首页 > 学术期刊知识库 > 基于小波变换的图像去噪研究论文

基于小波变换的图像去噪研究论文

发布时间:

基于小波变换的图像去噪研究论文

1. 彭玉华,《小波分析与工程应用》(20万字),科学出版社,1999年2. Yuhua Peng, Wenbing Wang, The Applications of Wavelet Transform inElectromagnetic Object Detection, The Third International Symposium on Antennasand EM Theory, Session 9I, , September 6-9,1993,Nanjing, Peng, Wenbing Wang, “On the representations of Hankel integral operatorin bases of orthogonal wavelets”, Proceedings of the 1994international conference on computational electromagnetic and its applications,Session I,pp. 17-22, November 1-4,1994,Beijing, Qun, Peng Yuhua, Wang Wenbing , Xiao Yanming, “On the Use of Wavelet MOMto Solve the EFIE”, Journal of Systems Engineering and Electronics,, , 1997, . Yuhua Peng ,, De-noising by Modefied Soft Thresholding, ,IEEE APCCAS, Peng , Wavelet Transform Based Filter for Smoothing of Signals,International Conference on Computational Electromagnetic andIts Applications, , . 彭玉华,信号在多尺度空间的滤波, 通信学报,2000,. 彭玉华, 汪文秉, “小波用于估测散射波波达时间及去噪”, 电子学报,第24卷第4期, 96年4月,pp113-1169. 彭玉华, 董晓龙, 汪文秉, 高静怀, “小波变换在电磁场数值计算中的应用”, 电子学报,第24卷第12期, 96年12月,, (Engineering index 1997, 摘录)10. 彭玉华, 汪文秉, “应用小波变换于电磁场目标后向散射信号的时频图分析”, 电子学报,第23卷第9期, 95年9月, (Engineering index 1996, 摘录,)11. 彭玉华,汪文秉, Hankel积分算子在两种二维正交小波基下的展开, 电子学报,第27卷第6期,1999年6月, . 彭玉华,“基于离散正交小波变换的图像去噪方法”,中国图形图象处理学报, 第4卷第8期。13. 彭玉华, 傅君眉, “大的标准TEM小室内谐振频率的计算”, 电子科学学刊,第17卷第1期, 95年1月,. 彭玉华,姜响应,“基于连续小波变换(CWT)的汉语语音谱图”,信号处理, 1999, 第15卷第4期。15. 彭玉华,姜响应,张保轩,“小波预处理与语音识别”, 山东工业大学学报,第28卷第5期,1998年10月,。16. 彭玉华,“基于离散正交小波变换的图像压缩方法”,山东工业大学学报, 第29卷第4期。17. 朱雪田,彭玉华,, 低信噪比下的提高正弦波频率估计精度算法,, 电路与系统学报,2001,18. 许宏吉,彭玉华, 雷达双频信号提取自适应滤波器的设计, 电子技术, 2002年第6期19. 高静怀, 汪文秉, 朱光明,彭玉华,“地震资料处理中小波函数的选取研究”,地球物理学报,第39卷第3期,96年5月,. 王玉平,蔡元龙,彭玉华,“电磁后向散射数据的小波包变换分析”电子科学学刊,第18卷第5期,96年9月,。

matlab中文论坛 强烈建议你

基于小波变换的图像增强毕业论文

基于小波变换的图像增强是一种常用的图像处理技术,MATLAB提供了很多函数和工具箱来实现这一过程。以下是MATLAB中基于小波变换的图像增强的示例代码:% 读取图像文件img = imread(''); % 对图像进行小波分解 [c,s] = wavedec2(img, 2, 'db4'); % 通过对小波系数进行阈值处理来减小噪声 thr = wthrmngr('dw2ddenoLVL','penalhi',c,s);sorh = 's'; % 选择软阈值[cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,s,'db4',2,thr,sorh); % 对增强后的图像进行显示 imshow(uint8(cxd));这段代码首先使用MATLAB内置的imread函数读取一幅图像,并使用wavedec2函数对图像进行二级小波分解。接着,通过调用wthrmngr函数来计算一个适当的阈值,再通过wdencmp函数来对小波系数进行阈值处理。最后,通过imshow函数将增强后的图像进行显示。需要注意的是,这段示例代码只是基于小波变换的图像增强的一个简单示例,实际的应用需要根据具体的需求进行相应的调整和优化。

题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多

Abstract: The image intensification is refers to in the enhancement image the useful information, it may be a distorted process, its goal is must strengthen the visual the sharp image will become clear or emphasized certain is interested the characteristic, suppresses is not interested the characteristic, causes it improvement picture quality, the rich information content, the enhancement imagery interpretation and the recognition effect imagery processing method. First chapter introduced the wavelet algorithm history and in the reality application first. Then analyzes several kind of wavelet transformations the method, including continual wavelet transformation, separate wavelet transformation and two-dimensional separate wavelet transformation. In this topic experiment, is precisely two-dimensional separate wavelet transformation which uses. Second chapter simply introduced the image intensification two kind of methods: Spatial domain ydo law and frequency range law. Will carry on about the image intensification further discussion in the third chapter under the MATLAB environment. Third chapter first makes the simple introduction to the MATLAB development and introduces it emphatically in various domains strong point. Then the key research image gradation level revises, and gives each algorithm the MATLAB procedure and the movement result. In deepening theory knowledge foundation further familiar MATLAB use. Finally enclosed experimental three sections of procedures: The two-dimensional separate wavelet transformation, and improves the visual quality based on the DWT image auto-adapted enhancement and outputs. Key words: Image intensification; MATLAB; Wavelet transformation; Separate wavelet transformation

小波变换去噪大学本科毕业论文

Scattered speckle of transient figure image wave filtering gaining specifically for pair of pulse lasers irradiate way accuracy goes and chirping to carry out the data handling method carrying out the field studying , realizing within extremely short period to microtime displacement finds the solution. Distribute the noise there being existing the intense pellet random in speckle streak image middle , bring very big deviation, to very big deviation the centre line extracting the scattered speckle streak image's, therefore, dislodging pellet random noise effect , strengthening the scattered speckle streak image is the key that the ESPI data image handles. The two pulse transient distributes a speckle since between pertinent two images the existence brightness difference, leads to interference design signal-to-noise ratio difference, existence very strong background noise, wave filtering intervening design therefore specifically for the two pulse transient distributes a speckle go and chirp extraordinary key, besieges the bottleneck problem winding scattered speckle of transient electron measurement though the wave filtering place of go and chirping to there be existing deficiency in very diversified method , but every kind of method taking form at present already distributing the speckle image, already has become. Minor wave alternation and window FFT wave filtering method are equal but the density and noise being based on a streak under the resolution ratio in diversity distribution characteristic goes to chirp, have the enhanced effect of border at the same time, the minor already with two-dimensional straggling orthogonality wave shifts success in Tsinghua University being used for pertinent figure wave filtering process middle , FFT wave filtering method belongs to but Xin Xing method in the window , has not gained more actual application. The project puts up capital by the experiment building scattered speckle of two pulse transient pilot system , collect the scattered speckle of transient intervening design, small wave alternation method and Xin Xing with two-dimensional straggling orthogonality together window FFT method leads into wave filtering process , the comparison being in progress between two kinds wave filtering method result analyses , method go along small wave alternation and window FFT wave filtering to orthogonality verifies and estimates that and comparing with the tradition middle value wave filtering method result go along,gain the conclusion estimating that.

For the double-pulse laser irradiation method to obtain the transient filter denoising of digital speckle image data processing method of research to achieve in a very short time interval on the accuracy of the instantaneous displacement field solution. Speckle fringe images of particles there is a strong random noise, to extract the centerline of the image speckle fringe great bias, therefore removing the impact of particles of random noise and enhance speckle ESPI fringe images of data image processing key. Due to two double-pulse transient coherent speckle brightness differences between images, resulting in poor signal to noise ratio interference pattern, there is strong background noise, so for the double-pulse transient speckle interference pattern de-noising filter is critical Although the speckle image denoising filtering has become very many ways, but each method there are deficiencies, has become a plague transient electronic speckle measurement bottleneck problem. Wavelet Transform and FFT window filtering method can be striped in different resolutions according to the density and distribution of the noise characteristics of de-noising, but also has the role of edge enhancement, Tsinghua University, two-dimensional discrete orthogonal wavelet transform has been successfully used for digital related filtering process, while the window FFT filtering method is an emerging method, yet more practical application. The project to build double-pulse transient by experiment speckle test system, collecting the transient speckle interference pattern, and two-dimensional discrete orthogonal wavelet transform method and the emerging window of FFT filtering method is introduced into the process of filtering method in two between the results a comparative analysis with traditional median filtering method for comparison of results of the orthogonal wavelet transform and FFT window filtering method validation and evaluation, access to evaluation findings. Asked by: lively

鸟类音频信号不同于人声信号,针对鸟类音频信号,文中给出了多种小波方式优化的音频处理手段。为了得到了去噪效果明显的去噪手段,采用离散小波变换进行信号的分区阈值去噪。The bird audio signal is different from the human voice signal. For bird audio signals, a variety of wavelet methods are optimized for audio processing. In order to obtain a denoising method with clear denoising effect, a discrete wavelet transform is used to perform signal partition threshold denoising.

这个够做一篇本科毕业论文了。还是自己做吧。有问题别人可以帮你。但是主要的工作还是得自己做。这个问题没人会帮你回答,我算是牺牲采纳率帮你捧捧场了。

图像去噪算法的研究论文

题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多

当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者和提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:和提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。

导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。

图像平滑去噪毕业论文

导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。

多图平均法跟多次测量取平均值差不多。多幅图像加权,噪声的强度下降。至于难点,应该是加权权值的选取,以及图像的多少。

低频就是颜色缓慢变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域。相反高频即灰度变化快,相邻区域的灰度差别大,例如边缘,噪点都是灰度变化快的区域。 图像平滑是要突出图像的低频成分、主干部分或抑制图像噪声和干扰高频成分的图像处理方法,目的是使图像亮度平缓渐变,减小突变梯度,改善图像质量。字面意思就是让图像上颜色灰度变化更光滑。我们也称图像平滑为图像模糊,因为在平滑的时候,也失去了尖锐的特点。 现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。那么除去这些噪声的过程就是图像去噪。 均值滤波也成线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用原图像中某个像素临近值的均值代替原图像中的像素值。即滤波器的核(kernel)中所有的系数都相等,然后用该核去对图像做卷积。 基本和均值一样,即滤波器的核(kernel)中所有的系数都相等。但是它可以选择是否归一化,如果归一化,则和均值滤波毫无差别;若不选择归一化,则会导致像素点的值超过255,发生越界。 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的,离得越近的像素点发挥的作用越大。 高斯核主要取决于σ。如果σ越小,高斯分布中心区域更加聚集,平滑效果越差;反之,则更离散,平滑效果越明显。 中值滤波器,使用滤波器窗口包含区域的像素值的中值来得到窗口中心的像素值。是一种非线性平滑滤波器。在去噪同时,较好的保持边缘轮廓细节,适合处理椒盐噪声,但对高斯噪声效果不好。 双边滤波器是一种可以保边去噪的滤波器,也是一种加权平均滤波器,与高斯滤波不同的是,其滤波核是由两个函数构成,一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数。 适合处理高斯噪声,但对椒盐噪声基本不起任何作用。

  • 索引序列
  • 基于小波变换的图像去噪研究论文
  • 基于小波变换的图像增强毕业论文
  • 小波变换去噪大学本科毕业论文
  • 图像去噪算法的研究论文
  • 图像平滑去噪毕业论文
  • 返回顶部