首页 > 学术期刊知识库 > 美国人工智能行业研究报告论文

美国人工智能行业研究报告论文

发布时间:

美国人工智能行业研究报告论文

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。以下是我精心整理的人工智能的利与弊论文的相关资料,希望对你有帮助!

摘要:自1956年人工智能诞生起,几十年的发展让其有了许多的进步,并广泛用于机器视觉,专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等各大领域,并且与人类生活联系越来越紧密。在安全性没有得到确切认证的情况下广泛发展人工智能是否是可行的做法,人工智能是否会战胜人类智能,现在还存在广泛的争论。本文从人工智能的概况,应用领域与人类生活的联系等方面讨论,联系有关理论,认为人工智能的发展需要在人类智能可控的范围内进行。

关键字:人工智能 超越 人类智能 退化

一.人工智能的概况

(一)人工智能的概念

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

(二)人工智能的兴起

1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论。他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"。从那时起,这个领域被命名为 "人工智能"。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。 Minsky从心理学的研究出发,提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则

来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。

(三)人工智能的发展状况

1956年,Samuel研制了跳棋程序,它在1959年击败了Samuel本人

1959年美籍华人学者、洛克菲勒大学教授王浩 自动定理证明

1976年 “四色定理”的证明

1977年,曾是赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆

(),在第五届国际人工智能大会上提出了”知识工程”的概念 1976年美国斯坦福大学肖特列夫开发医学专家系统MYCIN

80年代,AI 被引入了市场,并显示出实用价值

1997年 “深蓝”

2011年9月,在印度古瓦哈蒂举行的电脑科技展上,一个“聪明机器(Cleverbot)”成功过近800名观众,使他们难以分辨对话出自真人还是电脑软件。当日参加聊天试验的30名志愿者被安排进行4分钟在线文字聊天,聊天的对象可能是“聪明机器人”,也可能是一个真人。他们的对话内容展示在一个

大屏幕上,1334名普通观众观看对话内容后进行投票。结果,超过的观众 把人与“聪明机器人”的对话误认成人与人之间的对话“聪明机器人”的发明 者、英国人罗洛·卡彭特很高兴地告诉记者:“过一半以上观众,你可以说聪明机器人算是通过了"图灵测试"

二.人们对人工智能的依靠

(一)人工智能主要应用领域

目前人工智能主要的应用领域在机器视觉(指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别),专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

(二)人们生活与人工智能的密切关系

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通

中推荐最畅通的线路;帮助识别信用卡„„虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。

在美国硅谷,尼古拉斯·亚宁早上起来准备去上班,到公司需要40分钟车程。这位在Google工作的技术员走向他的Lexus汽车。汽车即将驶上加州拥挤的高速路,此时他的“司机”———汽车开始掌控大局。亚宁的这辆车是Google正在实验的自动驾驶汽车,安装有复杂的人工智能技术,使得他可以放松地坐在驾驶座上充当乘客。

在马萨诸塞州贝德福特的iRobot公司,一名参观者看着5英尺高的机器人爱娃小心翼翼地行走在大厅里,躲避着周围的障碍物———包括人类。今年年底它将开始自己的第一份真正工作———远程医疗助手,让数千英里之外的专家通过安装在它“头”上的视频屏幕给医院的病人看病。当医生准备看望下一位病人时,他只需点击电脑地图上的新位置。爱娃根据地图找到并赶往下一个病房,它还会自己乘坐电梯。

在华盛顿普尔曼,华盛顿州立大学的研究者们正在给“智能”房间安装上感应器,使之能够根据需要自动调节房间的光线,监控住户的一切活动,包括他们每天睡眠多少小时,锻炼多少分钟。听上去有点像是被监禁,但事实上,倡导者们认为这样的技术就像一个富有爱心的保姆:智能房屋可以帮助老年人,尤其是有身体或智力障碍的老人过上独立的生活。

从今年夏天在火星登陆的好奇号太空探测器,到仪表盘能够与人对话的汽车,再到智能手机,人工智能正在改变我们的生活———有时候以一种显而易见的方式,更多的时候,我们甚至没有意识到它的存在。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡;告诉驾驶员什么时候越过了道路中央的分道线。

甚至连烤面包机也即将加入人工智能革命。你可以将一个面包放进去,用智能手机拍张照片,手机将把所有需要的信息传送给烤面包机,指导它如何将面包烤得恰到好处。

从某个方便说,人工智能几乎无处不在,从控制数码相机的光圈和快门速度的智能感应器,到干衣机中的温度和湿度探测器,再到汽车中的自动泊车功能。更复杂的应用还在源源不断地走出实验室。

三.人工智能的弊端

(一)关于人工智能超越人类智能的假说

人工智能只可以作为人类智能的补充,但是人工智能的发展速度远远超过人类智能的发展速度,即根据进化论来说人工智能的进化速度比人类智能进化得快许多。由于人工智能起步较低,故现在和人类智能有一定差距,但其表现出了在局部超越了人类智能的现状,让人有理由相信人工智能超越人类智能只是时间上的问题。

人工智能超越人类智能论据有:一是达尔文进化论;二是类比人类的创造性即由于人类智能的不断探索欲会把自己独有创造赋予人工智能,这会导致人工智能战胜人类智能;三是“量变质变定律”人工智能不断的在某些领域超越人类智能,最终将在质上战胜人类智能。

其代表人物有四川大学社科系教授王黔玲从世界观角度提出的“人工智能将超越人类智能”的论断。华东师范大学哲学系教授郦全民认为在好奇心的驱使下,在不前进就会落后的“象棋皇后”效应的作用下,人类不会停止对比自己先进的更高的智能系统的探索。而进化法则又不可违背,将使得进化之链朝着超越人类的方向发展。因此地球上出现超越人类的高智能物种是进化的必然。代维也大胆预测“人工智能将在不远的将来战胜人类智能,但会有自己的存在方式,不会对人类构成威胁”。约翰·麦卡锡——人工智能之父认为“没有理由相信我们不能写出一个能使电脑像人一样思考的公式。”斯蒂芬·霍金 说过“在我看来,如果非常复杂的化学分子可以在人体内活动并使人类产生智慧的话,那么太阳复杂的电子电路也可以使计算机以智能化的方式采取行动。”德国班贝克大学心理学教授德尔纳认为“有灵魂的机器是存在的。”

(二)人类退化的假说

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中

第5 / 6页

推荐最畅通的线路;帮助识别信用卡等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。

四.结语

现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。 参考文献:

【1】史忠植. 高级人工智能(第二版). 科学出版社, 2006.

【2】玛格丽特·博登,人工智能哲学,上海译文出版社2001-11-01

【3】 Russell S., Peter Norvig,人工智能——一种现代方法(第二版)北京:人民邮电出版社, 2004 【4】史忠植. 智能主体及其应用.科学出版社,2000.

【5】 叶世伟, 史忠植 译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.

【6】蔡自兴,徐光佑,人工智能及其应用(第三版). 北京:清华大学出版社,2003年

【7】卢格尔,人工智能,机械工业出版社,2009-03-01

【8】CarolynAbate,人工智能改变生活,南方都市报,2012-09-30

【9】门泽尔,机器人的未来,上海辞书出版社,2002年

【10】钱学森,关于思维科学,上海人民出版社,1986

【11】钱铁云,人工智能是否可以超越人类智能?,科学社会与辩证法,2004

【12】代维,人工智能VS人类智能。20年后谁称雄,青年探索,2002

【13】姜长阳,人类正在退化,自然辨证法研究,2000年11期

只要谈及科技对人类的意义,有一个词语出语率颇高――“双刃剑”。即科技在给人们带来便捷、舒适和高质量生活的同时,也不可避免地会带来诸多弊端。在这种种弊端中,有看得见的,如环境污染;而更多的则是看不见的,如科技对文化的冲击。

有关科技的利与弊,近年来舆论界一直争论不休,莫衷一是。这一现象也直接反映在了高考语文试题中――连续几年的高考作文都涉及到这一话题,且有逐年增多的趋势。

据统计,在近几年高考作文中讨论最多的话题是“科技对文化(尤其是传统文化)的冲击”――即科技会不会对文化构成冲击?又会构成什么样的冲击?如2012年高考湖北卷作文题就提供了这样一则材料:

语文课堂上,老师在讲到杜甫《春望》“烽火连三月,家书抵万金”时,不无感慨地说:“可惜啊,我们现在已经很难见到家书了,书信这种形式恐怕要消失了。”学生甲:“没有啊,我上大学的表哥就经常给我写信,我觉得这种交流方式是不可替代的。”学生乙:“信息技术这么发达,打电话、发短信、写邮件更便捷,谁还用笔写信啊?”学生丙:“即使不用笔写信,也不能说明书信消失了,只不过是书信的形式变了。”学生丁:“要是这样说的话,改变的又何止是书信?社会发展了,科技进步了,很多东西都在悄然改变。”……

诚然,电话、短信、邮件在带给我们方便、快捷的同时,也消减了我们生活中的诗意。可是我们不妨思量一下,“云中谁寄锦书来”或许能带给我们诗意和遐想,可在“烽火连三月”的情况下,恐怕还是一条快捷的短信更让人放心。因此,我们要充分考虑到两者的得失,对如何处理好科技与文化的关系作出深刻的反思:是为了保存传统的美好而抱残守缺,还是为了方便快捷就抛弃传统?是在传统的树干上嫁接上时尚的枝条,还是在崭新的文化中打上旧补丁?笔者想:应该思考这类问题的绝不仅仅是我们的中学生,更有我们的决策者、我们的专家,甚至我们每一个普普通通的公民。反思永远强于抱怨,只有总结反思,才能使我们的下一步走得更好,走得更稳健,从而一步步接近我们理想中的伊甸园。

与此一脉相承的是2014年高考广东卷的作文题。所不同的是广东卷的材料放弃了书信与手机,取而代之的是黑白胶片与数码技术:

黑白胶片的时代,照片很少,只记录下人生的几个瞬间,在家人一次次的翻看中,它能唤起许多永不褪色的记忆。但照片渐渐泛黄,日益模糊。数码技术的时代,照片很多,记录着日常生活的点点滴滴,可以随时上传到网络与人分享。它从不泛黄,永不模糊,但在快速浏览与频繁更新中,值得珍惜的“点滴”也可能被稀释。

黑白胶片与数码技术就像尺素与短信、马车与高铁、书法与“键谈”、远足与网游、品茗与快餐,品评它们又岂是一个“利”字或“弊”字可以概括的?这当中,掺和有科技的因素,有文化的因素,有传统的因素,有心理习惯的因素……其实,人们最希望拥有的是现代科技的便捷加上传统文化的醇香,而这恰如鱼与熊掌,兼而得之实在不易。

高考作文涉及到的又一方面的话题是“科技对传统审美观念的冲击”。如2014年高考辽宁卷作文题提供了这样一则材料:

夜晚,祖孙二人倚窗远眺。“瞧万家灯火,大街通明,霓虹闪耀,真美!”男孩说,“要是没有电,没有现代科技,没有高楼林立,上哪儿看去?”老人颔首,又沉思摇头:“可惜满天繁星没有了。沧海桑田,转眼之间啊!当年那些祖先,山洞边点燃篝火,看月亮初升,星汉灿烂,他们欣赏的也许才是美景。”

读罢这则材料,笔者觉得:如果“当年那些祖先”能够“穿越”回来,即便他们依然认为篝火、明月、星汉是大自然中最美丽的景观,但他们还乐意栖居在山洞里燃着篝火欣赏那满天繁星吗?现代科技早已潜入到了人们的灵魂深处,纵然我们会偶尔生出几许怀旧的情愫,那不过是我们在内心珍存的原始记忆陨落时的惆怅,纵然我们心向往之,也未必愿意返璞归真。在现代社会中,像陶渊明、梭罗这些真正倾心于自然的隐者已经很难寻觅了。

高考作文所涉及的有关科技的材料,还触及到了近乎于“科幻”的话题。如2014年高考天津卷的作文材料,讲的是一则带有几分科幻色彩的故事,揭示了现代科技给人带来的“荒诞感”:

也许将来有这么一天,我们发明了一种智慧芯片,有了它,任何人都能古今中外无一不知,天文地理无所不晓。比如说,你在心里默念一声“物理”,人类有史以来有关物理的一切公式、定律便纷纷浮现出来,比老师讲的还多,比书本印的还全。你逛秦淮河时,脱口一句“旧时王谢堂前燕”,旁边卖雪糕的老大娘就接茬说“飞入寻常百姓家”,还慈祥地告诉你,这首诗的作者是刘禹锡,这时一个金发碧眼的外国小女孩抢着说,诗名《乌衣巷》,出自《全唐诗》365卷4117页……这将是怎样的情形啊!

不知道是否真的有那么一天,不知道这样的情形是否真的会出现,也不知道这样的情形出现究竟是喜是悲。

平心而论,科技带给我们的永远是利大于弊,否则我们绝不会视之为“第一生产力”,也不会有那么多仁人志士为科技献身,为科技发展不遗余力了。我们现在要探究的是在发展科技的同时怎样将它的负面效应降到最低,乃至使之成为促进文化传承与发展的助力;而不是因噎废食,视科技为文化的宿敌,甚至视若洪水猛兽――而承担这一重任的主力,将会是今天走上考场的一代青年。从这一意义上看,让他们先写这样的文章真的很有价值。想必“科技”这一话题在随后的高考作文中仍会有一定的地位。

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/ W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸

近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。

人工智能市场格局

人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 万亿美元。

多角度人工智能产业比较

战略部署:大国角逐,布局各有侧重

全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。

美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。

伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。

日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。

基础层面:技术薄弱,芯片之路任重道远

基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。

“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。

依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。

GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。

FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。

ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。

总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。

技术层面:乘胜追击,国内头部企业各领风骚

技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。

具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。

在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。

作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。

计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 ,其中商汤市场份额 排名第一。

应用层面:群雄逐鹿,格局未定

应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到 亿元,约是技术层的 倍,基础层的 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。

中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、操作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。

整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。

透析人工智能发展潜力

基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。

从智能产业基础的角度

产业化程度:增长强劲,产业规模仅次美国

中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。

技术创新能力:专利多而不优,海外布局仍有欠缺

专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。

从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。

中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 的专利仍能得到有效保留。

人才储备:供需失衡,顶尖人才缺口大

人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 倍,基础层人才数是中国的 倍。

我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。

人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。

从学术生态的角度

技术创新能力:科研产出表现强劲,产学融合尚待加强

科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的增长至2018年的, 。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。

我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 ;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 ,较 2010 年增长 ,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。

从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 倍,欧盟的 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 ,与以色列()、美国()、日本()差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。

中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。

从创新环境的角度

研发投入:中美研发投入差距收窄

中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 ,同期美国 CAGR 仅 。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 ,低于日本和美国 、 个百分点。

资本投入:资金多而项目缺,资本投向侧重终端市场

中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。

相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。

基于信息熵的 TOPSIS 法:综合指标评估

数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。

展望

转自丨 信息化协同创新专委会

人工智能报告论文

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

——综述篇——

第1章: 人工智能行业综述及数据来源说明

人工智能行业界定

人工智能的界定

人工智能相似概念辨析

《国民经济行业分类与代码》中人工智能行业归属

人工智能行业分类

人工智能行业监管规范体系

人工智能专业术语说明

人工智能行业监管体系介绍

1、 中国人工智能行业主管部门

2、 中国人工智能行业自律组织

人工智能行业标准体系建设现状(国家/地方/行业/团体/企业标准)

1、 中国人工智能标准体系建设

2、 中国人工智能现行标准汇总

3、 中国人工智能即将实施标准

4、 中国人工智能重点标准解读

本报告研究范围界定说明

本报告数据来源及统计标准说明

本报告权威数据来源

本报告研究方法及统计标准说明

——现状篇——

第2章: 全球人工智能行业市场发展现状及趋势

全球人工智能行业发展现状分析

全球人工智能发展所处阶段

全球人工智能行业发展概况

全球人工智能企业增长情况

全球人工智能行业布局分析

1、 企业布局情况

2、 AI领域高层次人才分布情况

全球人工智能行业竞争分析

1、 区域竞争情况

2、 企业竞争

全球人工智能行业投资现状分析

全球人工智能整体投资规模分析

全球人工智能融资轮次情况分析

全球人工智能企业融资情况分析

欧洲人工智能行业发展现状分析

欧洲人工智能市场发展现状

欧洲人工智能市场投资现状

欧洲人工智能市场应用领域

欧盟人脑工程项目(HBP)

1、 项目概况

2、 项目内容

3、 经验和启示

美国人工智能行业发展现状分析

美国人工智能市场发展现状

美国人工智能市场投资现状

美国人工智能企业数量分析

美国人工智能市场应用领域

美国大脑研究计划(BRAIN)

日本人工智能行业发展现状分析

日本人工智能市场发展现状

日本人工智能市场投资现状

日本人工智能市场企业数量分析

日本人工智能市场应用领域

日本大脑研究计划(MINDS)

全球人工智能行业发展趋势分析

全球人工智能行业整体发展趋势

全球人工智能行业技术发展趋势

第3章: 中国人工智能行业市场发展现状分析

中国人工智能行业所处发展阶段分析

中国人工智能行业发展现状分析

中国人工智能行业市场规模

中国人工智能企业层次和技术分析

人工智能热点细分领域分析

人工智能行业人才培养体系分析

1、 人工智能人才供需情况

2、 人工智能人才培养情况

中国人工智能行业生态格局分析

人工智能行业生态格局基本架构

人工智能行业基础资源支持层

1、 运算平台

2、 数据工厂

人工智能行业技术实现路径层

人工智能行业应用实现路径层

人工智能行业未来生态格局展望

1、 基础资源支持层实现路径

2、 AI技术层的实现路径

第4章: 中国人工智能行业市场竞争状况及融资并购分析

中国人工智能行业市场竞争布局状况

中国人工智能行业竞争者入场进程

中国人工智能行业竞争者省市分布热力图

中国人工智能行业竞争者战略布局状况

中国人工智能行业市场竞争格局分析

中国人工智能行业企业竞争集群分布

中国人工智能行业企业竞争格局分析

中国人工智能行业市场集中度分析

中国人工智能行业波特五力模型分析

中国人工智能行业供应商的议价能力

中国人工智能行业消费者的议价能力

中国人工智能行业新进入者威胁

中国人工智能行业替代品威胁

中国人工智能行业现有企业竞争

中国人工智能行业竞争状态总结

第5章: 中国人工智能行业投资现状及趋势分析

中国人工智能投融资规模分析

中国人工智能投融资规模

中国人工智能投融资轮次分布

中国人工智能投资企业分析

人工智能领先企业投资情况

人工智能行业独角兽企业

中国人工智能细分领域现状

人工智能细分领域投资结构

计算机视觉领域投资分析

语音识别领域投资分析

自然语言处理领域投资分析

机器学习领域投资分析

中国人工智能投资区域分布

中国人工智能行业投资趋势分析

第6章: 中国人工智能产业链全景梳理及配套产业发展分析

中国人工智能产业结构属性(产业链)分析

中国人工智能产业链结构梳理

中国人工智能产业链生态图谱

人工智能基础层分析

人工智能基础层功能分析

AI芯片市场分析

1、 AI芯片定义及分类

2、 AI芯片发展阶段

3、 AI芯片市场规模

4、 AI芯片竞争格局

云计算市场分析

1、 云计算行业发展历程

2、 云计算行业市场规模

3、 云计算行业竞争格局

中国人工智能技术层分析

人工智能技术层功能分析

人工智能技术层代表企业

中国人工智能应用层分析

第7章: 中国人工智能行业细分市场发展状况

中国人工智能行业细分市场结构

中国人工智能市场分析:机器学习

机器学习市场概述

机器学习市场发展现状

机器学习发展趋势前景

中国人工智能市场分析:机器视觉

机器视觉市场概述

机器视觉市场发展现状

机器视觉发展趋势前景

中国人工智能市场分析:语音识别

语音识别市场概述

语音识别市场发展现状

语音识别发展趋势前景

中国人工智能市场分析:自然语言处理

自然语言处理市场概述

自然语言处理市场发展现状

自然语言处理发展趋势前景

中国人工智能行业细分市场战略地位分析

第8章: 中国人工智能行业细分应用市场需求状况

中国人工智能行业下游应用场景/行业领域分布

中国人工智能应用场景分布(有什么用?能解决哪些问题?)

1、 应用场景一

2、 应用场景二

3、 应用场景三

中国人工智能应用行业领域分布及应用概况(主要应用于哪些行业?)

1、 人工智能应用行业领域分布

2、 人工智能各应用领域市场渗透概况

中国智慧安防领域人工智能需求潜力分析

中国智慧安防发展状况

1、 智慧安防发展现状

2、 智慧安防趋势前景

中国智慧安防领域人工智能需求特征及产品类型

中国智慧安防领域人工智能需求现状分析

中国智慧安防领域人工智能需求趋势前景

中国智慧金融领域人工智能需求潜力分析

中国智慧金融发展状况

1、 智慧金融发展现状

2、 智慧金融趋势前景

中国智慧金融领域人工智能需求特征及产品类型

中国智慧金融领域人工智能需求现状分析

中国智慧金融领域人工智能需求趋势前景

中国智慧医疗领域人工智能需求潜力分析

中国智慧医疗发展状况

1、 智慧医疗发展现状

2、 智慧医疗趋势前景

中国智慧医疗领域人工智能需求特征及产品类型

中国智慧医疗领域人工智能需求现状分析

中国智慧医疗领域人工智能需求趋势前景

中国智能机器人领域人工智能需求潜力分析

中国智能机器人发展状况

1、 智能机器人发展现状

2、 智能机器人趋势前景

中国智能机器人领域人工智能需求特征及产品类型

中国智能机器人领域人工智能需求现状分析

中国智能机器人领域人工智能需求趋势前景

中国智能家居领域人工智能需求潜力分析

中国智能家居发展状况

1、 智能家居发展现状

2、 智能家居趋势前景

中国智能家居领域人工智能需求特征及产品类型

中国智能家居领域人工智能需求现状分析

中国智能家居领域人工智能需求趋势前景

中国人工智能行业细分应用市场战略地位分析

第9章: 全球及中国人工智能行业代表性企业布局案例研究

全球及中国人工智能代表性企业布局梳理及对比

全球人工智能代表性企业布局案例分析(可定制)

Google(谷歌)

1、 人工智能发展战略

2、 企业运营状况

3、 企业人工智能业务布局状况

4、 企业人工智能业务销售网络布局

5、 企业人工智能业务市场地位及在华布局

Microsoft(微软)

1、 人工智能发展战略

2、 企业运营状况

3、 企业人工智能业务布局状况

4、 企业人工智能业务销售网络布局

5、 企业人工智能业务市场地位及在华布局

中国人工智能代表性企业布局案例分析(可定制)

百度

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

华为

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

阿里巴巴

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

科大讯飞

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

寒武纪

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

格灵深瞳

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

旷视科技

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

优必选

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

思必驰

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

博联智能

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

——展望篇——

第10章: 中国人工智能行业发展环境洞察

中国人工智能行业经济(Economy)环境分析

中国宏观经济发展现状

中国宏观经济发展展望

中国人工智能行业发展与宏观经济相关性分析

中国人工智能行业社会(Society)环境分析

中国人工智能行业社会环境分析

社会环境对人工智能行业发展的影响总结

中国人工智能行业政策(Policy)环境分析

国家层面人工智能行业政策规划汇总及解读(指导类/支持类/限制类)

1、 国家层面人工智能行业政策汇总及解读

2、 国家层面人工智能行业规划汇总及解读

重点省/市人工智能行业政策规划汇总及解读(指导类/支持类/限制类)

1、 重点省/市人工智能行业政策规划汇总

2、 重点省/市人工智能行业发展目标解读

国家重点规划/政策对人工智能行业发展的影响

政策环境对人工智能行业发展的影响总结

人工智能行业技术环境分析

人工智能技术发展现状

1、 人工智能重点技术发展状态

2、 人工智能重大技术成果

人工智能相关专利情况分析

技术环境对行业发展的影响分析

中国人工智能行业SWOT分析(优势/劣势/机会/威胁)

第11章: 中国人工智能行业市场前景预测及发展趋势预判

中国人工智能行业发展潜力评估

中国人工智能行业未来关键增长点分析

中国人工智能行业发展前景预测(未来5年数据预测)

中国人工智能行业发展趋势预判(疫情影响等)

第12章: 中国人工智能行业投资战略规划策略及建议

中国人工智能行业进入与退出壁垒

人工智能行业进入壁垒分析

人工智能行业退出壁垒分析

中国人工智能行业投资风险预警

中国人工智能行业投资机会分析

人工智能行业产业链薄弱环节投资机会

人工智能行业细分领域投资机会

人工智能行业区域市场投资机会

人工智能产业空白点投资机会

中国人工智能行业投资价值评估

中国人工智能行业投资策略与建议

中国人工智能行业可持续发展建议

图表目录

图表1:人工智能的界定

图表2:人工智能相关概念辨析

图表3:《国民经济行业分类与代码》中人工智能行业归属

图表4:人工智能的分类

图表5:人工智能专业术语说明

图表6:中国人工智能行业监管体系

图表7:中国人工智能行业主管部门

图表8:中国人工智能行业自律组织

图表9:中国人工智能标准体系建设

图表10:中国人工智能现行标准汇总

图表11:中国人工智能即将实施标准

图表12:中国人工智能重点标准解读

图表13:本报告研究范围界定

图表14:本报告权威数据资料来源汇总

图表15:本报告的主要研究方法及统计标准说明

图表16:人工智能行业发展历程

图表17:2019-2021年全球人工智能市场规模(单位:亿美元)

图表18:2019-2021年全球人工智能独角兽数量情况(单位:家)

图表19:全球科技巨头人工智能布局情况

图表20:截至2022年全球人工智能领域高层次学者数量前十国家(单位:人次)

图表21:2019-2021年全球人工智能独角兽企业数量前三国家(单位:家)

图表22:2030年全球各地区人工智能产值占GDP比重预测分析(单位:%)

图表23:2022年全球人工智能企业TOP20(单位:家)

图表24:全球人工智能细分领域企业竞争格局分析

图表25:2013-2022年全球人工智能投融资情况(单位:亿元,起)

图表26:2022年全球人工智能融资轮次分布情况(按事件数)(单位:起,%)

图表27:2022年全球人工智能企业融资事件汇总

图表28:截止到2022年11月欧洲人工智能重点政策汇总

图表29:2014-2022年欧洲人工智能市场投资情况(单位:亿元,起)

图表30:截至2022年11月欧洲人工智能部分投融资情况

图表31:人脑计划阶段分析

图表32:人脑计划搭建的6个信息平台介绍

图表33:欧盟人脑计划启示

图表34:截止2022年11月美国人工智能重点政策汇总

图表35:2014-2022年美国人工智能市场投资情况(单位:亿元,起)

图表36:截至2022年11月美国人工智能部分投融资情况

图表37:2022年全球人工智能企业数量分布情况(单位:%)

图表38:美国最成功的10个人工智能应用案例

图表39:2014-2025年美国大脑研究计划投资预算(单位:百万美元)

图表40:日本人工智能工程表内容

图表41:截至2022年日本人工智能部分投融资情况

图表42:日本十大AI初创公司

图表43:日本人工智能应用情况

图表44:日本Brain/MINDS计划研究机构与内容

图表45:全球人工智能行业整体发展趋势

图表46:全球人工智能行业技术发展趋势

图表47:中国人工智能发展阶段

图表48:2018-2022年中国人工智能产业规模情况(单位:亿元)

图表49:2022年中国人工智能企业层次分布(单位:%)

图表50:2022年中国人工智能企业核心技术分布(单位:%)

图表51:2011-2022年十大A1热点

图表52:人工智能各技术方向岗位人才供需比

图表53:人工智能各职能岗位人才供需比

图表54:全国首批建设“人工智能”(080717T)本科新专业高校名单

图表55:2018-2022年中国新增开设“人工智能”本科专业学校数量(单位:所)

图表56:中国龙头企业与高校合作或共建人工智能学院汇总

图表57:人工智能产业生态格局的三层基本架构

图表58:人工智能技术层的运行机制

图表59:人工智能应用实现路径层案例分析

图表60:中国人工智能行业竞争者入场进程

图表61:中国人工智能行业竞争者区域分布热力图

图表62:中国人工智能行业竞争者发展战略布局状况

图表63:中国人工智能行业企业战略集群状况

图表64:中国人工智能行业企业竞争格局分析

图表65:中国人工智能行业国产替代布局状况

图表66:中国人工智能行业市场集中度分析

图表67:中国人工智能行业供应商的议价能力

图表68:中国人工智能行业消费者的议价能力

图表69:中国人工智能行业新进入者威胁

图表70:中国人工智能行业替代品威胁

图表71:中国人工智能行业现有企业竞争

图表72:中国人工智能行业竞争状态总结

图表73:2013-2022年中国人工智能行业投融资情况(单位:亿元,起)

图表74:2022年中国人工智能融资轮次分布情况(按事件数)(单位:起,%)

图表75:人工智能领先企业投资情况

图表76:2022年中国人工智能行业独角兽排行榜(单位:亿元)

图表77:中国人工智能行业主要投资细分领域情况

图表78:2016-2022年中国计算机视觉领域投融资情况(单位:亿元,起)

图表79:截至2022年11月中国计算机视觉领域部分投融资情况

图表80:2016-2022年中国语音识别领域投融资情况(单位:亿元,起)

图表81:截至2022年11月中国语音识别领域部分投融资情况

图表82:2016-2022年中国自然语言处理领域投融资情况(单位:亿元,起)

图表83:截至2022年11月中国自然语言处理领域部分投融资情况

图表84:2016-2022年中国机器学习领域投融资情况(单位:亿元,起)

图表85:截至2022年11月中国机器学习领域部分投融资情况

图表86:2022年中国人工智能行业投融资事件数量地区分布情况(单位:%)

图表87:中国人工智能产业链结构

图表88:中国人工智能产业链生态图谱

图表89:人工智能芯片分类

图表90:我国人工智能芯片行业所处周期

图表91:2018-2023年中国人工智能芯片行业规模(亿元)

图表92:全球人工智能芯片厂商竞争层次情况

图表93:全球主要AI芯片类型及企业

图表94:2022年中国人工智能芯片企业TOP10

图表95:中国云计算发展阶段

图表96:2016-2022年中国云计算市场规模增长情况(单位:亿元,%)

图表97:中国云计算市场竞争梯队

图表98:2022年中国云计算企业百强名单

图表99:人工智能行业技术层概况

图表100:中国人工智能行业产业链技术层代表性企业

图表101:中国人工智能行业细分市场结构

图表102:中国机器学习市场发展现状

图表103:中国机器学习发展趋势前景

图表104:中国机器视觉市场发展现状

图表105:中国机器视觉发展趋势前景

图表106:中国语音识别市场发展现状

图表107:中国语音识别发展趋势前景

图表108:中国自然语言处理市场发展现状

图表109:中国自然语言处理发展趋势前景

图表110:中国人工智能行业细分市场战略地位分析

图表111:中国人工智能应用场景分布

图表112:中国人工智能应用行业领域分布及应用概况

图表113:中国智慧安防发展现状

图表114:中国智慧安防趋势前景

图表115:中国智慧安防领域人工智能需求特征及产品类型

图表116:中国智慧安防领域人工智能需求现状分析

图表117:中国智慧安防领域人工智能需求趋势前景

图表118:中国智慧金融发展现状

图表119:中国智慧金融趋势前景

图表120:中国智慧金融领域人工智能需求特征及产品类型

略......完整报告请咨询客服

自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。以下是我整理分享的人工智能发展的结课论文的相关资料,欢迎阅读!

浅谈人工智能技术的发展

摘要:自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。本文从人工智能的概念开始,对人工智能的发展进行讲述,并从哲学的角度对人工智能能否超过人的智能这个问题进行了分析。

关键词:人工智能 发展 智能

1、人工智能的概念

人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的 思维方式 和 方法 产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。

2、人工智能的发展

对于人工智能的研究一共可以分为五个阶段。

第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、 跳棋 程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。

第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。

第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。

第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。

第五个阶段是20世纪90年代后。 网络技术 的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3、人工智能可否超过人的智能

那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:

首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了 国际象棋 世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。

第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?

第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。

第四,随着科学技术的发展,人工智能不单需要 逻辑思维 与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。

4、结束语

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和 教育 等带来更大的影响。

下一页分享更优秀的<<<人工智能发展的结课论文

美智库对人工智能防务的研究论文

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/ W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

人工智能与机器人期刊上的专业文献不知道有没有你这类课题的研究,你可以通过关键词去检索下相关文献参考参考哈

给个邮箱,我发给你

史蒂芬·霍金最近发出警告:“一旦人工智能发展到完整的程度,人类的终结也就到了。”伊隆·马斯克则担心人工智能的研发有可能是人类存亡的最大威胁。连比尔·盖茨也敦促大家要小心。人一手创造的怪物,会不会反过来奴役人?这种畏惧很早就有了。但就在微软、谷歌竞相投入巨资研发人工智能之时,名气响当当的宇宙学家、硅谷创业家和微软创始人却分别说出这样的忧虑,这份忧虑就有不同的份量——要注意,他们三位可不是反对或排斥工业化、新技术的人。今天,一个人的口袋里装着的可能就是一部超级计算机,战场上杀出来的可能是机器人,如果把那份忧虑简单地当是异想天开,也是有些自欺欺人。问题在于,如何避免过犹不及?首先,我们要搞清楚,计算机现在已经具备了哪些能力,而在将来又会增加哪些能力。凭借处理能力的增强以及数据资料的增多,人工智能正处于快速发展的阶段。今天,深度学习(deep learning)系统能模仿人脑的神经元层,处理海量的数据,自己教自己如何去执行一些任务,譬如识别和翻译,做得几乎跟人一样好。结果,一些一直需要人脑参与的事情,大到解读图象,小到玩街机经典《青蛙过河》,现在也属于电脑程序能做的范围里了。Facebook在2014年发布了名为DeepFace的算法。这个算法可以识别相片里的人脸,准确率达到97%。但必须注意的是,这些都是应用于某一具体领域狭隘的能力。目前的人工智能是通过“残暴”的数据处理能力,来达到与人脑智力的“形似”,但至于如何模仿人的自主性、喜恶和欲求,成果则很少。电脑还做不到随心所欲地思辨、判断以及选择,而这些都是人类智力的特征。但与此同时,人工智能已经可以给人类生活带来巨大的改变。人工智能现在已经能辅助人类,为人做的事带来助益。国际象棋便是一例。现在电脑可以下赢任何一个人。不过,当今世界上最强的棋手并不是电脑,而是人与算法一起合力的团队。这样的团队组合将延伸至人类其它的活动:医生有了人工智能的支持,从医疗图像中查出癌症的能力将大大增强;有了智能手机上装的语音识别软件,发展中国家读写能力欠佳的人便能更好地使用互联网;做学术研究时,数字助理可以建议你哪条假设更有机会成立;有了图像分类算法,可佩戴设备对着肉眼看到的真实世界“加上”有用的标注。但也不是每个方面的效益都是正面的。譬如,无论是对民主国家还是专制国家而言,人工智能都是监管人民的利器。有了人工智能,政府便可以监听数以亿计的对话,在人山人海中根据声音或样貌特征轻而易举地找出它要找的人。这就对自由造成了严峻的威胁。尽管整个社会可以获得很多益处,但很多人会因为人工智能而处于劣势。在计算机诞生以前,给老板计算数字的苦活常是由妇女来做,后来这些职位就让晶体管占据了。同样,人工智能将来很有可能会让整个白领阶层捡包袱走人。虽说教育和培训有助打工者适应这个变化,且人工智能带来的新财富会进入新的行业从而产生新的工种,但打工者依然难免经历颠簸。但霍金、马斯克、盖茨他们担心的并不是监控和颠簸的问题。他们担心的是近期好莱坞电影里的场景:自动化机器拥有了比人类更灵敏的认知能力,拥有了与肉身的人冲突的利益观。这样的人工智能产品离我们还遥远得很,甚至可能永远也造不出来。无论是心理学家、神经学家、社会学家还是哲学家,在对着人脑东敲敲西敲敲地研究了一个世纪后,依然没搞清楚人的思维是怎么回事,更不要说仿造出一颗人脑。假如机器拥有自己的利益观和自主能力,即使这机器的智能不完整,只能用于某个用途,也绝非代表我们就可以放心使用:无人车跑起来比人开还好,这听起来挺赞的,但要是车有自己想去的地方,听起来可就不太妙。虽然我们离霍金所说的“完整的”人工智能还很远,但现在就开始思考如何应对到时的情况,也是谨慎之举。“超人”又“自治”的东西,人类不早就创造过了吗?官僚体制、市场、军队,这些都是,这些都帮助人类做到没有辅助、组织时做不到的事情;这些都能自主运作,而且如果不加法规管理,都会造成巨大的祸害。这些相似的事物或许可以令人工智能的持疑派放心一些。这些事物也喻示了人类社会如何可以安全地研发人工智能。军队需要文官管理,市场需要监管,官僚需要问责、透明;同理,人工智能系统也必须接受监督。由于系统的设计者无法预见所有的情形,还必须要有危急时刻拉闸中断的设置。加入这些限制并不会妨碍进步。大到核弹,小到交通规则,这些都证明人类曾成功运用技术和法律手段去管理威力强大的创新。

人工智能美容店趋势研究论文

一些活动什么的,很容易漏记。比如说艾美惠

互联网发展,美容院转型是必然趋势,美容院想转型,可以从这四点考虑:1、客户管理上,升级会员管理系统,便捷管理付费会员,同时也便于跟踪新用户;2、客户预约服务上,从之前的线下登记预约升级为在线预约,令容美业专用小程序都有这些功能,同时美容院的服务项目也一目了然3、做活动方面,之前做活动都是门店贴广告、线下发传单,现在可以升级为线上策划拼团、秒杀活动,参加方便还利于传播4、还有一些美容院服务,测肤、体质等都可以升级人工智能测肤美容院向互联网转型升级,也不是一蹴而就的,一步步来完善是最合适的纯手打,望采纳

行业主要相关上市公司:奥园美谷(000615)、爱美客(300896)、昊海生科(688366)、华熙生物(688363)、华东医药(000963)等。

本文核心数据:中国医美用户规模、医美行业规模、轻医美占比、玻尿酸市场规模、肉毒素市场规模

中国医美用户规模突破1800万人

在颜值经济蔚然成风的当下,医美在年轻人中的渗透率不断提升。2021年中国医美用户人数超过1800万人,是2017年的4倍多,较2020年增长。

中国医美市场规模持续增长

2018-2021年中国医疗美容市场规模持续增长,2021年约为2274亿元,较2020年增长。据更美APP发布的《更美2021医美行业白皮书》预测,2022年中国医美市场规模仍将维持高速增长,增速超过16%,市场规模或将达到2643亿元。

轻医美占领半壁江山

相较于需要手术的医美方式,非手术的轻医美则更加的安全、灵活,且恢复期更短,成为越来越多爱美者的选择。根据新氧《2021医美行业白皮书》数据,2021年医美项目中,轻医美市场规模占比为,与手术类项目差距不大。

轻医美推动玻尿酸行业规模持续增长

轻医美的兴起拉动了玻尿酸等行业的发展,2020年行业规模已经接近50亿元,根据弗若斯特沙利文的预测,2022年玻尿酸行业市场规模将接近80亿元,较2021年增长近27%。

肉毒素市场规模超60亿元

除了注射玻尿酸,注射肉毒素也是轻医美的常见项目。2020年,中国肉毒素市场规模接近40亿元,2022年或将超过60亿元,维持较高增速。

综上所述,中国医美市场高速发展,医美用户规模超1800万人,2021年行业规模达到2274亿元,轻医美项目占据半壁江山。在轻医美需求拉动下,玻尿酸和肉毒素行业发展迅速,2022年市场规模分别有望达到80亿元和60亿元。

以上数据参考前瞻产业研究院《中国医疗美容行业市场需求预测与投资战略规划分析报告》。

行业主要上市公司:爱美客(300896)、昊海生科(688366)、华熙生物(688363)、奥园美谷(000615)、华东医药(000963)、朗姿股份(002612)、华韩整形(430335)等

定义

医疗美容(Medical Cosmetology)是指运用药物、手术、医疗器械以及其他具有创伤性或者不可逆性的医学技术方法对人的容貌和人体各部位形态进行的修复与再塑的美容方式。最早起源于古埃及时期,是使容貌美丽的一门艺术。

医疗美容科为一级诊疗科目,下设四个不同类别的二级诊疗科目,包括美容外科、美容牙科、美容皮肤科和美容中医科,其中美容外科中的项目可分为四个等级,四级高等项目只能在三级整形外科医院、设有医疗美容科或整形外科的三级综合医院开展。根据介入手段,医疗美容可分为手术类与非手术类。手术类项目从根本上改变或改善面部及身体部位的外观,包括眼部手术、鼻部手术、胸部整形和吸脂瘦身等;非手术类项目又称轻医美项目,包括注射项目与皮肤护理等。

行业前景及趋势预测

——发展趋势:行业发展趋于标准化、规范化

未来,医疗美容行业格局将逐渐由分散走向集中,消费者也将向头部机构靠拢,头部医美机构将有更多发展机会,市场集中度得到提高;从产品市场看,轻医美项目因其安全、无痛等特点,将受到更多消费者青睐;行业规范方面,中国对医美行业的监管规范不断加强,标准和政策出台,医美市场发展将更加规范化和标准化。

——市场规模预测:至2028年市场规模预期将超过5000亿元

在需求侧,随着国民可支配收入的稳步提高,在消费升级、数字营销的趋势下,中国消费者对医美的接受程度逐渐提高,医美行业需求加速释放;在供给侧,商业化医疗美容产品不断推陈出新,医美行业提供的产品和服务内容不断得到丰富。中国医美行业高速发展,与日本、美国和韩国相比,中国医美项目渗透率较低,未来增长空间广阔。预计到2028年,我国医疗美容行业市场规模将达到5071亿元。

更多本行业研究分析详见前瞻产业研究院《中国医疗美容行业市场需求预测与投资战略规划分析报告》。

人工智能社会领域的研究报告论文

人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!

摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。

关键词:人类智能,人工智能,认知,心理学

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年

5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年

下一页分享更优秀的<<<人工智能的期末论文

人工智能是近来研究热点。分别在人工智能界别、角色、赋予人以及制度等方面重点探讨其可能的情感约束作用,以期达到人工智能技术在很好的发展的同时,不至于因为“情感泛滥”而引发一些严重地后果的影响。 以下是我整理的人工智能对生活的影响论文的相关资料,欢迎阅读!

摘 要:人工智能是近来研究热点。分别在人工智能界别、角色、赋予人以及制度等方面重点探讨其可能的情感约束作用,以期达到人工智能技术在很好的发展的同时,不至于因为“情感泛滥”而引发一些严重地后果的目的。

关键词:人工智能 情感 约束

中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03

1引言

人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。

在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。

本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。

2人工情感发展情况概述

随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。

目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。

尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。

3对人工智能的情感约束

正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。

根据级别赋予情感

可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。

根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。 根据角色赋予情感

同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。

举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。

对赋予人进行约束

对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。

纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。

另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。

因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。

制定相应的规章制度来管理人工智能情感的发展

目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。

那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。

4结束语

人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。

下一页分享更优秀的>>>人工智能对生活的影响论文

人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!

人工智能技术推动我国ICT产业发展模式探讨

【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。

【关键词】人工智能;政策引导;发展模式

0 引言

工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。

1 国内外人工智能技术在ICT产业的发展现状

从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。

搜索引擎方向的发展

信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。

从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。

人脑科学助推人工智能技术发展

人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。

谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。

智能终端和可穿戴设备引起产业变革

移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。

我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。

物联网部分领域发展

全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。

物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波()RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。

2 我国ICT产业的政策引导

目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。

国家政策方面的引导

世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。

加强政策顶层设计

成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。 加强自主创新能力

将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。

深化科技体制改革

将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。

知识产权方面的引导

专利方面

国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。

著作权方面

目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长,云计算软件著作权共3017件,同比增长,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。

3 ICT相关企业实现方式探讨

经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。

政、学、研、产、用全面推进

政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。

加强合作、推进新技术的产业化与商用

通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。

全力抢占大数据

我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。

重点发展云计算

2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。

4 小结

发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。

下一页分享更优秀的>>>科技人工智能论文

  • 索引序列
  • 美国人工智能行业研究报告论文
  • 人工智能报告论文
  • 美智库对人工智能防务的研究论文
  • 人工智能美容店趋势研究论文
  • 人工智能社会领域的研究报告论文
  • 返回顶部