定稿,硕士论文初稿、修改等一系列程序,于3月正式定稿。

三、论文的结构

本文从空间向量引入高中数学的必要性入手,研究了空间向量的基础知识和空间向量在高中立体几何中的应用,对高中教材中的立体几何空间向量进行了教学分析。本研究主要采用文献分析法、问卷调查法和行动研究法,对泸县二中数学教师和高二年级的二十七个班级的学生样本进行调查,集中研究空间向量对立体几何教与学产生的影响。

全文总共分为七个部分,约四万七千多字:

第一部分是绪论

阐述本研究的时代背景和现实背景;通过文献查阅研究,了解国内外空间向量引入立体几何的教学研究前沿的状况;从而界定核心概念、择取研究视野与方法、确立本研究设计与核心观点。

第二部分是空间向量进入高中立体几何教学的必要性

基于两点:高中立体几何引入空间向量的现实意义和深远影响

第三部分是空间向量的基础知识和空间向量在高中立体几何中的应用

回顾高中立体几何教材中的空间向量的基础知识:包括向量的起源和发展、空间向量的相关概念及表示、空间向量的基本定理和空间直角坐标系的建立。

阐述了空间向量在高中立体几何中的主要应用:确立空间位置关系、解决角和距离问题,体现空间向量是处理立体几何问题的强有力工具,相比于传统方法更具优越性。

第四部分是研究教材:高中教材中的立体几何空间向量教学分析

首先对高中立体几何新旧两种教材进行对比,分析 “空间向量”这部分内容在立体几何这一章中的安排,进而研究高中立体几何空间向量教材教学方法。

第五部分是对高中立体几何空间向量教与学的调查与分析

我于今年2月对我校高二年级进行了问卷调查--学生学习空间向量和教师对空间向量教学的调查。

调查的目的:了解普通高中立体几何空间向量教与学的现状,发现:高中生在运用空间向量来解决立体几何问题时所犯的主要错误。

有:(1)建系不合理;(2)求错点坐标;(3)不会求法向量;(4)思路不清晰;(5)计算错误,等。因此,他们在建系、求点坐标以及利用向量求空间角和空间距离等方面存在着不同程度的困难。此外,由于受到“向量解题简单”思想的误导,在什么情况下选用向量法解决立体几何问题,也是学生遇到的困难之一。

同时,存在着部分教师对空间向量持回避态度。

总之教学中要注意以下几点:

(1)空间向量方法在解决立体几何问题时要发挥其优越性的前提是要求学生有足够的向量知识储备。

(2)在教学中,教者不能有意无意地给学生传递这么一个错误信息--空间向量解决立体几何问题是万能的。

(3)在教学中,除了要教给学生必要的'数学知识,更为重要的是要传授给他们关于数学学习的能力方面的东西。

第六部分是高中立体几何空间向量教学设计与教学实施及实践效果分析

我针对高中立体几何空间向量作了教学设想,进行了教学方式探索,以启发式和探究式学习的教学方式作出立体几何空间向量部分的教学过程设计,以《空间向量的夹角》为例作了教学设计案例,最后进行了教学实践效果分析。

从中数据分析可以得出,笔者对立体几何空间向量的教学设想、教学方式和教学设计的教学实践效果是比较好的,能在空间向量教学这一知识板块的研究上,能给予同行以帮助或是提供参考,这也是本研究的主要目的所在。

第七部分是关于立体几何空间向量教学的基本结论和建议

(一)研究的基本结论

1.空间向量引入立体几何很有必要,还需要加大普及。教学上基于以下两点:

(1)空间向量的引入降低了学生学习的难度。

(2)空间向量的引入降低了对学生空间想象能力训练的要求。

2.用空间向量方法在立体几何题的教学实用性上明显优于传统方法,但不能完全摒弃传统方法,正确处理传统方法与空间向量法之间的关系,二者有机结合、相得益彰。

(二)教学建议

1.注重以新的理念指导教学

2.注重向量概念的教学

3.注重空间向量运算的教学

4.注重空间向量法与传统方法的对比

5.注重向量应用的教学

经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人能力有限,在许多内容表述、论证上存在着不当之处,请各位老师多多指教,我将虚心接受,进一步深入学习研究和教学实践,既使该论文得到完善和提高,也提高教学实践水平。

以上是我对自己的论文简单介绍,请各位老师提问,谢谢。

高中数学立体几何论文

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。

摘要:课堂作为学生接受知识的主要场所之一,教师的课堂教学效率问题备受瞩目。高中数学课堂教学效率的提高,在很大程度上可以激发学生学习数学的兴趣和信心。在此过程中,授课教师应根据教学任务和实际情况,借助多媒体技术和现代化教学手段来激发学生在数学学习中的兴趣,引导学生发现问题并解决问题,从而提高教学质量。

关键词:高中数学;教学;效率;策略

高中数学以其难度大、知识点多且课时量大的特点,在所有高中课程中一直占据着较大的比例。因此,高中数学的课堂教学效率决定着学生对数学这一学科的本质认知以及是否可以重拾或加深学习数学的兴趣,授课教师要怎样改变单一古板的教学模式,如何运用恰当有效的教学方法,将会对学生日后的数学学习产生深远影响。本文针对此问题提出三种策略以提高高中数学课堂的教学效率。

1兴趣创造知识

兴趣是做任何事情的根基,尤其是在探究数学的道路上。数学是一门相对枯燥乏味的科学,如何提起学生学习数学的兴趣是高中数学授课教师在准备教学过程中应首先考虑的问题,并且要将此问题融入到设计教学的内容、方法和手段中。授课教师应做到以下两点:第一,教师应从自身出发彻底改变传统的教学观念和教学模式,让填鸭式、题海式的教学模式远离高中数学课堂。并从学生的实际出发,选取适合高中生认知的方法开展教学。积极营造良好的课堂气氛,一改高中数学课堂压抑沉闷的教学氛围。第二,教师要将课堂还给学生。在新课程标准下,更加强调学生占据课堂学习的主体地位。学生本应是学习的主体,但一直以来的高中数学课堂都是老师教,学生学的单一模式,而这种模式不仅不利于教学质量的提高,而且会磨灭学生对数学学习的兴趣。因此,学生只有变被动为主动的接受知识,才能意识到自己是课堂教学的主体,是学习的主体,才会对学习内容产生兴趣并进行深入研究,并且乐于接受学习中的困难和挑战。综上,高中数学课堂教学效率的提升不仅得益于学生的课堂参与及课后探究,更离不开让学生积极主动去学习的动力——兴趣。

2不是替学生解决问题,而是教学生自己解决问题

高中数学在升学考试中一直占据着较大比例,因此,很多一线数学教师急于培养学生的应试能力,采取大量的题海战术,长此以往,在教师的认知中,学生可以不断在做题解题的过程中意会数学这一学科的真正本质,并掌握相应的解题方法,这是教师认知中普遍存在的错误。教师将解决问题的方法直接授予学生,不仅阻碍了学生思维的发展,而且扼杀了学生勇于创新的主动性和积极性。所以,高中数学课堂教学中,教师的任务不是替学生去解决问题,而是教学生自己去探索并解决问题。教师应鼓励学生的发散思维,多角度考虑问题,让学生养成良好的思维习惯,不拘泥于一种思维形式。鼓励学生自己发现问题,并试图用自己的办法去解决问题。要知道,经验和教训是需要通过尝试和努力之后自己总结出来的,而不是通过别人的行为或想法获取的。此时教师的角色便是积极引导,解答学生在探索过程中遇到的疑惑。

3将科学技术融入高中数学课堂

科学技术作为第一生产力,也要以其独到的形式融入到高中数学课堂,即多媒体技术的应用。数学作为一门较抽象且枯燥乏味的学科,尤其是学生在接触更加抽象、复杂的领域时,多媒体教学以及其他科技手段的引入,将抽象又枯燥的数字及图形变得活灵活现。比如高中几何教学中涉及的图形,以及高中代数教学中涉及的函数教学,其中有众多的数量关系问题,图形结合问题,代数和几何综合性的应用题,传统的这些教学,教师借助传统教学用具,在黑板上体现不直观、不具体,学生理解困难,教学质量不佳,但是,这些问题随着多媒体技术的融入,都迎刃而解。多媒体对图像的表达更加直观,学生对知识点的明确更加清晰,教学效果显著提升。例如,在解决函数问题上,教师可以通过多媒体展示动态函数图像,清晰的坐标图以及收缩可控的图像效果,都会深深印在学生的脑海中,而这样的教学效果是传统的黑板画图教学所达不到的。再比如空间立体几何教学,教师在黑板上很难体现出图形的空间感和立体感,而多媒体却可以弥补这一空缺。即使通过多媒体教学可以培养学生的主体参与意识可以达到师生互动的课堂效果,但多媒体只是填补传统教学漏洞的一种辅助教学手段,所以只有适度使用才能发挥其最大价值,才能更好地提升课堂教学效率,促进教师与学生之间更好的交流和沟通的形成。

4总结

综上所述,高中数学教师应积极构建和谐的师生关系,在教学中激发学生对数学学习的热情和兴趣,积极引导学生发现问题探究问题继而解决问题,并借助多媒体技术以及现代化手段让知识在学生大脑中留下生动形象的记忆,改变高中数学课堂的枯燥氛围。这需要授课教师和学生的积极配合,在完成教学任务的基础上,培养学生的学习能力,从而提高高中数学课堂学习效率。

参考文献:

[1]郝保奎.浅议提高高中数学课堂教学效率的方法[J].现代阅读(教育版),2013,(1):129.

[2]朱亚珍.提高高中数学课堂教学效率策略研究[J].数字化用户,2013,(4):87-88

摘要:当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

关键词:高中数学;教育;创新能力

1.前言

创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。

2.高中数学教育学生创新意识的养成

创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。

(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。

(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。

3.高中数学教育学成创新能力的培养

数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。

(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。

(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。

(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。

4.结语

当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

参考文献

1、高中数学教师如何指导高一新生走进数学武增明上海中学数学2004-08-20

高中就写论文啦?

“哪里有数学,哪里就有美!”——古希腊数学家普洛克拉斯。 一提到美,人们总是不禁想到“绕梁三日”的音乐之美;或是想到“巧夺天工”的艺术之美,或是想到“江山如此多娇”的自然之美……然而,现在的绝大多数学生都不会把高中数学和美联系到一起,这也在一定程度上说明我们数学美学教育的欠缺。据调查分析,现在的学生对数学的兴趣是建立在他们优异的初中数学成绩上,而进入高中后,数学难度骤增,导致多数学生的数学成绩骤降,从而一下子失去了对数学的热爱。由爱转恨来的如此的突然就是由于他们对数学是一种“假”的兴趣。而在数学教育中渗透美学教育,能激发学生对数学的“真”的兴趣,而这样的兴趣正是学生最好的老师。 人的爱美天性在青少年时期表现尤为突出,数学教师应当抓住这个最佳时期,不失时机地向学生揭示数学之美,从而愉悦他们的心境,激发他们的兴趣,陶冶他们的性情,塑造他们的灵魂,进而让学生领悟数学美,欣赏数学美,创造数学美。大数学家克莱因认为:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 那什么是数学美呢?罗素说:“数学,不但拥有真理,而且也具有至高的美,真正雕刻的美,是一种冷而严肃的美!”数学美不同于绘画,音乐等艺术之美,也不同于鲜花,彩虹等自然之美,它是一种科学力量的感性与理性的显现,是一种人的本质力量通过数学思维结构的呈现,这是一种真实的美,是反映客观世界并能改造客观世界的科学美。数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有具体的公式、定理美,而且有结构、整体美;不仅有语言的简明、精巧美,而且有方法与思路的奇异、统一美;不仅有逻辑、抽象美,而且有创造、应用美。而作为新一代的教师,正是要不断的去挖掘数学美,不断的去传授数学美,让学生感受到数学美,从而激发学生学习数学的兴趣。 新课标背景下,更是要求教师要在数学教育过程中实施美学教育,培养学生的审美能力,从而形成美的心灵,美的灵魂。而如何将美学教育贯彻到数学教学中呢,笔者在近些年的教学过程中,对此感触颇多。 一:简洁的数学美 爱因斯坦说过:“美,本质上终究是简单性。”而数学中的简洁美简直是无处不在。欧拉公式——“V+F-E=2”堪称简洁美的典范。世间的凸多面体无穷无尽,但是他们的面数,顶点数,棱数都符合这个简单的公式。此外,为大家熟知的勾股定理,用一个简单的二次式“ ”描述了全体直角三角形的直角边和斜边的关系。微积分基本定理更是用一个简洁的式子“ ”描述了定积分和原函数之间的关系。纵观整个数学史,伟大的数学家们无不为了追求更加简洁更加通用的定理而付出毕生精力。其中一些像是哥德巴赫猜想这样的富含简洁美的猜想正被无数的数学爱好者们努力攻破着。 我国著名数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。”作为新一代的教育者的我们,必须善于挖掘教材中的简洁美,适时的总结数学公式的简洁与通用,让他们感受到数学的简洁美,从而抓住他们的心。 二.统一的数学美 浩瀚宇宙,包罗万物。宇宙中的天体无穷无尽,而探究宇宙的奥秘一直是人类的追求梦想。面对无数的天体运动,人们研究出它们运行的轨迹或是椭圆,或是双曲线,或是抛物线,而数学上用仅用一句话就能将其统一起来:“到定点的距离与它到定直线的距离比是常数e的轨迹。当时,轨迹是椭圆;当时,轨迹是抛物线;当时,轨迹是双曲线。”数学中的统一美可见一斑。此外,立体几何中,台体的表面积和体积公式更是将椎体和柱体的表面积和体积公式和谐的统一起来。三角函数中,“万能公式”更是将正弦、余弦、正切统一的用正切来表示。何其统一啊,何其美啊! 而统一美的在教学中尤为重要,教师不仅要善于发现总结统一美,更要及时的将其向学生传授,正是在各种各样的统一美的介绍和学习过程中,让学生进行分析比较,从而从本质上突破难点重点,感受数学的统一美。 三.奇异的数学美 毕达哥拉斯说:“凡物皆数。”他将自然界和数和谐统一起来了。有一次,他的朋友问他:“我和你交朋友,和数有关吗?”他回答说:“朋友是你灵魂的倩影,要象220与284一样亲密。”望着困惑不解的人们,毕达哥拉斯解释道: 220的全部真因子1、2、4、5、10、11、20、22、44、55、110之和为284;而284的全部真因子1、2、4、71、142之和又恰为220。这就是亲密无间的亲和数。真正的朋友也象它们那样。奇异的数学美让听者无不折服,至今还有不少学者对亲和数津津乐道。此外,他还用完美数——所有的真因子和等于本身的数来形容美满的婚姻。高中数学里,圆锥曲线部分,离心率e的值是的时候,轨迹还是一个椭圆;而当它变成1时,轨迹却是抛物线;当它再变成时,轨迹又变成了双曲线。丁点的变化,却导致图像的截然不同,真是奇异啊。数学中确实是存在着许多奇异美,而正要通过我们的悉心挖掘,让学生感受到数学的神奇。 四.自然的数学美 新课标提出:“数学源自生活,并应用于生活。”生活中的数学处处可见,例如,黄金分割数, 它是最和谐的比例关系,具有很高的美学价值。人的肚脐高度和人体总高度之比接近等于;主持人主持节目时,站在舞台的黄金分割点位置,不显得呆板,声音传播效果最好;在建筑造型上,黄金分割处布置腰线或装饰物,则可使整幢大楼显得雄伟雅致。蜜蜂房呈六角形,角度也很精确,钝角 109 ° 32 ′,这样的巢不但节省材料,而且结实坚固,令人类工程师惊叹不已!更另人惊奇的是蜜蜂还知道两点间的最短距离,蜜蜂在花间随意来去采集花蜜后它知道取最直接的路线回到蜂房。 而善于利用自然界以及生活中的数学实例,展示数学的美和自然生活的完美结合,往往能让学生感受到数学的实用性,让学生真正的对数学产生兴趣。 有人说:如果把数学当作诗集来读,那么摆在面前的任何一本数学教程,就会突然从一堆死气沉沉的公式变成洋溢着和谐、充满着绝妙和浸透了对称美的一部诗集。只要我们把数学美融于数学的教学中,那么不但我们的授课变的轻松自然,而且学生也会如释重负,不断提高对数学的兴趣,使教与学达到和谐、完美、统一。 诚然,数学中蕴含的美是博大精深的,数学美不仅以上几点,它几乎贯穿于数学的方方面面。此外数学定理公式的对称性,相似性,和谐性,传递性等都是美的体现;有时候甚至是数学问题都展示着美,解体方法也散发着美的味道。当然数学不像是一首好曲子或是一件旷世的艺术品一样能一眼品出它的美,特别对课业繁重的学生而言,他们受阅历水平,基础知识,数学训练等影响,很难把各色的数学美都品味出来。这就要求教师们需要精心研究,不断从相对枯燥的教材中去发现美,并不失时机的加以引导和培养。展望未来的教育趋势,美育教学和数学教学的结合是必要的,必然的,不仅仅为了唤醒学生日益减弱的数学兴趣,更是为了提高学生的审美能力,从而培养下一代的创造美的能力。

高中数学立体几何论文题目思维

1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广

1.首先必须熟练掌握线与线,线与面,面与面的各种位置关系,以及它们平行和垂直的判定定理与性质定理.2.如果是理科生,就要熟练掌握用空间向量来解位置关系和夹角,距离等问题.当然多做一些练才能找到感觉.

首先我们可以模仿练习立体图形的画法,还可以关注老师在黑板上画图的顺序,多角度地看待老师所画的图形,同时也可以抽出时间来玩一些立体感很强的玩具,比如魔方,增加自己的空间立体感,也可以对较为复杂的图形进行分解重组。

方法:要建立空间观念,提升空间想像力。从了解平面图形到认识立体图形是一次飞越,要有一个全过程。有的同学们自做一些空间几何模型并不断观查,这有利于建立空间观念,是个好方法。有的同学们有时间就对一些立体图形开展观查、揣测,而且分辨在其中的线线、面线、全方面位置关系,探寻各种各样角、各种垂直线作法,这针对建立空间观念也是好方法。

根据结合实际、观查实体模型或对比平面几何的结果来明确提出出题;针对明确提出的出题,不必随便毫无疑问或否认它,要常用好多个充分必要条件开展检测,最好是保证否认列举背面事例,毫无疑问得出证实。欧拉公式的内容是以研究性课题的方式提供的,要从这当中感受造就数学思想方法。

所说结构型,就是指从总体到部分、从高层住宅到矮层来了解、机构学过专业知识,并领悟在其中暗含的观念、方式。所说专业化,就是指将类似问题如平行面的问题、竖直的问题、角的问题、间距的问题、惟一性的问题集中化下去,较为他们的不同点,产生对他们的总体了解。要特别注意累积解决困难的对策。如将高中立体几何问题转换为平面图问题,又如将求点至平面图间距的问题,或转换以求平行线到平面图间距的问题,再进而转换以求点至平面图间距的问题;或转换为容积的问题。

平行线和平面图这种具体内容,是高中立体几何的基本,学精这一部分的一个近道便是努力学习定律的证实,尤其是一些很核心的定律的证实。例如:三垂线定理。定律的内容都非常简单,便是线与线,线与面,面与面相互关系的论述。但定律的证件在出学的过程中一般都很繁杂,乃至很抽象化。

高中立体几何论文答辩模板

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字

这篇挺合适的,改改应该可用: 立体几何的归纳推理,定义,归纳法 学生姓名:林新彰 就读学校:国立台南第一高级中学 指导教授:柯文峰教授 壹,学习目的 Laplace曾说过,在数学里发现真理的主要工具是归纳和类比.我们可从立 方体,三稜柱,五稜柱,方锥,八面体,来推知F + V = E + 2的欧拉公式,这 就是归纳的基本要件,从塔顶及截角立方体之几何图形做类比.我们学习几何 学的目的,从实质来看,是为了将周遭摸得到看得到的东西,作研究推理,深 一层则是为了,促进平面空间的概念,增加思考逻辑的灵活性归纳法部份,则 是将算术,几何,集合等数学单元,作直觉性的观察今日所知的数之多种性质, 大部份系经由观察法所发现,而严格证明则需经过数十年甚至数百年才诞生. 贰,学习方法 藉由教授的讲解,同伴的讨论,或者上去黑板试著讲解给新来的学弟妹听, 能更进一步的去探索逻辑,几何和立体几何的观念,也能从归纳推理的过程中 得知公式的来龙去脉,而不是只知道F + V = E + 2的欧拉公式. 参,学习过程与结果 一,观察归纳法即科学家处理经验的步骤.在使用观察归纳法建立猜测时,必 须坚守以下三原则:第一,必须能随时修正自己的见解.第二,如果有不 得不改变自己的见解时,就必须当机立断改正.第三,不在没有充份理由 支持下,盲目的改变见解.即使多数人我们持有不同意见,也不西瓜靠大 边. 二,在分割元素这个部份看似没啥新鲜的(当它分割元素的个数不大时) ,但到 了大一点点的数时,就开始搅尽脑汁,还是没什麼头绪.还好最后从分割 个数少的,推到个数大的.举例来说,从直线被点分割的个数1,2,3,4, 5,6,…,推到平面被直线分割的个数1,2,4,7,11,16,…,最后就 可以推到空间被平面分割的个数1,2,4,8,15,26,…. 肆,讨论及建议 一,使用观察归纳法也须有耐心,不太快下结论.例如:法国数学家费马认为 2的2之n次方 + 1皆为质数.但他只算n = 1,2,3,4均为质数,就推 测当n = 5,6...等等皆对.但欧拉却真的把n = 5代入,发现它可被 641整除,因而不是质数. 二,从实作我们可以学到很多东西,就速成的眼光而言,实作是花时间的,但 实作却有慢工出细活的优点.举个例子来说,碳60,俗称巴克球,是最近 才发现的碳之同素异形体.有一天上课时,柯教授叫我和另一名同伴作一 个巴克球,费了九牛二虎之力摺一个歪七扭八的球形,但藉由它,我得知 它有12个正五边形,20个正六边形,并得到一些附属品90个sigma键及 30个pi键.

毕业论文答辩开场白为,各位老师大家好,我是某某某。

我来自xxx学院XXX专业。我的论文题目是《XXX》,接下来我将呈现我的论文设计成果,恳请大家帮助斧正谢谢。

毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要做好充分的准备。

开场白意思是演出或其他开场时引入本题的道白,比喻文章、介绍或讲话等开始的部分。积极大方的开场白可以给人留下一个好的印象。

结束语可以说,最后我想谈谈这篇论文和系统存在的不足,......,论文还是存在许多不足之处,有待改进,请各位评委老师多批评指正,让我在今后的学习中学到更多。

  • 索引序列
  • 高中立体几何解题论文开题报告
  • 高中立体几何论文答辩题目
  • 高中数学立体几何论文
  • 高中数学立体几何论文题目思维
  • 高中立体几何论文答辩模板
  • 返回顶部