首页 > 学术期刊知识库 > 极限的计算方法论文研究目标

极限的计算方法论文研究目标

发布时间:

极限的计算方法论文研究目标

1、关于极限的常用计算方法与示例,请楼主参看下面的图片;

2、由于篇幅巨大,无法全数上传,下面图片上的方法,应付到

研究生考试,已经绰绰有余。

3、每张图片均可点击放大,放大后的图片更加清晰。

4、若有疑问,欢迎追问,有问必答,有疑必释。

.

.

.

.

.

.

.

.

.

.

【敬请】

敬请有推选认证《专业解答》权限的达人,千万不要将本人对该题的解答认证为《专业解答》。.一旦被认证为《专业解答》,所有网友都无法进行评论、公议、纠错。本人非常需要倾听对我解答的各种反馈,即使是言辞激烈的、批评的、反驳的评论,也是需要倾听的。

.

请体谅,敬请切勿认证。谢谢体谅!谢谢理解!谢谢!谢谢!

.

极限的计算方法总结如下:

1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。

2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

6、若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

7、求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

极限:

极限是微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念均由其定义。它可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势,也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

别看,小心病毒。

极限是数学分析的重要内容,是高等数学的理论基础和研究工具,学习极限相关理论对学习数学分析和掌握高等数学众多理论有着极其关键的作用。由于极限的计算题目类型多变,而极限的求取方法也种类繁多,因此,针对不同问题找到正确且最简洁的方法意义重大。

1、利用定义求极限

极限的概念可细分为函数的极限和数列的极限。

2、利用法则求极限

四则运算法则法

两个准则法

本文简单介绍两个准则,分别为夹逼准则和单调有界准则,常用于数列极限的求解。

(2)单调有界准则:单调有界数列必有极限,且极限唯一。

利用单调有界准则求极限过程中,首先需要证明数列的单调性和有界性,然后要证明数列极限的存在,最后根据数列的通项递推公式以及极限的唯一性来求极限。

洛比达法则法

3、利用公式求极限

两个重要极限公式法

(1)极限及其变换,常用于包含三角函数的“”型未定式。

利用这两个重要极限公式来求极限时要仔细观察函数形式是否符合。

泰勒公式法

泰勒公式法是指在求极限时,利用泰勒公式将函数进行展开后再通过一般求极限的方法进行计算的'方法。

泰勒公式法对一些比较复杂的求极限过程可以起到简化作用。

4、利用性质求极限

无穷小量性质法

利用下列几点无穷小量的性质可解决相关的极限问题。

性质1:有限无穷小量的代数和为无穷小。

性质2:无穷小量与有界函数的乘积为无穷小。

性质3:有限无穷小量的乘积为无穷小。

函数连续性法

函数的连续性:

5、其他方法

中值定理法

中值定理法包括利用微分或积分中值定理求极限,通过微分或积分中值定理将函数进行变换,再求极限。

定积分法

则可知定积分可化为和式极限的形式,同样,在求和式极限时,可转为定积分的形式来求解。具体步骤:

(1)首先选择恰当的可积函数f(x)。

(2)然后将所求和式极限表示成为f(x)在某区间[a,b]上的等分的积分和式的极限。

(3)最后利用求f(x)在区间[a,b]上的定积分就可得到和式的极限。

极限求解方法研究论文

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

船舶与海洋工程结构极限强度分析论文

船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助!

摘要: 当轮船受到外部冲击载荷时,轮船整体结构就会变形,当这个变形达到最大极限状态,这时的极限状态叫做极限弯矩。轮船整体构架承受全部抗击的最强能力是极限强度。本文对船舶结构极限强度。进行了分析和研究,提出了有限元分析方法进行强度和极限分析。

关键字: 极限强度,船舶,结构,船舶与海洋工程

随着科学技术的不断进步,轮船结构以及轮船使用的材料都有很大的进步。船体的整体结构和材料成为当今社会研究的主要对象。随着计算机技术的日益成熟,船体整体结构和承受的。屈服力都可以采用软件仿真来快速精确的计算。

1.引言

船体的整体结构和承受的能力是保证轮船安全的重要保障,它关系到轮船是否安全出航和安全返航。随着先进的设计技术的进步,计算机相关设计软件已经可以。设计整体结构和仿真测试船体的整体结构。分析船体结构和整体强度是一个复杂的非线性过程,必须进行合理的划分,采用好的分析方法才能得出精确的数值。新材料的不断出现使船体材料耗费变的越来越经济合理,同时船体结构屈服强度也变的越来越理想。

在分析船舶整体结构变形和极限强度的时候,我们所研究的绝大多数问题都是属于线性的微弱形变问题。在微弱整体的结构中,位移和应变可以被线性化,等效于正比关系。但是,在实际中,不规则物体所受的应力和应变都不是线性的,常见的有悬臂梁的弯曲,U形梁的变形等等。

2.总体结构状态

船舶的总体结构状态时一个非常复杂的过程。总体结构的崩溃在过去几年是一个非常普遍的现象,它是船体结构所受冲击超过了材料本身的极限,这时候支撑梁不能够支撑船体整体结构。以上情况不足为奇,在飞机和潜艇外体上也经常出现类似情况。目前,中国的船体分析技术的研究还处于起步阶段,与国外发达国家。先进水平仍有很大的差距。为了进一步研究分析,我国投入资金和人力,在实际工程中,建立一个比较完善的船体分析系统,包括原动机转速控制系统,同步船体结构系统,轮船控制系统管理相关技术的研究,实验研究了一系列模拟各种恶劣的条件下,容易控制船体结构的一些关键技术,并做了可行性分析。船舶具有非常重要的作用,特别是对船体分。析屈服强度的分析,轮船安全可谓海军舰艇的生命线。动力和结构形成一个整体轮船系统,为船体结构极限强度分析的发展。指明了方向。

3.极限强度分析法

如何分析船舶结构的极限强度是一个复杂而且非常有意义的过程。分析这种复杂的船体结构没有一种比较准确的分析方法。在分析极限强度的时候,我们通常采用复杂问题简单化,采用线性和非线性结合的方法,有限元和边界元分析相结合的方法。

逐步破坏分析法

上世纪末,美国物理学家的在基于对悬臂梁、加筋板在轴向压缩载荷作用下结构失效问题的研究成果中提出了逐步破坏的分析方法。船体结构破坏不是一个迅速变化的过程,是一个一步一步的程序,同时也不会一下子超过屈服极限,随着应力的增大逐渐的增大的逐渐破坏。在进行破坏分析的时候,首先建立屈服应力和位移的曲线关系。

非线性分析法

分线性分析方法必须。对船体分析采用模块化分析,必须充分考虑如何进行分段,分段之后逐个段进行非线性分析。在这个工程中,一个段的结构有自己的不同,针对不同结构进行线性化分析和非线性化分析。每个分段包含一个骨架间距内的所有主要构件,选择或者利用发生崩溃概率最大的情况进行分析的原则,对所承受的分段骨架进行全面的分析和仿真。这种分析方法需要对每一段进行模型建立,然后一个模型模型的分析。船体总体结构的弯曲和抗屈服能力不同导致分析结果不同。

有限元分析法

有限元分析方法是结构分析的简单方法,它能把复杂问题简单化,分析整体结构的节点和网格。在进行有限元分析的时候,通常对船体结构进行网格划分,然后进行网格施加约束,在均匀网格上施加可变的。激励,观察整体结构的响应。采用这种方法能模拟船体的边界条件和整体约束。有限元分析方法综合考虑。船体的形状和材料的'不同,通过不同载荷的约束,我们可以分析出结构极限(包括最大应力,最大屈服极限)。最近几年,有限元分析方法被应用在船舶整体分析和部分结构分析的案例非常多。这种分析方法有两个个缺点。一是。不能很好的模拟真实环境,不能考虑周围环境对整体结构形变的影响。第二对于结构复杂的构件,有限元分析方法对于复杂的结构不太实用,设置相关算法时间太长,不能在有效的时间完成任务。这种分析方法的优点有以下几个方面:

(1)对船体建模方式直观明了。在分析结构的时候可以采用线性划分和非线性划分网格。采用相关软件完全可以分析所有动态结构的模型和仿真。利用有限元分析模块的可视化建模窗口,动态结构的框图和模型可迅速地建立和仿真研究。用户需要选择元件库(对应的子模块程序模块)中选出比较合适的模块,然后并改变需要的形式,拖放到新建的建模窗口,鼠标点击或者画线连接都可以搭建非常可观的结构模型。他的标准库拥有的模块远远大于一百五十多种,可用于搭建和仿真各种不同的、种类变化的动态结构。模块包。括输入信号源子模块、动力学元件子模块、代数函数和非线性函数子模块、数据显示子模块模块等。模块可以被设定为触发端口和使能的端口,能用于模拟大模型结构中存在条件作用的子模型的行为。

(2)可以构建动态结构模型。可动结构的模型可以修改并进行仿真。有限元分析还可以作为一种图形化的、数字的仿真工具,用于对动态结构模型建立和操作改变规律的研究制定。

(3) 模块元件与用户代码的增添和定制。已有模块的图标都可以被用户修改,对话框的重新设定。用户完全可以把自己编写的C代码、FORTRAN代码、Ada代码直接植入模型中,此外模块库和库函数都。是可定制的,扩展以包容用户自定义的结构环节模块。。

(4)设计船舶结构模型的快速、准确。他拥有优秀的积分和微分算法,这样给非线性结构仿真带来了极大的方便,同时也带来了相对较高的计算精度。可以选择比较先进的常微分方程求解器和偏微分方程求解器,还可用于求解力学刚性的和非刚性的结构,还可以求解具有事件触发的逻辑结构,求解或不连续状态变量的结构和具有代数环和参数环的结构。软件的求解器可以确保连续结构或离散结构的仿真高速、准确的进行。

(5)复杂结构可以分层次地表达。根据个人需要,若干子结构可以由各种模块组织。按照自顶向下(从元器件到结构)或自底向上(从实现的每一个细节到整体结构)的方式搭建整个结构模型。这种分级建模能力能够使得代码丰富的、体积庞大的、结构非常复杂的模型可以简便易于行动的构建。结构子模型的层次数量和子子模块的分层次数量完全取决于所搭建的结构,软件本身不会限制到搭建的模型。有限元还提供了模型和子。模块结构浏览的功能。这样更加方便了大型复杂结构结构的操作。

(6) 仿真分析的交互式。该软件显示的示波器可以图形显示和动画的形式显示出来,数据也可以动作的形式显示,What-if分析运行中可调整参数模型进行,监视仿真结果能够在仿真运算进行时。可帮助用户不同的算法可以快速评估,进行参数优化这种交互式的特征。

由于有限元模块是全部融合于有限元,一次在有限元模块下所有的计算的结果都完全可保存到有限元软的工作空间中,因而就能使用有限元所具有的众多分析、可视化及工具箱工具操作数据。

4.船舶在军事上的发展状况

在军事上的应用:在上世纪90年代,以美国为首的国家海军大力发展海军轮船性能优化,整体结构和性能得到优化。于93年提出了水面舰艇先进机械项目计划(提前海洋表面计划ASMP)。

美国的目的是建立一个国家的最先进的舰艇推进系统,能够实现远程作战和抗高撞击的能力。美国海军采用先进的智能设备,同时采用电气控制和机械控制系统。在同一时间满足指定的性能,在分析极限强度上加大了投资,军用船舶的其他方面投资也有显着的减少。随着ASMP计划进一步研究,权力一体化“和”模块化“的方法来研究船舶电力发电、运输、转化、分配。利用共享设置海军的推进装置用电、日常的用电。各种武器装备输电发电和配电系统构成的综合电力系统,美国海军相当重视电力在船舰上的应用。

我国海军在研究这方面也不逊色,国内有先进设计理论和分析方法。对船舶承载能力和撞击能力做过实验分析。

5.总结

本文介绍了船舶结构极限分析的三种不同的方法,并进行了对比分析,最后得出结论:有限元分析方法耗时比较长,但是能够很高的分析和仿真船舶结构极限。

参考文献

[1]祁恩荣,彭兴宁.破损船体非对称弯曲极限强度分析首届船舶与海洋工程结构力学学术讨论会论文集,江西九江:

[2]徐向东,崔维成等.箱型粱极限承载能力试验与理论研究.船舶力学,2000,4(5):36-43

[3]朱胜昌,陈庆强.大型集装箱船总纵强度计算方法研究.船舶力学,2001,5(2):34--42

[4]郭昌捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998(4):49—56

函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 注:一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)近旁有定义即可。 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。 两个重要极限: 1、lim sin(x)/x =1 ,x→0 2、lim (1 + 1/x)^x =e ,x→∞ (e≈...,无理数) ======================================================================== 举两个例子说明一下 一、……=1? (以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法。既然不可做加法,就无乘法可言了。) 谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 10×…… —1×……=9=9×…… ∴……=1 二、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。 真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。

求极限方法论文答辩

答辩申请报告

答辩的目的是进一步考察论文作者对专业知识掌握的深度和广度;审查论文是否由学员自己独立完成等情况。下文是申请书网整理收集的答辩申请报告,供大家参考。

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

在微积分学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习微积分的关键一环.本文主要研究泰勒公式及其在求极限方面的应用.它是通过几个典型的例题,说明几个类型的问题,也即是从特殊到一般的推理过程.我们又称之为研究式学习(归纳).这种研究对培养学生分析问题、解决问题的能力是一种有效的途径.推理过程的研究式学习也是训练严密逻辑思维的有效方式.

本文通过对利用泰勒公式求极限的探讨,尤其是给出了泰勒公式在其它方面的应用,显现出泰勒公式的应用之广泛.其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导.

本人论文自2009年2月开始至本年5月完成,主要进度情况如下:20XX年2月:构思论文的大致结构;20XX年3月:查阅相关国内外文献;

20XX年4月:根据前量步的准备工作,完成初稿;

20XX年5月:在老师的指导下,对初稿进行修改,使其完善和严密,定稿打印装订,并进行答辩.

经过反复仔细修改和严格审查,并经过导师的指导认定,本论文按时完成,特申请本论文按时答辩,请批准.

申请人(签字):

年月日

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

经过近14周的努力,通过对螺旋棒零件的调研、翻阅相关的参考文献和资料,进行需求分析、系统研究、系统设计,最终完成了螺旋棒零件工艺规程设计及钻夹具的研究和设计。在翻阅相关参考文献的阶段,通过查阅相关的机床夹具设计、切削用量手册等书籍,掌握了本系统研究设计的基本方法,基本掌握了如何操作该夹具对零件进行正常加工。同时查阅外文资料并完成了对外文资料的翻译工作。在需求分析和系统设计阶段,通过对可行性和系统进行分析,在确定设计确实可行的基础上进行进一步的研究。

在这次毕业设计中我认真学习螺旋棒零件工艺规程设计以及钻夹具设计的相关知识,严格遵循,老师的指导,按时完成任务,虚心的向同学请教和学习。目前,毕业设计(论文)、中英文翻译、调研报告、3张A0图及相关资料文档均已完成,在此向老师提出答辩申请进入下一阶段的论文答辩,希望老师同意。

注意:论文答辩申请书范文的写作主要是写自己完成论文进程和完成论文的工作情况,并写自己是否可以按时答辩或者延期答辩。

此致

敬礼!

申请人:

20**年**月**日

尊敬的学校及院系领导:

我在2007年3月至2008年8月期间,进修中国人民大学公共管理学院公共管理硕士(MPA),专业方向为公共卫生与医疗政策研究。在学习期间,我不仅学到了本专业的各项专业知识和方法工具,而且也获得了导师及授课老师们孜孜不倦的教诲,使我得以顺利完成学业。并根据所学知识,结合自己的工作实践,写成了毕业学位论文——《浅析我国采供血管理体系中存在的问题及改善建议》。该论文虽因个人学识的不足,难免挂一漏万,存在不少缺憾;但毕竟是对前段学习和工作的总结,并以此作为日后进一步学习和研究的起点。

在论文成稿之时,我除了要感谢学校和领导给予我深造的机会,以及导师和其他老师们的倾囊相授外,也向学校及院系领导申请答辩,望学校及院系领导批准。

学位论文选题的理论意义和实践意义在于:

一方面,新中国解放后,我国血液管理工作获得了较大发展。从血液来源上看,由以往主要为有偿献血变为现阶段主要为无偿献血,献血的人道主义精神得到较好的体现。据卫生部2005年公示的我国各省无偿献血占临床用血比例及排序的数据显示,自1998年我国出台无偿献血法以来,自愿无偿献血占采集临床用血比例由1998年的5%增长到2005年的,计划无偿献血占采集临床用血比例由1999年的减少到2005年的,无偿献血占采集临床用血比例由1998年的22%上升到2005年的;从法制建设上看,国家对血液的管理也逐步进入法治轨道,卫生部于1993年2、3月相继颁布了(93)第29号部长令《采供血机构和血液管理办法》和卫医发(93)第2号文《血站基本标准》,并于1993年7月1日起在全国实施,2006年又颁布了《血站管理办法》。一系列法律、法规的出台使得用血安全得到较好保障,能够较好维持血液的安全、有效供给。

另一方面,我国的血液管理在取得巨大发展的同时也存在着很大问题。从献血方面来看,部分地区存在的有偿供血仍在严重威胁血液安全。根据2004年10月卫生部公布的数据,我国内地仍有百分之十五的临床用血来自于有偿供血,尤其在部分偏远农村地区,无偿献血工作严重滞后;有些地区依然存在有偿供血、频繁采血现象,“血头”、“血霸”组织非法卖血时有发生,血源性传播艾滋病、肝炎等重大传染病直接威胁着供血者和用血者的身体健康。同时,各地在献血工作的实际开展过程中也出现了许多问题,事业单位、企业、高校等部门往往为了完成献血的行政任务而被迫采取一些非正规的操作手段,结果导致更多问题的出现,这许多的问题彰显了我国的献血制度存在着很大的.弊端。从供血方面来看,血液管理机构(主要为血站)的管理存在混乱、低效的情况,不能形成与血液使用部门(医院)的有效对接,血液供给的正常性、有效性得不到充分的保障,导致部分地区经常出现“血荒”现象。因此,对我国采供血管理体系中存在的问题进行剖析,并在此基础上提出相应的改善建议,无疑具有重要的现实意义。

论文的基本内容:

首先,回顾和总结了采供血管理的基础理论。在该章中,明晰了采供血行业的相关概念,并运用公共产品理论和政府管制理论对血液物品的性质和我国采供血管理体系进行了的必要的理论分析。

接着,分析了我国采供血管理体系的现状,即:回顾了我国血液管理体制的历史沿革;分析了我国采供血管理体系中存在的主要问题和成因。

最后,在吸取发达国家供血管理体制的经验及启示的基础上,提出了我国采供血管理体系改善方案。这些主要措施有:加强采供血的法制建设;进一步强化政府管制的主导作用;构建政府与市场和非营利组织的多方合作机制;进一步完善公众参与的无偿献血机制。

创新见解

(1)本论文在前人研究成果的基础上,遵循“提出问题→分析问题→解决问题”的研究范式,对我国采供血管理体系中存在的问题及改善建议进行研究,具有一定的理论和现实意义。

(2)采用了系统分析方法。我国采供血管理体系中存在的问题及改善建议研究是一个系统性工程,不仅关系到供血系统内部的诸多要素,更涉及到政治、经济和文化等各个社会层面,因此,只有运用系统分析的观点,才可能得出相对科学而体系化的结论。

(3)采用了理论与实践相结合的研究方法。本论文力求在对我国采供血管理体系中存在的问题及改善建议展开研究时,将其实践操作与理论指导相结合,做到理论联系实际,以使我国采供血管理体系的改善方案能在理论的指导下,开拓创新,实现实践中的突破。

(4)采用了宏观分析与微观分析研究相结合的方法。所谓宏观分析,即是回顾和总结采供血管理的相关理论,以在宏观上确立一个大的指导范式;而微观分析,则是在前述指导范式下,分析我国采供血管理体系中存在的问题,进而提出我国采供血管理体系的改善建议。通过将上述二者的有机结合,达到点面兼顾,从而全面把握新形势下我国采供血管理体系构建的走向。

此致

敬礼!

申请人:

20**年**月**日

上下极限有多种定义方式,其中一种是比较容易理解的,就是集合E的上确界,集合E中的元素是数列An所有子列的收敛点,我说了例子就容易理解了,例如数列1,0,1,0,1,0......显然本身是不收敛的,但其子列1,1,1,1.....和子列0,0,0,0,0......分别收敛到1和0,集合E={0,1}上极限就是1,下极限就是0,(事实上上极限它本身一定也是极限点,所以上极限也可以这么认为就是集合E中最大的元素),希望能帮助到你

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

论文研究极限

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 注:一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)近旁有定义即可。 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。 两个重要极限: 1、lim sin(x)/x =1 ,x→0 2、lim (1 + 1/x)^x =e ,x→∞ (e≈...,无理数) ======================================================================== 举两个例子说明一下 一、……=1? (以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法。既然不可做加法,就无乘法可言了。) 谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 10×…… —1×……=9=9×…… ∴……=1 二、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。 真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。

船舶与海洋工程结构极限强度分析论文

船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助!

摘要: 当轮船受到外部冲击载荷时,轮船整体结构就会变形,当这个变形达到最大极限状态,这时的极限状态叫做极限弯矩。轮船整体构架承受全部抗击的最强能力是极限强度。本文对船舶结构极限强度。进行了分析和研究,提出了有限元分析方法进行强度和极限分析。

关键字: 极限强度,船舶,结构,船舶与海洋工程

随着科学技术的不断进步,轮船结构以及轮船使用的材料都有很大的进步。船体的整体结构和材料成为当今社会研究的主要对象。随着计算机技术的日益成熟,船体整体结构和承受的。屈服力都可以采用软件仿真来快速精确的计算。

1.引言

船体的整体结构和承受的能力是保证轮船安全的重要保障,它关系到轮船是否安全出航和安全返航。随着先进的设计技术的进步,计算机相关设计软件已经可以。设计整体结构和仿真测试船体的整体结构。分析船体结构和整体强度是一个复杂的非线性过程,必须进行合理的划分,采用好的分析方法才能得出精确的数值。新材料的不断出现使船体材料耗费变的越来越经济合理,同时船体结构屈服强度也变的越来越理想。

在分析船舶整体结构变形和极限强度的时候,我们所研究的绝大多数问题都是属于线性的微弱形变问题。在微弱整体的结构中,位移和应变可以被线性化,等效于正比关系。但是,在实际中,不规则物体所受的应力和应变都不是线性的,常见的有悬臂梁的弯曲,U形梁的变形等等。

2.总体结构状态

船舶的总体结构状态时一个非常复杂的过程。总体结构的崩溃在过去几年是一个非常普遍的现象,它是船体结构所受冲击超过了材料本身的极限,这时候支撑梁不能够支撑船体整体结构。以上情况不足为奇,在飞机和潜艇外体上也经常出现类似情况。目前,中国的船体分析技术的研究还处于起步阶段,与国外发达国家。先进水平仍有很大的差距。为了进一步研究分析,我国投入资金和人力,在实际工程中,建立一个比较完善的船体分析系统,包括原动机转速控制系统,同步船体结构系统,轮船控制系统管理相关技术的研究,实验研究了一系列模拟各种恶劣的条件下,容易控制船体结构的一些关键技术,并做了可行性分析。船舶具有非常重要的作用,特别是对船体分。析屈服强度的分析,轮船安全可谓海军舰艇的生命线。动力和结构形成一个整体轮船系统,为船体结构极限强度分析的发展。指明了方向。

3.极限强度分析法

如何分析船舶结构的极限强度是一个复杂而且非常有意义的过程。分析这种复杂的船体结构没有一种比较准确的分析方法。在分析极限强度的时候,我们通常采用复杂问题简单化,采用线性和非线性结合的方法,有限元和边界元分析相结合的方法。

逐步破坏分析法

上世纪末,美国物理学家的在基于对悬臂梁、加筋板在轴向压缩载荷作用下结构失效问题的研究成果中提出了逐步破坏的分析方法。船体结构破坏不是一个迅速变化的过程,是一个一步一步的程序,同时也不会一下子超过屈服极限,随着应力的增大逐渐的增大的逐渐破坏。在进行破坏分析的时候,首先建立屈服应力和位移的曲线关系。

非线性分析法

分线性分析方法必须。对船体分析采用模块化分析,必须充分考虑如何进行分段,分段之后逐个段进行非线性分析。在这个工程中,一个段的结构有自己的不同,针对不同结构进行线性化分析和非线性化分析。每个分段包含一个骨架间距内的所有主要构件,选择或者利用发生崩溃概率最大的情况进行分析的原则,对所承受的分段骨架进行全面的分析和仿真。这种分析方法需要对每一段进行模型建立,然后一个模型模型的分析。船体总体结构的弯曲和抗屈服能力不同导致分析结果不同。

有限元分析法

有限元分析方法是结构分析的简单方法,它能把复杂问题简单化,分析整体结构的节点和网格。在进行有限元分析的时候,通常对船体结构进行网格划分,然后进行网格施加约束,在均匀网格上施加可变的。激励,观察整体结构的响应。采用这种方法能模拟船体的边界条件和整体约束。有限元分析方法综合考虑。船体的形状和材料的'不同,通过不同载荷的约束,我们可以分析出结构极限(包括最大应力,最大屈服极限)。最近几年,有限元分析方法被应用在船舶整体分析和部分结构分析的案例非常多。这种分析方法有两个个缺点。一是。不能很好的模拟真实环境,不能考虑周围环境对整体结构形变的影响。第二对于结构复杂的构件,有限元分析方法对于复杂的结构不太实用,设置相关算法时间太长,不能在有效的时间完成任务。这种分析方法的优点有以下几个方面:

(1)对船体建模方式直观明了。在分析结构的时候可以采用线性划分和非线性划分网格。采用相关软件完全可以分析所有动态结构的模型和仿真。利用有限元分析模块的可视化建模窗口,动态结构的框图和模型可迅速地建立和仿真研究。用户需要选择元件库(对应的子模块程序模块)中选出比较合适的模块,然后并改变需要的形式,拖放到新建的建模窗口,鼠标点击或者画线连接都可以搭建非常可观的结构模型。他的标准库拥有的模块远远大于一百五十多种,可用于搭建和仿真各种不同的、种类变化的动态结构。模块包。括输入信号源子模块、动力学元件子模块、代数函数和非线性函数子模块、数据显示子模块模块等。模块可以被设定为触发端口和使能的端口,能用于模拟大模型结构中存在条件作用的子模型的行为。

(2)可以构建动态结构模型。可动结构的模型可以修改并进行仿真。有限元分析还可以作为一种图形化的、数字的仿真工具,用于对动态结构模型建立和操作改变规律的研究制定。

(3) 模块元件与用户代码的增添和定制。已有模块的图标都可以被用户修改,对话框的重新设定。用户完全可以把自己编写的C代码、FORTRAN代码、Ada代码直接植入模型中,此外模块库和库函数都。是可定制的,扩展以包容用户自定义的结构环节模块。。

(4)设计船舶结构模型的快速、准确。他拥有优秀的积分和微分算法,这样给非线性结构仿真带来了极大的方便,同时也带来了相对较高的计算精度。可以选择比较先进的常微分方程求解器和偏微分方程求解器,还可用于求解力学刚性的和非刚性的结构,还可以求解具有事件触发的逻辑结构,求解或不连续状态变量的结构和具有代数环和参数环的结构。软件的求解器可以确保连续结构或离散结构的仿真高速、准确的进行。

(5)复杂结构可以分层次地表达。根据个人需要,若干子结构可以由各种模块组织。按照自顶向下(从元器件到结构)或自底向上(从实现的每一个细节到整体结构)的方式搭建整个结构模型。这种分级建模能力能够使得代码丰富的、体积庞大的、结构非常复杂的模型可以简便易于行动的构建。结构子模型的层次数量和子子模块的分层次数量完全取决于所搭建的结构,软件本身不会限制到搭建的模型。有限元还提供了模型和子。模块结构浏览的功能。这样更加方便了大型复杂结构结构的操作。

(6) 仿真分析的交互式。该软件显示的示波器可以图形显示和动画的形式显示出来,数据也可以动作的形式显示,What-if分析运行中可调整参数模型进行,监视仿真结果能够在仿真运算进行时。可帮助用户不同的算法可以快速评估,进行参数优化这种交互式的特征。

由于有限元模块是全部融合于有限元,一次在有限元模块下所有的计算的结果都完全可保存到有限元软的工作空间中,因而就能使用有限元所具有的众多分析、可视化及工具箱工具操作数据。

4.船舶在军事上的发展状况

在军事上的应用:在上世纪90年代,以美国为首的国家海军大力发展海军轮船性能优化,整体结构和性能得到优化。于93年提出了水面舰艇先进机械项目计划(提前海洋表面计划ASMP)。

美国的目的是建立一个国家的最先进的舰艇推进系统,能够实现远程作战和抗高撞击的能力。美国海军采用先进的智能设备,同时采用电气控制和机械控制系统。在同一时间满足指定的性能,在分析极限强度上加大了投资,军用船舶的其他方面投资也有显着的减少。随着ASMP计划进一步研究,权力一体化“和”模块化“的方法来研究船舶电力发电、运输、转化、分配。利用共享设置海军的推进装置用电、日常的用电。各种武器装备输电发电和配电系统构成的综合电力系统,美国海军相当重视电力在船舰上的应用。

我国海军在研究这方面也不逊色,国内有先进设计理论和分析方法。对船舶承载能力和撞击能力做过实验分析。

5.总结

本文介绍了船舶结构极限分析的三种不同的方法,并进行了对比分析,最后得出结论:有限元分析方法耗时比较长,但是能够很高的分析和仿真船舶结构极限。

参考文献

[1]祁恩荣,彭兴宁.破损船体非对称弯曲极限强度分析首届船舶与海洋工程结构力学学术讨论会论文集,江西九江:

[2]徐向东,崔维成等.箱型粱极限承载能力试验与理论研究.船舶力学,2000,4(5):36-43

[3]朱胜昌,陈庆强.大型集装箱船总纵强度计算方法研究.船舶力学,2001,5(2):34--42

[4]郭昌捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998(4):49—56

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

函数极限求法的研究现状论文

极限 在高等数学中,极限是一个重要的概念

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 注:一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)近旁有定义即可。 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。 两个重要极限: 1、lim sin(x)/x =1 ,x→0 2、lim (1 + 1/x)^x =e ,x→∞ (e≈...,无理数) ======================================================================== 举两个例子说明一下 一、……=1? (以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法。既然不可做加法,就无乘法可言了。) 谁都知道1/3=……,而两边同时乘以3就得到1=……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 10×…… —1×……=9=9×…… ∴……=1 二、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。 真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。

  • 索引序列
  • 极限的计算方法论文研究目标
  • 极限求解方法研究论文
  • 求极限方法论文答辩
  • 论文研究极限
  • 函数极限求法的研究现状论文
  • 返回顶部