首页 > 学术期刊知识库 > yolov5论文文献

yolov5论文文献

发布时间:

yolov5论文文献

可使用方括号。在论文正文中所引用的参考文献,应该使用方括号,用阿拉伯数字,.等按顺序以右上角标形式标注在引用的地方,当引用多篇文献的时候,需要将个篇参考文献的序号在方括号内列出来,各个序号用“,”的形式,如果是连续序号,那么可以标注讫序号。参考文献的引用顺序,也就是后面的编码顺序,顺序不可以乱。

把one-hot label 转换为soft label,一般认为这样更容易work。

= (reduction='none') # must be () 这里reduction用none因为在forward里返回的时候取mean。

刚开始看这几行非常confused,查了很久。

这个issue里说减少false negative的影响,我觉得应该写错了,是减少false positive的影响。

false negative指gt有框而network没有predict到,这时候的weight应该要比较大才对。

,当 ,即 时,alpha_factor=0,这应该是false positive的情况。

直白的说,network觉得这里有一个obj,但是gt说没有,这种情况不应该过多的惩罚。

如果采用绝对值的话,会减轻pred和gt差异过大造成的影响。

假设gt是1,pred_prob如果很小,那么就是hard,这样算出来的p_t也会小,最后modulating_factor大。

对alpha_factor也是类似的。alpha_factor对应于foreground,一般设置为。

这里modulating_factor的算法和QFL论文写的一致。

原本FL用class label,也就是one-hot discrete label来supervise;而QFL将其换成了IoU continuous label。

我们先明确一下p和targets的shape p,也就是prediction,[num_dec_layer, batch_size, num_anchor, height, width, 85],这里85是80个class和4个offset以及1个confidence。 targets [nt, 6]

BCEcls, BCEobj是两个criteria,在scratch的hyp中g=0所以没有用focal loss,是普通的BCEloss

cp 和 cn 是soft label的probability,比如 。

balance控制obj loss的加权系数,autobalance决定加权系数也就是balance是否自动更新,autobalance一般是False。

= {3: [, , ]} ,有三个layer的输出,第一个layer的weight是4,第二个1,以此类推。如果有5个layer的输出才用右边那个weight数组。

gr 是iou ratio。

targets就是这个batch里所有的labels,targets(img_idx, cls_idx, x, y, w, h),shape为[nt, 6]。可参考utils/ line 522, 599。 随便打印几行targets也可以验证我们的分析。

x, y, w, h是归一化后的结果。

先复制了三份一样的targets,在最后面加了一维表明anchor idx,本来是6现在变成7。

gain[2:6] = (p[i].shape)[[3, 2, 3, 2]] # xyxy gain t = targets * gain 这里是把 grid size 拿出来乘,恢复到特征图的维度。

在 match 里面比较简单,容易看懂,就是 anchor 和 target 不能差的太离谱,误差小于阈值就 match。

下一步在扩展 targets,个人认为是 positive examples 太少了,所以根据 center 在 cell 中的相对位置,添加相邻的两个 cell 作为 targets。

举个例子,如果 center 在 cell 的左上角,那么 cell 本身,和 cell 的左边一个位置,还有 cell 的上边一个位置,这三个 cell 都作为 targets。

我个人觉得这里的写法是非常巧妙的,取了 grid xy 和 inverse(类似于 flip)。

(gxy % 1. < g) ,这里的 g 是 ,如果仅考虑这个条件, 好像可以 直接判断是否选取左边 cell 和上边 cell。

但是要考虑到边界情况,如果当前已经处于最上方,已经没有上边 cell 可以选择了,这就是 (gxy > 1.) 起到的作用,判断 edge case。

如果本来大于 ,那么 inverse 后就小于 了,所以可以使用相同的逻辑选择右边 cell 和下边 cell ,类似地推理到 edge case。

最后一点要提的是使用 clamp_ 确保返回的 grid indices 不是非法值,旧版本 code 没用这个检查,不过好像也没什么差。

lcls, lbox, lobj 这三个用来存放loss,默认使用pytorch提供的BCE loss。

pxy = ps[:, :2].sigmoid() * 2. - 在learn的时候不需要加cx cy。

bbox回归的公式可以参考model/ line56, 57。

Objectness 这里 gr 设置为 ,也就意味着直接拿 iou 作为 confidence。

至于为什么返回 loss 的时候为什么要乘 bs,还不是很清楚,第二个返回值就是为了打印信息用的。

在train的时候,target是在feature map的scale。

在inference的时候,直接乘img map scale的anchor size就可以了,也就是配置文件里的anchor。

对于YOLOv5的命名发布这么大的争议的原因是:Ultralytics公司在开源YOLOv5的代码时,未发布经过同行评议的YOLOv5论文。主要原因就是YOLOv5的license是GPL协议(),而Kaggle不允许使用GPL协议的项目参赛。那么今天就来普及一下这些开源软件协议。软件开源是许多软件企业需要关注的问题,不同的开源软件协议,对应不同的源代码使用限制。只有了解这些开源软件协议,才能更好地使用和回馈开源软件,否则就有可能触犯法律。

yolov5人脸检测论文

基于yolo算法的口罩人脸识别研究的意义如下:口罩人脸识别是利用计算机视觉技术判断图像或者视频序列中的行人是否存在未带口罩的情况,在一些需要佩戴口罩的特定场合,比如食堂、饭店等员工需要佩戴口罩上岗,或由于特殊情况,需要行人佩戴口罩的场景,都可以适用。目前市面上的口罩人脸识别系统,常用的方式先对人脸进行检测,再对人脸进行区域划分,统计分析脸部下方区域的颜色信息,进而判断人脸是否佩戴口罩的方式。但在实际现场应用中,人脸的倾斜角度不同,不同光线的干扰也不同,导致传统方式的精度并不理想。因此,现有技术需要改进。

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

基于yolov5的目标检测论文

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

在这篇文章中,我们将使用来自 AWS 上的 COCO 数据集(可定制)的图像设置和运行 YOLO。

一般来说,分类技术在自动驾驶 汽车 中没有多大帮助,因为它只预测图像中的一个对象,并且不给出该图像的位置。 而目标检测在自动驾驶 汽车 中非常重要,可以检测场景中的对象及其位置。 YOLO(你只看一次)是由 Joseph Redmon 等人创建的一种高速实时对象检测算法。 YOLO使用卷积神经网络 (CNN)解决概率的回归问题。 后来又进行了一些修改。 为了进行预测,YOLO 只需要通过 CNN 进行一次前向传播。 它输出具有相应边界框的对象。 它广泛用于自动驾驶 汽车 以检测场景中的物体。

第 1 步:设置帐户(这步可以跳过)

登录网站并复制以下内容:

来自 的 API 密钥 中的团队名称。 默认团队名称将是用户 ID。

第 2 步:创建 AWS 实例(如果你在本机训练这步也可以跳过)

在创建实例时,选择“Deep Learning AMI (Ubuntu ) Version — ami-01f1096e6659d38fa”AMI,因为它具有深度学习任务所需的库。 如果我们在“选择AWS机器映像 (AMI)”步骤中搜索“deep learning”,我们可以找到这。为“实例类型”选择 P3 实例。 实例类型 (V100) 就足够了。为了节省成本,请在“配置实例”步骤下选择 Spot 实例。

第 3 步:安装依赖项

登录 AWS 实例后,使用以下命令创建 conda 环境并设置 Weights & Bias 环境变量:

第 4 步:训练、验证和测试

第 5 步:检查指标

验证集真实标签

验证集预测标签

训练的损失

测试

以上所有结果都会保存在文件夹yolov5runsdetectexp下

参考文献书籍文献论文文献

参考文献书籍引用格式:

1、学术期刊文献:作者,文献题名,出版年份,卷号(期号):起-止页码。

2、学术著作:作者.书名[M],版次(首次免注),翻译者,出版社,出版年:起-止页码。

3、有ISBN号的论文集:作者,题名[A]主编,论文集名[C],出版地:出版社,出版年:起-止页码。

4、学位论文:作者,题名[D]。保存地:保存单位,年份。

5、专利文献:专利所有者,专利题名[P]。专利国别:专利号,发布日期。

参考文献书写技巧:

把光标放在引用参考文献的地方,在菜单栏上选"插入|脚注和尾注",弹出的对话框中选择"尾注",点击"选项"按钮修改编号格式为阿拉伯数字,位置为"文档结尾"。

在光标的地方插入了参考文献的编号,并自动跳到文档尾部相应编号处,键入参考文献的说明,在这里按参考文献著录表的格式添加相应文献。

论文书籍参考文献格式有专著、连续出版物、专利文献。

标准:

分别规定了专著、连续出版物、专利文献、专著中析出的文献以及连续出版物中析出的文献的著录格式。在五种著录格式中,凡是标注“供选择”字样的著录项目系参考文献的选择项目,其余的著录项目系参考文献的主要项目。可以按标准第6章的规定或根据文献自身的特征取舍选择项目。

著录项目主要责任者:

书名文献类型标识供选择其他责任者供选择版本出版项出版地:出版者,出版年文献数量供选择丛编项供选择附注项供选择文献标准编号供选择。2007年8月20日在清华大学召开的“综合性人文社会科学学术期刊编排规范研讨会”决定,2008年起开始部分刊物开始执行新的规范“综合性期刊文献引证技术规范”。

参考文献介绍:

按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T7714—2015《信息与文献参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。

论文参考文献:

1、传统参考文献的查找方式就是通过图书馆,图书馆图书是查找传统参考文献的主要途径,而且相对其他方式来说,具有方便实惠的优点。

2、通过中国知网,中国知网(CNKI)是比较权威的网络文献来源,大多数高校都有和中国知网的合作,所以在学校可以享受免费下载文献的待遇,其他方式部分文献是需要收费的。而且查找起来十分方便,在中国知网官网的分类目录或者检索区域输入文献标题,就可以了。

3、通过维普期刊,在维普期刊中使用高级检索,可以十分精确查找到所需文章。

4、通过万方数据库,检索方法就是点击首页然后搜索旁边的高级检索,进入检索区域就好。

5、通过百度学术,检索方法也是大同小异,搜索栏输入名称即可。

6、其他文献来源:以上是常用的查文献途径,如果一些专业性比较强的可以通过这些途径检索:①开世览文;②超星图书;③E线图情;④读秀中文;⑤百链云;⑥全球索索等。

文献类型

1.期刊类,用[J]表示,一般篇幅不长,大概2000字左右,内容教浅,但是可以了解你的课题研究情况。

2.博硕士论文,用[D]代表,这些论文一般3万字起,对于本科生来说可以参考博硕士论文,借鉴他们章节的布局方式以及排版,可以给自己的论文一些基础思路。

3.书籍,用[M]代表,指书籍专著,大家可以根据论文研究需要去参考相应的书籍。

4.报纸类文献资料,[N]表示。

5.报告类文献资料,[R]表示。

论文参考文献文献

参考文献是指在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。

论文的参考文献写法如下:

一、[序号]期刊作者。题名[J]。刊名。出版年,卷:起止页码。

二、[序号]专著作者。书名[M]。版次。出版地:出版社,出版年∶起止页码。

三、[序号]论文集作者。题名〔C〕。编者。论文集名。出版地∶出版社,出版年∶起止页码。

论文的参考文献注意事项:

1、参考文献要以序号的形式出现在正文中和文末,且序号要保持一致。序号以在文中出现的前后为序。

2、如果某文献在文中数次被参考,则几处序号要保持相同,只是页码有变化。在文末只列出该参考文献一次即可,不必多次罗列。

3、每一参考文献的所有要素必须齐全,不可残缺,具体包括:主要责任者;文献题名;文献类型及截体类型标识(如专著M、论文集C、报纸文章N、期刊文章J、学位论文D、报告R、专利P等)。

参考文献作用:

1、研究基础

参考文献可以反映出论文的真实性和研究依据,也反映出改论文的起点。我们论文中的研究都是在过去的基础上进行的,这也表明了自己论文中的研究是有价值水平和依据的。

2、研究区别

标注参考文献也是为了把前人的成果区分开来。这能表明论文的研究成果是自己写的,虽然引用了前人的观点、数据或其他资料。 但是标注出参考文献不仅能体现出自己的研究能力,也能体现自己的创新和价值。

以上内容参考:百度百科--参考文献

参考文献是指在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。参考文献类型:专著[M],论文集[C],报纸文章[N],期刊文章[J],学位论文,报告[R],标准[S],专利,论文集中的析出文献[A] ,电子文献类型:数据库[DB],计算机[CP],电子公告[EB]电子文献的载体类型:互联网[OL],光盘[CD],磁带[MT],磁盘[DK]。

1、专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码;2、报告作者.题名〔R〕.保存地点.年份;3、论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码;4、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。参考文献是学术论文的重要组成部分,是作者对他人研究成果的直接或间接引用,其正确标注不仅体现了作者的治学态度,更关系到作者对他人学术成果的尊重。扩展资料:选中所有的尾注文本,点“格式|字体”,改为“隐藏文字”,切换到普通视图,选择“视图|脚注”,此时所有的尾注出现于窗口的下端,在“尾注”下拉列表框中选择“尾注分割符”,将默认的横线删除。同样的方法删除“尾注延续分割符”和“尾注延续标记”。删除页眉和页脚(包括分隔线),选择“视图|页眉和页脚”,首先删除文字,然后点击页眉页脚工具栏的“页面设置”按钮,在弹出的对话框上点“边框”,在“页面边框”选项卡,边框设置为“无”,应用范围为“本节”;“边框”选项卡的边框设置为“无”,应用范围为“段落”。切换到“页脚”,删除页码。选择“工具|选项”,在“打印”选项卡里确认不打印隐藏文字(Word默认)。

  • 索引序列
  • yolov5论文文献
  • yolov5人脸检测论文
  • 基于yolov5的目标检测论文
  • 参考文献书籍文献论文文献
  • 论文参考文献文献
  • 返回顶部