首页 > 学术期刊知识库 > 温度温度计论文翻译文献

温度温度计论文翻译文献

发布时间:

温度温度计论文翻译文献

毕业设计(论文)报告 系 别: 电子与电气工程学院 专 业: 电子信息工程 班 号: 电子 0 8 5 学 生 姓 名: 傅浩 学 生 学 号: 080012212 计 论 ) 目 设 ( 文 题 : 基于AT89C51 的数字温度计的设计 指 导 教 师: 傅浩 设 计 地 点: 起 迄 日 期: 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)任务书 专业 电子信息工程 班级 电子 085 姓名 傅浩一、课题名称:基于 AT89C51 的数字温度计的设计二、主要技术指标: 1、测温范围-50℃-110℃ 2、精度误差小于 ℃ 3、LED 数码直读显示 4、可通过人机接口任意设定温度报警阀值三、工作内容和要求:(1)、要求数字温度计能对环境的温度进行实时监测。(2)、数字温度计要能够实时显示环境的温度信息,使用户及时了解到环境温度情况。(3)、数字温度计能够在程序跑飞的情况下自动重启,对环境温度进行正确的测量。 四、主要参考:1.李勋.刘源单片机实用教程M.北京航空航天大学出版社,20002.李朝青.单片机原理及接口技术(简明修订版)M.杭州:北京航空航天大学出版社,19983.李广弟.单片机基础M.北京:北京航空航天大学出版社,19944.阎石.数字电子技术基础(第三版)M.北京:高等教育出版社,19895.廖常初.现场总线概述J.电工技术,19996.王津.单片机原理与应用M.重庆大学出版社,2000 学 生(签名) 年 月 日 指 导 教师(签名) 年 月 日常州信息职业技术学院电子与电气工程学院 毕业设计论文 教研室主任(签名) 年 月 日 系 主 任(签名) 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)开题报告设计(论文)题目 基于 AT89C51 的数字温度计的设计一、选题的背景和意义: 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,它给人带来的方便也是不可否定的。要为现代人生活提供更好、更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本文将要设计的数字温度计具有性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制中,为人们生活水平的提高做出了巨大的贡献。二、课题研究的主要内容: 1.本文是以单片机 AT89C51 为核心进行设计。 2.通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D转换。 3.其输出温度采用数字显示,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。 4.此温度计属于多功能温度计可以用来测量环境温度,还可以设置上下报警温度,当温度不在设置范围内时,可以报警。 常州信息职业技术学院电子与电气工程学院 毕业设计论文三、主要研究(设计)方法论述: 1. 通过查阅书籍了解数字温度计的基本概念等信息,结合以前所学的电子专业知识认真研究课题。 2. 借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。 3. 通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成。 四、设计(论文)进度安排:时间(迄止日期) 工 作 内 容 ~ 查找资料,确定论文题目 ~ 根据选题方向查资料,确定基本框架和设计方法 ~ 完成开题报告 ~ 完成初稿并交指导老师审阅 ~ 根据指导老师意见修改论文 ~ 根据模板将论文排版 ~ 仔细阅读论文并作细节完善后上交 常州信息职业技术学院电子与电气工程学院 毕业设计论文五、指导教师意见: 指导教师签名: 年 月 日六、系部意见: 系主任签名: 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 目录摘要Abstract第 1 章 前言 ...................................................... 1第 2 章 数字温度计总体设计方案 .................................... 2 数字温度计设计方案.......................................... 2 总体设计框图................................................ 2第 3 章 数字温度计的硬件设计 ...................................... 3 主控制器 AT89C51 ............................................ 3 AT89C51 的特点及特征 .................................... 3 管脚功能说明............................................ 3 片内振荡器.............................................. 5 芯片擦除................................................ 5 单片机的主板电路............................................ 6 温度采集部分的设计.......................................... 6 温度传感器 DS18B20 ...................................... 6 DS18B20 温度传感器与单片机的接口电路 ................... 10 显示部分设计............................................... 10 74LS164 引脚功能及特征 ................................. 10 温度显示电路........................................... 11 报警系统电路............................................... 12第 4 章 数字温度计的软件设计 ..................................... 13 系统软件设计流程图......................................... 13 数字温度计部分程序清单..................................... 15第 5 章 结束语 ................................................... 20答谢辞参考文献 常州信息职业技术学院电子与电气工程学院 毕业设计论文 摘 要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。该设计控制器使用单片机 AT89C51,测温传感器使用 DS18B20,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示。本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 此外本文还介绍了数字温度计的硬件设计和软件设计,硬件设计主要包括主控制器、单片机的主板电路、温度采集部分电路、显示电路以及报警系统电路。 软件设计包括系统软件的流程图和数字温度计的部分程序清单。关键词:AT89C51 单片机,数字控制,测温传感器,多功能温度计 常州信息职业技术学院电子与电气工程学院 毕业设计论文 Abstract As peoples living standard rising SCM is undoubtedly one of theobjectives pursued by the people the convenience it brings is equallynegative and one digital thermometer is a typical example. The design presented in the traditional thermometer digitalthermometer and compared with a reading convenience a wide range oftemperature measurement temperature measurement accuracy the output ofthe temperature digital display. The design of the controller usingmicrocontroller AT89C51 temperature sensor uses DS18B20 with threecommon anode LED digital tube to serial transmission of data to achievetemperature display. The thermometer is multi-functional thermometeryou can set the upper and lower alarm temperature range when thetemperature is not set you can alarm. Besides the paper also describes the digital thermometer in hardwaredesign and software design hardware design includes the main controllermicrocontroller circuit board the temperature acquisition part of thecircuit display circuit and the alarm system circuit. Software designincluding system software flow chart and the digital thermometer in thepart of the program words: AT89C51 microcontroller digital control temperature sensormulti-function thermometer 常州信息职业技术学院电子与电气工程学院 毕业设计论文第1章 前言 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 现代信息技术的飞速发展和传统工业改造的逐步实现。 能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,所以传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点。 本文是以单片机 AT89C51 为核心,通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D 转换,用来测量环境温度,温度分辨率为 ℃,并能数码显示。因此本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽其电路简单,软硬件结构模块化,易于实现等特点。 数字式温度计的设计将给人们的生活带来很大的方便, 为人们生活水平的提高做出了贡献。数字温度计在以后将应用于我们生产和生活的各个方面,数字式温度计的众多优点告诉我们:数字温度计将在我们的未来生活中应用于各个领域,它将会是传统温度计的理想的替代产品。 -1- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第2章 数字温度计总体设计方案 数字温度计设计方案方案 一: 采用热敏电阻器件,利用其感温效应,再将随被测温度变化的电压或电流采集过来,进行 A/D 转换后,利用单片机进行数据的处理,然后在显示电路上,将被测温度显示出来。 方案 二: 利用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换就可以满足设计要求。 分析上述两种方案可以看出方案一是使用热敏电阻之类的器件利用其感温效应,进行 A/D 转换后,利用单片机进行数据的处理,在显示电路上被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。方案二是利用温度传感器直接读取被测温度,读数方便,测温范围广,测温精确,适用范围宽而且电路简单易于实现。 综合方案一和方案二的优缺点,我们选择方案二。 总体设计框图 温度计电路设计总体设计方框图如图 2-1 所示, 控制器采用单片机 AT89C51,温度传感器采用 DS18B20,用 4 位 LED 数码管以串口传送数据实现温度显示。 L 单片机复位 E D 主 显 控 示 报警点按键调整 制 器 温 度 时钟振荡 传 感 器 图 2-1 总体设计方框图 -2- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第3章 数字温度计硬件设计 主控制器 AT89C51 的特点及特性: 40 个引脚,4K Bytes FLASH 片内程序存储器,128 Bytes 的随机存取数据存储器(RAM) ,32 个外部双向输入/输出(I/O)口,5 个中断优先级 2 层中断嵌套中断,2 个 16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89C51 在空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性: 兼容 MCS-51 指令系统 4k 可反复擦写gt1000 次)ISP FLASH ROM 32 个双向 I/O 口 工作电压 2 个 16 位可编程定时/计数器 时钟频率 0-33MHZ 全双工 UART 串行中断口线 128X8 BIT 内部 RAM 2 个外部中断源 低功耗空闲和省电模式 中断唤醒省电模式 3 级加密位 看门狗(WDT)电路 软件设置空闲和省电功能 灵活的 ISP 字节和分页编程 双数据寄存器指针 管脚功能说明: AT89C51 管脚如图 3-1 所示: -3- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 图 3-1 AT89C51 管脚图 (1)VCC:供电电压。 (2)GND:接地。 P0 P0 (3) 口: 口为一个 8 位漏级开路双向 I/O 口, 每脚可吸收 8TTL 门电流。当 P1 口的管脚第一次写 1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在 FIASH 编程时,P0 口作为原码输入口,当 FIASH 进行校验时,P0 输出原码,此时 P0 外部必须被拉高。 (4)P1 口:P1 口是一个内部提供上拉电阻的 8 位双向 I/O 口,P1 口缓冲器能接收输出 4TTL 门电流。P1 口管脚写入 1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在 FLASH编程和校验时,P1 口作为第八位地址接收。 (5)P2 口:P2 口为一个内部上拉电阻的 8 位双向 I/O 口,P2 口缓冲器可接收,输出 4 个 TTL 门电流,当 P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2 口当用于外部程序存储器或 16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在 FLASH 编程和校验时接收高八位地址信号和控制信号。 (6)P3 口:P3 口管脚是 8 个带内部上拉电阻的双向 I/O 口,可接收输出 4个 TTL 门电流。当 P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为 AT89C51 的一些特殊功能口,如下所示: RXD(串行输入口) TXD(串行输出口) /INT0(外部中断 0) /INT1(外部中断 1) T0(记时器 0 外部输入) T1(记时器 1 外部输入) /WR(外部数据存储器写选通) /RD(外部数据存储器读选通) -4- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 P3 口同时为闪烁编程和编程校验接收一些控制信号。 (7)RST:复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 (8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个 ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE 只有在执行 MOVX,MOVC 指令是 ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。 (9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。 但在访问外部数据存储器时, 这两次有效的/PSEN信号将不出现。 ( 10 ) /EA/VPP : 当 /EA 保 持 低 电 平 时 , 则 在 此 期 间 外 部 程 序 存 储 器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式 1 时,/EA 将内部锁定为 RESET;当/EA 端保持高电平时,此间内部程序存储器。在 FLASH 编程期间,此引脚也用于施加 12V 编程电源(VPP)。 (11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 (12)XTAL2:来自反向振荡器的输出。 片内振荡器: 该反向放大器可以配置为片内振荡器,如图 3-2 所示。 图 3-2 片内振荡器 芯片擦除: -5- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 整个 PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合, 并保持ALE 管脚处于低电平 10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51 设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU 停止工作。但 RAM、定时器、计数器、串口和中断系统仍在工作。在掉电模式下,保存 RAM 的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要, 很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机主板电路 单片机 AT89C51 是数字温度计的核心元件,单片机的主板电路如图 3-3 所示,包括单片机芯片、报警系统电路、晶振电路、上拉电阻以及与单片机相连的其他电路。 图 3-3 单片机的主板电路 温度采集部分的设计 温度传感器 DS18B20 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 -6- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 TO-92 封装的 DS18B20 的引脚排列见图 3-4,其引脚功能描述见表 .

The temperature feeling adopted by us material is wased processed by green science and technology by the natural plant, vacuum 精馏 but become, all products reserved natural physical appearance, the safety was very high, wasing taken orally by small white rat and experimenting confirmation, LD50 is 18000 mgs/KG, high in edible salt, and can used to care article, function food is an also very and ideal the temperature feeling adopted by other products the material is a melting point to synthesize metals lowlyOur products are after attaining temperature, 芯 inside the thermometer will spring open the thermometer can see, taking care of to still present a solid inside the fixture and in the original other products, after attaining temperature, inside the thermometer springs up, splitting open thermometer, can see fixture inside the tube have already melted, and Be taking care of there is flowing trace on the same kind products are in actually the usage, it internal fixture probably would run off outer shell, and bring pollution to our product can't so, if ever fixture run off outer shell, because the fixture adopted by us is a withdrawing of natural plant thing, can't bring pollution to food, , in this aspect, our products surpass other same kind kinds of products all can attain to mark temperature ± the request of 5 ℉ error margins, but our products compare an other product difference in temperature a value small, and other products be worth in the temperature up have more obvious of close of value area, orange ℉ss green ℉ss are blue 167 ℉ss, these threes are very and white's marking a value is 180 ℉s, 185 ℉ss respectively, but actual value is ℉s, ℉ss, not only close, and have already set upside downed product not only with mark the difference in temperature of temperature small, and drew back 6 temperature margins of specifications, use result better. All above, our products have high request in the original product in the temperature experiment.可参照在线翻译:

我的百度文库里上传了不少单片机英文文献带翻译的 你可以去看看

我也急需非常感谢。

温度控制毕业论文外文翻译

google里搜一下。

检测温度论文

用DS18B20做的电子温度计,非常简单。#include <> #include\"\"#include <>#include <>//********************************************************#define Seck (500/TK) //1秒中的主程序的系数#define OffLed (Seck*5*60) //自动关机的时间5分钟!//********************************************************#if (FHz==0) #define NOP_2uS_nop_()#else #define NOP_2uS_nop_();_nop_()#endif//**************************************#define SkipK 0xcc //跳过命令#define ConvertK 0x44 //转化命令#define RdDs18b20K 0xbe //读温度命令//*******************************************extern LedOut(void);//*************************************************sbit PNP1=P3^4;sbit PNP2=P3^5;sbit BEEP=P3^2;//***********************************#defineDQ PNP2 //原来的PNP2 BEEP//***********************************static unsigned char Power=0;//************************************union{ unsigned char Temp[2]; //单字节温度 unsigned int Tt; //2字节温度}T;//***********************************************typedef struct{ unsigned char Flag; //正数标志 0;1==》负数 unsigned char WenDu; //温度整数 unsigned int WenDuDot; //温度小数放大了10000}WENDU; //***********************************************WENDU WenDu;unsigned char LedBuf[3];//----------------------------------//功能:10us 级别延时// n=1===> 6Mhz=14uS 12MHz=7uS//----------------------------------void Delay10us(unsigned char n){ do{ #if (FHz==1) NOP_2uS;NOP_2uS; #endif }while(--n);}//-----------------------------------//功能:写18B20//-----------------------------------void Write_18B20(unsigned char n){ unsigned char i; for(i=0;i<8;i++){ DQ=0; Delay10us(1);//延时13us 左右 DQ=n & 0x01; n=n>>1; Delay10us(5);//延时50us 以上 DQ=1; }}//------------------------------------//功能:读取18B20//------------------------------------unsigned char Read_18B20(void){ unsigned char i; unsigned char temp; for(i=0;i<8;i++){ temp=temp>>1; DQ=0; NOP_2uS;//延时1us DQ=1; NOP_2uS;NOP_2uS;//延时5us if(DQ==0){ temp=temp&0x7F; }else{ temp=temp|0x80; } Delay10us(5);//延时40us DQ=1; } return temp;}//-----------------------------------void Init (void){ DQ=0; Delay10us(45);//延时500us DQ=1; Delay10us(9);//延时90us if(DQ){ //0001 1111b=1f Power =0; //失败0 }else{ Power++; DQ=1; }}//----------------------------------void Skip(void){ Write_18B20(SkipK); Power++;}//----------------------------------void Convert (void){ Write_18B20(ConvertK); Power++;}//______________________________________void Get_Ds18b20L (void){ [1]=Read_18B20(); //读低位 Power++;}//______________________________________void Get_Ds18b20H (void){ [0]=Read_18B20(); //读高位 Power++;}//------------------------------------//规范化成浮点数// sssss111;11110000// sssss111;1111()//------------------------------------void ReadTemp (void){ unsigned char i; unsigned intF1=0; char j=1; code int Code_F[]={6250,1250,2500,5000}; ; if ([0] >0x80){ //负温度 =~; //取反+1=源吗 +符号S ; } <<= 4; //左移4位 [0]; // 温度整数 //************************************************** [1]>>=4; //--------------------------- for (i=0;i<4;i++){ //计算小数位 F1 +=([1] & 0x01)*Code_F; [1]>>=1; } ; //温度的小数 Power=0;}//----------------------------------void Delay1S (void){ static unsigned int i=0; if (++i==Seck) {i=0ower++;}}//----------------------------------void ReadDo (void){ Write_18B20(RdDs18b20K); Power++;}/**********************************函数指针定义***********************************/code void (code *SubTemp[])()={ Init,Skip,Convert,Delay1S,Init,Skip,ReadDo,Get_Ds18b20L, Get_Ds18b20H,ReadTemp};//**************************************void GetTemp(void){ (*SubTemp[Power])();}//---------------------------------------------------//将温度显示,小数点放大了 GetBcd(void){ LedBuf[0]= / 10; LedBuf[1]= % 10 +DotK; LedBuf[2]=()%10; if(LedBuf[0]==0)LedBuf[0]=Black; if() return; if(LedBuf[0] !=Black){ LedBuf[2]=LedBuf[1]; LedBuf[1]=LedBuf[0]; LedBuf[0]=Led_Pol; //'-' }else{ LedBuf[0]=Led_Pol; //'-' }}/*//---------------------------------------------------void JbDelay (void){ static long i; if (++i>=OffLed){ P1=0xff; P2=0xff; PCON=0x02; }}*//*****************************************************主程序开始1:2002_10_1 设计,采用DS18B20测量2:采用函数数组读取数码管显示正常!3:改变FHz可以用6,12MHz工作!******************************************************/code unsigned char Stop[3] _at_ 0x3b;void main (void){ P1=0xff; ; while (1){ GetTemp(); GetBcd(); // JbDelay(); LedOut(); }}复制代码 20091012_8b1ef92155560c13b5807ZmoDVSacjwD[1].jpg (12 KB) 2009-10-21 23:21 上传下载次数:0

我做的课程设计,用的数码管,也做了protues仿真,你有需要的话,我邮箱是。希望对你有帮助,#include<>sbit P11=P1^1;sbit P12=P1^2;sbit P13=P1^3;sbit P14=P1^4;/////数码管1断码控制///////////////sbit P15=P1^5;sbit P16=P1^6;sbit P17=P1^7;sbit P32=P3^2;/////数码管2段码控制////////////////sbit up=P3^7;sbit down=P3^6; ////按键操作端口//////////////////sbit P35=P3^5; ////////控制晶闸管端口/////////sbit DQ =P3^3; ///////温度传感器端口///////// #define THCO 0xee#define THLO 0x00unsigned char code duan[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0XD8,0x80,0x90,0x88,}; //////////////////////////////////////////int b=0;char pwm=0;int k;char r=0,q=0;static char wendu_1;char hao=20;//////////////////////////////////////////////void delay(unsigned int i){while(i--);}//////////////////////////////////////////Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时 大于 480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败delay(20);}////////////////////////////////////////////ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(4);}return(dat);}////////////////////////////////////////////////WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ = 1;dat>>=1;}//delay(4);}/////////////////////////////////////////////////DS18B20程序读取温度ReadTemperature(void){unsigned char a=0;unsigned char b=0;unsigned int t=0;float tt=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度a=ReadOneChar();b=ReadOneChar();t=b;t<<=8;t=t|a;tt=t*;return(t);}xianshi(){/////////////////当前温度显示///////////////////////////// P11=1; P0=duan[wendu_1/1000]; for(k=0;k<1000;k++); P1=0;P12=1; P0=duan[wendu_1/100%10]; for(k=0;k<1000;k++); P1=0;P13=1; P0=duan[wendu_1%100/10]; for(k=0;k<1000;k++); P1=0;P14=1; P0=duan[wendu_1%10]; for(k=0;k<1000;k++); P1=0; ///////////////////////////目标电压显示/////////////// P15=1; P2=duan[hao/1000]; for(k=0;k<1000;k++); P1=0;P16=1; P2=duan[hao/100%10]; for(k=0;k<1000;k++); P1=0;P17=1; P2=duan[hao%100/10]; for(k=0;k<1000;k++); P1=0;P32=1; P2=duan[hao%10]; for(k=0;k<1000;k++); P32=0;////////////////////////////////////////////////////////// }/////////////////////////////////////////////////////////// main(void){ P11=0; P12=0; P13=0; P14=0; P15=0; P16=0; P17=0; P32=0; P35=0; /////////////////////////////////////////////////////////// while(1){ wendu_1=ReadTemperature()/16;//读温度 xianshi(); ///显示系统数据/////////////////////////////////////操作函数//////////////////////////////////// if(down==0) {hao--;} if(up==0){hao++;} ///////////////////////////////////////////////////////////////////hao为理想温度/////wendu_1为实际环境温度/////////////////////////////////////////////////////////////////P35为高时 led灯工作///////////////////////////////////// P35=0; pwm=hao-wendu_1; if(pwm>0) {P35=1;} if(pwm<0) {P35=0;} if(pwm==0) {P35=0;}///////////////////////////////////////////////////////////////// }}

第一章 绪论1. 1 选题背景防潮、防霉、防腐、防爆是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。1.2 设计过程及工艺要求一、基本功能~ 检测温度、湿度~ 显示温度、湿度~ 过限报警二、 主要技术参数 ~ 温度检测范围 : -30℃-+50℃~ 测量精度 : ℃~ 湿度检测范围 : 10%-100%RH~ 检测精度 : 1%RH~ 显示方式 : 温度:四位显示 湿度:四位显示~ 报警方式 : 三极管驱动的蜂鸣音报警

智能温度计论文参考文献

AT89C51单片机那可以的要求的撒

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 参考文献32

江苏省联合职业技术学院常州旅游商贸分院专科毕业论文 基于51单片机及DS18B20温度传感器的数字温度计设计 姓 名:(××××××××3号黑体)学 号:(××××××××3号黑体)班 级:(联院班级号×××3号黑体)专 业:(××××××××3号黑体)指导教师:(××××××××3号黑体)系 部:创意信息系××××3号黑体)二〇二0年××月××日摘 要本设计采用的主控芯片是ATMEL公司的AT89S52单片机,数字温度传感器是DALLAS公司的DS18B20。本设计用数字传感器DS18B20测量温度,测量精度高,传感器体积小,使用方便。所以本次设计的数字温度计在工业、农业、日常生活中都有广泛的应用。单片机技术已经广泛应用社会生活的各个领域,已经成为一种非常实用的技术。51单片机是最常用的一种单片机,而且在高校中都以51单片机教材为蓝本,这使得51单片机成为初学单片机技术人员的首选。本次设计采用的AT89S52是一种flash型单片机,可以直接在线编程,向单片机中写程序变得更加容易。本次设计的数字温度计采用的是DS18B20数字温度传感器,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计根据设计要求,首先设计了硬件电路,然后绘制软件流程图及编写程序。本设计属于一种多功能温度计,温度测量范围是-55℃到125℃。温度值的分辨率可以被用户设定为9-12位,可以设置上下限报警温度,当温度不在设定的范围内时,就会启动报警程序报警。本设计的显示模块是用四位一体的数码管动态扫描显示实现的。在显示实时测量温度的模式下还可以通过查询按键查看设定的上下限报警温度。 关键词:单片机、数字温度计、DS18B20、AT89S52目 录 1 引言 12 系统总体方案及硬件设计 系统总体方案 系统总体设计框图 各模块简介 系统硬件设计 单片机电路设计 DS18B20温度传感器电路设计 显示电路设计 按键电路设计 报警电路设计 83 软件设计 DS18B20程序设计 DS18B20传感器操作流程 DS18B20传感器的指令表 DS18B20传感器的初始化时序 DS18B20传感器的读写时序 DS18B20获取温度程序流程图 显示程序设计 按键程序设计 134实物制作及调试 145电子综合设计体会 15参考文献 161 引言本系统所设计的数字温度计采用的是DS18B20数字温度传感器测温,DS18B20直接输出的就是数字信号,与传统的温度计相比,具有读数方便,测温范围广,测温准确,上下限报警功能。其输出温度采用LED数码管显示,主要用于对测温比较准确的场所。该设计控制器使用的是51单片机AT89S52,AT89S52单片机在工控、测量、仪器仪表中应用还是比较广泛的。测温传感器使用的是DS18B20,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。显示是用4位共阴极LED数码管实现温度显示,LED数码管的优点是显示数字比较大,查看方便。蜂鸣器用来实现当测量温度超过设定的上下限时的报警功能。2 系统总体方案及硬件设计 系统总体方案系统总体设计框图由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 温度计电路设计总体设计框图如图2-1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 图2-1 温度计电路总体设计框图各模块简介1.控制模块AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程的Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。2.显示模块显示电路采用4位共阴LED数码管,从P0口输出段码,P2口的高四位为位选端。用动态扫描的方式进行显示,这样能有效节省I/O口。3.温度传感器模块DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压范围为~;零待机功耗;温度以9或12位二进制数字表示;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚TO-92封装或8脚SO或µSOP封装,其其封装形式如图2-2所示。图2-2 DS18B20的封装形式DS18B20的64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM。高速暂存RAM的结构为8字节的存储器,结构如图2-3所示。图2-3 DS18B20的高速暂存RAM的结构头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率,DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值,该字节各位的定义如表2-1所示。表2-1:配置寄存器D7 D6 D5 D4 D3 D2 D1 D0TM R1 R0 1 1 1 1 1配置寄存器的低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,“R1R0”为“00”是9位,“01”是10位,“10”是11位,“11”是12位。当DS18B20分辨率越高时,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以℃/LSB形式表示。当符号位s=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位s=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。输出的二进制数的高5位是符号位,最后4位是温度小数点位,中间7位是温度整数位。表2-2是一部分温度值对应的二进制温度数据。表2-2 DS18B20输出的温度值温度值 二进制输出 十六进制输出+125℃ 0000 07D0h+85℃ 0000 0550h+℃ 0001 0191h+℃ 0010 00A2h+℃ 1000 0008h0℃ 0000 ℃ 1000 ℃ 1110 ℃ 1111 FF6Fh-55℃ 0000 FC90hDS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。4.调节模块介绍调节模块是由四个按键接地后直接接单片机的I/O口完成的。当按键没有按下时单片机管脚相当于悬空,默认下为高电平,当按键按下时相当于把单片机的管脚直接接地,此时为低电平。程序设计为低电平触发。5.报警模块介绍报警模块是由一个PNP型的三极管9012驱动的5V蜂鸣器,和一个加一限流电阻的发光二极管组成的。报警时蜂鸣器间歇性报警,发光二极管闪烁。 系统硬件设计 单片机电路设计 图2-4 单片机最小系统原理图单片机最小系统是由晶振电路,上电复位、按键复位电路,ISP下载接口和电源指示灯组成。原理图如图2-4所示。 DS18B20温度传感器电路设计DS18B20温度传感器是单总线器件与单片机的接口电路采用电源供电方。电源供电方式如图2-7,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。 图2-7 DS18B20电源供电方式当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。 显示电路设计显示电路是由四位一体的共阴数码管进行显示的,数码管由三极管9013驱动。四位一体的共阴数码管的管脚分布图如图2-5所示。 图2-5 四位一体的共阴数码管管脚分布图显示电路的总体设计如图2-6所示。 图2-6 显示电路 按键电路设计按键电路是用来实现调节设定报警温度的上下限和查看上下报警温度的功能。电路原理图如图2-10所示。 图2-10 按键电路原理图 报警电路设计报警电路是在测量温度大于上限或小于下限时提供报警功能的电路。该电路是由一个蜂鸣器和一个红色的发光二极管组成,具体的电路如图2-9所示。 图2-9 报警电路原理图3 软件设计 DS18B20程序设计 DS18B20传感器操作流程根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:• 每一次读写之前都要对DS18B20进行复位操作• 复位成功后发送一条ROM指令• 最后发送RAM指令这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500μs,然后释放,当DS18B20收到信号后等待16~60μs左右,后发出60~240μs的存在低脉冲,主CPU收到此信号表示复位成功。DS18B20的操作流程如图3-1所示。 如图3-1 DS18B20的操作流程 DS18B20传感器的指令表DS18B20传感器的操作指令如表3-1所示。传感器复位后向传感器写相应的命令才能实现相应的功能。表3-1 DS18B20的指令表指 令 指令代码 功 能读ROM 0x33 读DS1820温度传感器ROM中的编码(即64位地址)符合 ROM 0x55 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。搜索 ROM 0xF0 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。跳过 ROM 0xCC 忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。告警搜索命令 0xEC 执行后只有温度超过设定值上限或下限的片子才做出响应。温度变换 0x44 启动DS1820进行温度转换,12位转换时最长为750ms(9位为)。结果存入内部9字节RAM中。读暂存器 0xBE 读内部RAM中9字节的内容写暂存器 0x4E 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。复制暂存器 0x48 将RAM中第3 、4字节的内容复制到EEPROM中。重调 EEPROM 0xB8 将EEPROM中内容恢复到RAM中的第3 、4字节。读供电方式 0xB4 读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。 DS18B20传感器的初始化时序DS18B20传感器为单总线结构器件,在读写操作之前,传感器芯片应先进性复位操作也就是初始化操作。DS18B20的初始化时序如图3-2所示。首先控制器拉高数据总线,接着控制器给数据总线一低电平,延时480μs,控制器拉高数据总线,等待传感器给数据线一个60-240μs的低电平,接着上拉电阻将数据线拉高,这样才初始化完成。 图3-2 DS18B20初始化时序 DS18B20传感器的读写时序 1.写时序DS18B20传感器的读写操作是在传感器初始化后进行的。每次操作只能读写一位。当主机把数据线从高电平拉至低电平,产生写时序。有两种类型的写时序:写“0”时序,写“1”时序。所有的时序必须有最短60μs的持续期,在各个写周期之间必须有最短1μs的恢复期。在数据总线由高电平变为低电平之后,DS18B20在15μs至60μs的时间间隙对总线采样,如果为“1”则向DS18B20写“1”, 如果为“0”则向DS18B20写“0”。如图3-2的上半部分。对于主机产生写“1”时序时,数据线必须先被拉至低电平,然后被释放,使数据线在写时序开始之后15μs内拉至高电平。对于主机产生写“1”时序时,数据线必须先被拉至低电平,且至少保持低电平60μs。2.读时序在数据总线由高电平变为低电平之后,数据线至少应保持低电平1μs,来自DS18B20的输出的数据在下降沿15μs后有效,所以在数据线保持低电平1μs之后,主机将数据线拉高,等待来自DS18B20的数据变化,在下降沿15μs之后便可开始读取DS18B20的输出数据。整个读时序必须有最短60μs的持续期。如图3-2的下半部分。读时序结束后数据线由上拉电阻拉至高电平。 图3-3 DS18B20传感器的读写时序 DS18B20获取温度程序流程图DS18B20的读字节,写字节,获取温度的程序流程图如图3-3所示。图3-4 DS18B20程序流程图 显示程序设计显示电路是由四位一体的数码管来实现的。由于单片机的I/O口有限,所以数码管采用动态扫描的方式来进行显示。程序流程图如图3-4所示。图3-5 显示程序流程图 按键程序设计按键是用来设定上下限报警温度的。具体的程序流程图如图3-5所示。图3-6 按键程序流程图4实物制作及调试制作好的实物如图4-1所示。 图4-1 数字温度计实物正面图在做实物时出现了不少问题。比如本来是采用NPN型9013驱动蜂鸣器,但是在实际调试中蜂鸣器驱动不了,经多次试验,在三极管的基极电阻与单片机的接口处接一个1、2kΩ的上拉电阻就能驱动了。但考虑到单片机的I/O口默认状态时为高电平,这样一上电蜂鸣器就会响,所以将NPN型9013换成了PNP型的9012三极管,效果还不错。5电子综合设计体会经过将近一个月的设计、焊接、编程、调试,我们终于完成了数字温度计的设计,基本能够达到设计要求,而且还设计了一些其他功能,比可以开启或消除按键音功能,开机动画功能,查看报警上下限温度功能。此次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我们所学到的知识运用到实践中去。在大学课堂的学习只是给我们灌输专业知识,而我们应把所学的知识应用到我们现实的生活中去。这次的设计不仅使我们将课堂上学到的理论知识与实际应用结合了起来,而且使我们对电子电路、电子元器件、印制电路板等方面的知识有了更进一步的认识,同时在软件编程、焊板调试、相关调试仪器的使用等方面得到较全面的锻炼和提高,为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。此次单片机设计也为我们以后进行更复杂的单片机系统设计提供了宝贵的经验。在本次设计的过程中,我们遇到不少的问题,刚开始焊好的板子下不进去程序,经过一再仔细的检查,才发现是在下载口处出了问题,由于焊盘口比较小,排针插不进去,最后使了很大力气才插进去,插进去后才发现坏了,结果在去排针的时候把焊盘给去下来了,最后只能在旁边将下载口引了出来。还有就是文章中提到的蜂鸣器驱动问题等等。经过此次的硬件制作与调试,锻炼了我们的动手实践能了。本次设计的另一个重点就是软件程序的设计,其中需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论,有些东西是很难理解的,更谈不上掌握。通过此次的综合设计,我们初步掌握了单片机系统设计的基本原理。充分认识到理论学习与实践相结合的重要性,对于书本上的很多知识,不但要学会,更重要的是会运用到实践中去。在以后的学习中,我们会更加注重实践方面的锻炼,多提高自己的动手实践能力。参考文献[1] 谭浩强.C程序设计(第三版).北京:清华大学出版社, .[2] 余发山,王福忠.单片机原理与应用技术.徐州:中国矿业大学出版社, .[3] 求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社, .[4] 求是科技.8051系列单片机C程序设计完全手册.北京:人民邮电出版社, .[5] 于永,戴佳,刘波.51单片机C语言常用模块与综合系统设计实例精讲(第2版).北京:电子工业出版社, .[6]刘腾远.基于单片机的温度控制系统设计[J].科技经济导刊,2018(01):77-78.[7]苏康友.基于51单片机的无线温度控制系统设计[J].电子技术与软件工程,2017(10):250-251.[8]刘丰年.基于AT89C51的简易智能化加湿器设计[J].三门峡职业技术学院学报,2016,15(04):139-142.[9]杨伟才.基于DS18B20的多点温度测量系统研究[J].山东工业技术,2016(24):266.[10]严敏.基于单片机的智能温控系统的设计与实现[J].无锡职业技术学院学报,2016,15(03):61-64.[11]吴嘉颖. 基于单片机的地铁低压设备触点温度监测系统的设计与实现[D].西南交通大学,2017.[12]孙晓倩.基于51单片机的温度监测报警系统设计研究[J].赤峰学院学报(自然科学版),2015,31(24):24-26.[13]仲霞.基于DS18B20的多点温度测量系统探讨[J].山东工业技术,2015(22):156.[14]吕晓磊.基于单片机智能控温的仿真与设计[J].安徽电子信息职业技术学院学报,2015,14(03):34-37.[15]贺争汉.基于51单片机的温度控制系统[J].黑龙江科技信息,2015(16):145.[16]谭虹.智能型滑雪保温鞋温控系统的设计与实现[J].体育世界(学术版),2014(11):19-20.[17]王云飞.DS18B20温度传感器的应用设计[J].电子世界,2014(12):355.[18]刘金魁.基于DS18B20的数字测温系统[J].焦作大学学报,2014,28(02):99-100.[19]杨丹丹,杨风,马慧卿.基于单片机的温度采集系统设计[J].山西电子技术,2014(03):19-21.[20]曹美霞.单片机与数字温度传感器DS18B20的接口设计[J].电子制作,2014(11):9-10.

毕业设计(论文)报告 系 别: 电子与电气工程学院 专 业: 电子信息工程 班 号: 电子 0 8 5 学 生 姓 名: 傅浩 学 生 学 号: 080012212 计 论 ) 目 设 ( 文 题 : 基于AT89C51 的数字温度计的设计 指 导 教 师: 傅浩 设 计 地 点: 起 迄 日 期: 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)任务书 专业 电子信息工程 班级 电子 085 姓名 傅浩一、课题名称:基于 AT89C51 的数字温度计的设计二、主要技术指标: 1、测温范围-50℃-110℃ 2、精度误差小于 ℃ 3、LED 数码直读显示 4、可通过人机接口任意设定温度报警阀值三、工作内容和要求:(1)、要求数字温度计能对环境的温度进行实时监测。(2)、数字温度计要能够实时显示环境的温度信息,使用户及时了解到环境温度情况。(3)、数字温度计能够在程序跑飞的情况下自动重启,对环境温度进行正确的测量。 四、主要参考:1.李勋.刘源单片机实用教程M.北京航空航天大学出版社,20002.李朝青.单片机原理及接口技术(简明修订版)M.杭州:北京航空航天大学出版社,19983.李广弟.单片机基础M.北京:北京航空航天大学出版社,19944.阎石.数字电子技术基础(第三版)M.北京:高等教育出版社,19895.廖常初.现场总线概述J.电工技术,19996.王津.单片机原理与应用M.重庆大学出版社,2000 学 生(签名) 年 月 日 指 导 教师(签名) 年 月 日常州信息职业技术学院电子与电气工程学院 毕业设计论文 教研室主任(签名) 年 月 日 系 主 任(签名) 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)开题报告设计(论文)题目 基于 AT89C51 的数字温度计的设计一、选题的背景和意义: 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,它给人带来的方便也是不可否定的。要为现代人生活提供更好、更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本文将要设计的数字温度计具有性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制中,为人们生活水平的提高做出了巨大的贡献。二、课题研究的主要内容: 1.本文是以单片机 AT89C51 为核心进行设计。 2.通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D转换。 3.其输出温度采用数字显示,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。 4.此温度计属于多功能温度计可以用来测量环境温度,还可以设置上下报警温度,当温度不在设置范围内时,可以报警。 常州信息职业技术学院电子与电气工程学院 毕业设计论文三、主要研究(设计)方法论述: 1. 通过查阅书籍了解数字温度计的基本概念等信息,结合以前所学的电子专业知识认真研究课题。 2. 借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。 3. 通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成。 四、设计(论文)进度安排:时间(迄止日期) 工 作 内 容 ~ 查找资料,确定论文题目 ~ 根据选题方向查资料,确定基本框架和设计方法 ~ 完成开题报告 ~ 完成初稿并交指导老师审阅 ~ 根据指导老师意见修改论文 ~ 根据模板将论文排版 ~ 仔细阅读论文并作细节完善后上交 常州信息职业技术学院电子与电气工程学院 毕业设计论文五、指导教师意见: 指导教师签名: 年 月 日六、系部意见: 系主任签名: 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 目录摘要Abstract第 1 章 前言 ...................................................... 1第 2 章 数字温度计总体设计方案 .................................... 2 数字温度计设计方案.......................................... 2 总体设计框图................................................ 2第 3 章 数字温度计的硬件设计 ...................................... 3 主控制器 AT89C51 ............................................ 3 AT89C51 的特点及特征 .................................... 3 管脚功能说明............................................ 3 片内振荡器.............................................. 5 芯片擦除................................................ 5 单片机的主板电路............................................ 6 温度采集部分的设计.......................................... 6 温度传感器 DS18B20 ...................................... 6 DS18B20 温度传感器与单片机的接口电路 ................... 10 显示部分设计............................................... 10 74LS164 引脚功能及特征 ................................. 10 温度显示电路........................................... 11 报警系统电路............................................... 12第 4 章 数字温度计的软件设计 ..................................... 13 系统软件设计流程图......................................... 13 数字温度计部分程序清单..................................... 15第 5 章 结束语 ................................................... 20答谢辞参考文献 常州信息职业技术学院电子与电气工程学院 毕业设计论文 摘 要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。该设计控制器使用单片机 AT89C51,测温传感器使用 DS18B20,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示。本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 此外本文还介绍了数字温度计的硬件设计和软件设计,硬件设计主要包括主控制器、单片机的主板电路、温度采集部分电路、显示电路以及报警系统电路。 软件设计包括系统软件的流程图和数字温度计的部分程序清单。关键词:AT89C51 单片机,数字控制,测温传感器,多功能温度计 常州信息职业技术学院电子与电气工程学院 毕业设计论文 Abstract As peoples living standard rising SCM is undoubtedly one of theobjectives pursued by the people the convenience it brings is equallynegative and one digital thermometer is a typical example. The design presented in the traditional thermometer digitalthermometer and compared with a reading convenience a wide range oftemperature measurement temperature measurement accuracy the output ofthe temperature digital display. The design of the controller usingmicrocontroller AT89C51 temperature sensor uses DS18B20 with threecommon anode LED digital tube to serial transmission of data to achievetemperature display. The thermometer is multi-functional thermometeryou can set the upper and lower alarm temperature range when thetemperature is not set you can alarm. Besides the paper also describes the digital thermometer in hardwaredesign and software design hardware design includes the main controllermicrocontroller circuit board the temperature acquisition part of thecircuit display circuit and the alarm system circuit. Software designincluding system software flow chart and the digital thermometer in thepart of the program words: AT89C51 microcontroller digital control temperature sensormulti-function thermometer 常州信息职业技术学院电子与电气工程学院 毕业设计论文第1章 前言 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 现代信息技术的飞速发展和传统工业改造的逐步实现。 能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,所以传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点。 本文是以单片机 AT89C51 为核心,通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D 转换,用来测量环境温度,温度分辨率为 ℃,并能数码显示。因此本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽其电路简单,软硬件结构模块化,易于实现等特点。 数字式温度计的设计将给人们的生活带来很大的方便, 为人们生活水平的提高做出了贡献。数字温度计在以后将应用于我们生产和生活的各个方面,数字式温度计的众多优点告诉我们:数字温度计将在我们的未来生活中应用于各个领域,它将会是传统温度计的理想的替代产品。 -1- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第2章 数字温度计总体设计方案 数字温度计设计方案方案 一: 采用热敏电阻器件,利用其感温效应,再将随被测温度变化的电压或电流采集过来,进行 A/D 转换后,利用单片机进行数据的处理,然后在显示电路上,将被测温度显示出来。 方案 二: 利用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换就可以满足设计要求。 分析上述两种方案可以看出方案一是使用热敏电阻之类的器件利用其感温效应,进行 A/D 转换后,利用单片机进行数据的处理,在显示电路上被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。方案二是利用温度传感器直接读取被测温度,读数方便,测温范围广,测温精确,适用范围宽而且电路简单易于实现。 综合方案一和方案二的优缺点,我们选择方案二。 总体设计框图 温度计电路设计总体设计方框图如图 2-1 所示, 控制器采用单片机 AT89C51,温度传感器采用 DS18B20,用 4 位 LED 数码管以串口传送数据实现温度显示。 L 单片机复位 E D 主 显 控 示 报警点按键调整 制 器 温 度 时钟振荡 传 感 器 图 2-1 总体设计方框图 -2- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第3章 数字温度计硬件设计 主控制器 AT89C51 的特点及特性: 40 个引脚,4K Bytes FLASH 片内程序存储器,128 Bytes 的随机存取数据存储器(RAM) ,32 个外部双向输入/输出(I/O)口,5 个中断优先级 2 层中断嵌套中断,2 个 16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89C51 在空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性: 兼容 MCS-51 指令系统 4k 可反复擦写gt1000 次)ISP FLASH ROM 32 个双向 I/O 口 工作电压 2 个 16 位可编程定时/计数器 时钟频率 0-33MHZ 全双工 UART 串行中断口线 128X8 BIT 内部 RAM 2 个外部中断源 低功耗空闲和省电模式 中断唤醒省电模式 3 级加密位 看门狗(WDT)电路 软件设置空闲和省电功能 灵活的 ISP 字节和分页编程 双数据寄存器指针 管脚功能说明: AT89C51 管脚如图 3-1 所示: -3- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 图 3-1 AT89C51 管脚图 (1)VCC:供电电压。 (2)GND:接地。 P0 P0 (3) 口: 口为一个 8 位漏级开路双向 I/O 口, 每脚可吸收 8TTL 门电流。当 P1 口的管脚第一次写 1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在 FIASH 编程时,P0 口作为原码输入口,当 FIASH 进行校验时,P0 输出原码,此时 P0 外部必须被拉高。 (4)P1 口:P1 口是一个内部提供上拉电阻的 8 位双向 I/O 口,P1 口缓冲器能接收输出 4TTL 门电流。P1 口管脚写入 1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在 FLASH编程和校验时,P1 口作为第八位地址接收。 (5)P2 口:P2 口为一个内部上拉电阻的 8 位双向 I/O 口,P2 口缓冲器可接收,输出 4 个 TTL 门电流,当 P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2 口当用于外部程序存储器或 16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在 FLASH 编程和校验时接收高八位地址信号和控制信号。 (6)P3 口:P3 口管脚是 8 个带内部上拉电阻的双向 I/O 口,可接收输出 4个 TTL 门电流。当 P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为 AT89C51 的一些特殊功能口,如下所示: RXD(串行输入口) TXD(串行输出口) /INT0(外部中断 0) /INT1(外部中断 1) T0(记时器 0 外部输入) T1(记时器 1 外部输入) /WR(外部数据存储器写选通) /RD(外部数据存储器读选通) -4- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 P3 口同时为闪烁编程和编程校验接收一些控制信号。 (7)RST:复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 (8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个 ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE 只有在执行 MOVX,MOVC 指令是 ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。 (9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。 但在访问外部数据存储器时, 这两次有效的/PSEN信号将不出现。 ( 10 ) /EA/VPP : 当 /EA 保 持 低 电 平 时 , 则 在 此 期 间 外 部 程 序 存 储 器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式 1 时,/EA 将内部锁定为 RESET;当/EA 端保持高电平时,此间内部程序存储器。在 FLASH 编程期间,此引脚也用于施加 12V 编程电源(VPP)。 (11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 (12)XTAL2:来自反向振荡器的输出。 片内振荡器: 该反向放大器可以配置为片内振荡器,如图 3-2 所示。 图 3-2 片内振荡器 芯片擦除: -5- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 整个 PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合, 并保持ALE 管脚处于低电平 10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51 设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU 停止工作。但 RAM、定时器、计数器、串口和中断系统仍在工作。在掉电模式下,保存 RAM 的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要, 很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机主板电路 单片机 AT89C51 是数字温度计的核心元件,单片机的主板电路如图 3-3 所示,包括单片机芯片、报警系统电路、晶振电路、上拉电阻以及与单片机相连的其他电路。 图 3-3 单片机的主板电路 温度采集部分的设计 温度传感器 DS18B20 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 -6- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 TO-92 封装的 DS18B20 的引脚排列见图 3-4,其引脚功能描述见表 .

语言温度计毕业论文

基于DS18B20温度传感器的数字温度计设计目 录基于DS18B20温度传感器的数字温度计设计 1基于DS18B20温度传感器的数字温度计设计 1摘要: 1关键字: 1The conception of the numerical thermometer based on DS18B20 11 引言 22 总体设计 方案论证 总体设计 33 硬件设计 单片机系统 温度传感器模块 存储模块 液晶显示模块 串口通信模块 电源模块 124 软件设计 主程序流程 DS18B20模块程序设计 HS1602驱动程序设计 AT24C08存储模块程序设计 RS-232-C串口通信模块程序设计 195 测试及结果分析 226 附录 237 参考资料 24

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 仪器简介 数字温度计是测温仪器类型的其中之一。根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计、双金属温度计等。编辑本段仪器参数和适用范围 数字温度计采用进口芯片组装精度高、高稳定性,误差≤, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。 数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。 温度数我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。 数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。 数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。 数字温度计有手持式,盘装式,及医用的小体积的等等。仪器发展历史 最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。使用时先给玻璃泡加热,然后把玻璃管插入水中。随着温度的变化,玻璃管中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。温度计有热胀冷缩的作用所以这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。 后来伽利略的学生和其他科学家,在这个基础上反复改进,如把玻璃管倒过来,把液体放在管内,把玻璃管封闭等。比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。以后荷兰人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,最后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。 在华氏温度计出现的同时,法国人列缪尔(1683~1757)也设计制造了一种温度计。他认为水银的膨胀系数太小,不宜做测温物质。他专心研究用酒精作为测温物质的优点。他反复实践发现,含有1/5水的酒精,在水的结冰温度和沸腾温度之间,其体积的膨胀是从1000个体积单位增大到1080个体积单位。因此他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。? 华氏温度计制成后又经过30多年,瑞典人摄尔修斯于1742年改进了华伦海特温度计的刻度,他把水的沸点定为0度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的关系为 ℉=9/5℃+32,或℃=5/9(℉-32)。 现在英、美国家多用华氏温度,德国多用列氏温度,而世界科技界和工农业生产中,以及我国、法国等大多数国家则多用摄氏温度。数字温度测量仪表的精度等级和分度值 仪表名称 精度等级 分度值,℃(摄氏度) 双金属温度计 1,, 压力式温度计 1,, 玻璃液体温度计 热电阻 1~10 热电偶 5~20 光学高温计 1~ 5~20 辐射温度计(热电堆) 5~20 部分辐射温度计 1~ 1~20 比色温度计 1~

基于DS18B20温度传感器的数字温度计设计字数:9092,页数:26 论文编号:JD457 价格:120元基于DS18B20温度传感器的数字温度计设计摘要:本文介绍了一种基于DS18B20的数字温度计设计方案。方案利用AT89S52单片机控制DS18B20进行数据采集并由HS1602液晶显示模块显示结果,另外,采集结果可由RS-232-C接口送入计算机显示并存储。按键控制实现过界报警温度设定和实时监控,利用AT24C08芯片进行存储,实现温度测量存储与再现。关键字:温度采集,存储再现,过界报警,串行通信目 录摘要.....................................................................1关键字...................................................................11 引言...................................................................22 总体设计................................................................. 方案论证.............................................................. 总体设计...............................................................33 硬件设计................................................................. 单片机系统 ............................................................. 温度传感器模块........................................................... 存储模块................................................................ 液晶显示模块 ............................................................ 串口通信模块............................................................ 电源模块 ...............................................................124 软件设计.................................................................. 主程序流程.............................................................. DS18B20模块程序设计...................................................... HS1602驱动程序设计....................................................... AT24C08存储模块程序设计................................................... RS-232-C串口通信模块程序设计..............................................195 测试及结果分析 .............................................................226 附录 ......................................................................237 参考资料...................................................................24以上回答来自:

温度计能够显示时间,温度,日历,这个我以前做过的

  • 索引序列
  • 温度温度计论文翻译文献
  • 温度控制毕业论文外文翻译
  • 检测温度论文
  • 智能温度计论文参考文献
  • 语言温度计毕业论文
  • 返回顶部