首页 > 毕业论文 > 毕业论文卷积神经网络

毕业论文卷积神经网络

发布时间:

毕业论文卷积神经网络

感受野(receptive field或者field of view)是卷积神经网络中的一个基本概念。与全连接层中每个输出值都与全部输入特征值有关不同的是,卷积层的一个输出值只与一部分的输入特征值有关。输入特征值中与输出特征值有关的部分就是它的感受野。 对于处于中心位置的特征值,对于输出的影响会更大,根据实验结果在一个接受野的影响分布是高斯分布。由此也引入了一个 有效感受野 的概念,因为高斯分布在中心位置强度更高,然后逐渐向周围递减。

我们想用数学的方法来描述一个接收野中的每个输入像素对网络上一个单元层的输出的影响程度,并研究这种影响是如何在输出单元的接收野内分布的。为了简化符号,我们只考虑每层上的一个信道,但是对于具有更多输入和输出的卷积层,可以很容易地得到类似的结果通道。 假设每层上的像素用(i,j)索引,其中心位于(0,0)。表示第层的第(i,j)个像素为 ,其中 作为网络的输入, 作为第n层的输出。我们要测量每个 对 贡献了多少。我们将这个中央输出单元的有效感受野(ERF)定义为包含任何输入像素且对其影响不可忽略的区域单位。 本文采用偏导数 ,j来度量 随 有多大的变化;因此,它是 相对于 重要性的自然度量。然而,这种度量不仅取决于网络的权值,而且在大多数情况下也依赖于输入,因此我们的大多数结果都是期望值大于输入分布。 偏导数 可以用反向传播法计算。在标准设置中,反向传播传播相对于某个损耗函数的误差梯度。假设我们有一个任意的损失函数l,根据链式规则,我们有 我们可以设置误差梯度 和 ,然后将这个梯度从那里传播回网络。得到的 ,相当于期望的\partial{y_{0,0}}}{\partial {x^0_{i,j}}。这里我们使用无显式损失函数的反向传播过程,并且该过程可以用标准神经网络轻松实现工具。 在下面我们首先考虑线性网络,其中这个导数不依赖于输入,而纯粹是网络权重和(i,j),它清楚地显示了感受野中像素的影响是如何分布的。然后我们继续考虑更现代的架构设计,并讨论非线性激活、dropout、子采样、空洞卷积和跳跃连接对ERF的影响。 最简单的情况:权值都等于1的卷积层 考虑使用k×k卷积核的步长为1的卷积层的情况,每层一个单通道,无非线性,叠加成一个深线性CNN。在这个分析中,我们忽略了所有层上的偏差。我们首先分析权值都等于1的卷积核。(推理过程公式好多,看原文吧……)

在本节中,我们将实证研究各种深层CNN架构的ERF。我们首先使用人工构造的CNN模型来验证我们分析中的理论结果。然后,我们提出了在实际数据集上训练深层cnn时ERF如何变化的观察结果。对于所有ERF研究,我们在输出平面的中心放置一个梯度信号1,在其他任何地方放置0,然后通过网络反向传播该梯度,得到输入的梯度。 验证理论结果 我们首先在人工构建的CNN中验证我们的理论结果。为了计算ERF我们使用随机输入,对于所有随机权重网络,我们进行适当的随机初始化。在本节中,我们验证以下内容结果:

ERF是高斯分布的 。如图所示在图1中,我们可以观察到均匀加权卷积核和随机加权,没有非线性激活卷积核的完美高斯形状,以及随机加权非线性激活的卷积核的近似高斯形状。加上ReLU非线性使得分布的高斯性变小,因为ERF的分布也取决于输入。另一个原因是ReLU单元的一半输入输出正好为零,而且很容易为输出平面上的中心像素设置零输出,这意味着感受野的路径无法到达输出,因此梯度都为零。在这里,ERF在不同的传输种子下平均运行20次。下图显示了具有20层随机权值、具有不同非线性的网络的ERF。在这里,结果是不同的随机权重以及不同的随机输入平均运行的100次的结果。在这种情况下,感受野更像高斯分布。

绝对增长和 相对收缩 。图2中,我们给出了ERF尺寸的改变和ERF相对于理论RF的比例随卷积层数的变化。ERF大小的最佳拟合线在对数域的斜率为,而ERF比值的拟合线斜率为。这表明ERF大小对于 呈线性增长,ERF比率对于 呈线性缩小。注意这里我们使用2个标准偏差作为ERF大小的测量值,即任何大于中心点1−的像素都被视为ERF。ERF大小由ERF中像素数目的平方根表示,而理论RF大小是平方的边长,在该边长中,所有像素对输出像素的影响都是非零的,无论多么小。所有实验是在超过20次的结果上平均得到的。

在训练过程中ERF是如何演变的 在这一部分中,我们将研究分类CNN和语义分割CNN最顶层的单元ERF在训练过程中是如何演变的。对于这两个任务,我们采用了 ResNet架构,它广泛地使用了skip-connection。分析表明,该网络的ERF应明显小于理论感受野。这是我们最初观察到的。有趣的是,随着网络的学习,ERF变得更大,并且在训练结束时,ERF明显大于初始ERF。 对于分类任务,我们在CIFAR-10数据集上训练了一个包含17个残差块的ResNet。在训练结束时,该网络的测试准确率达到89%。请注意,在这个实验中,我们没有使用池或降采样,而是专门关注具有跳过连接的体系结构。网络的精确度虽然不是最先进的,但仍然相当高。在图3中,我们显示了在训练开始时(随机初始化权重)和训练结束时,当达到最佳验证精度时,32×32图像空间上的有效感受野。请注意,我们网络的理论接收场实际上是74×74,大于图像大小,但是ERF仍然可以完全填充图像。比较训练前后的结果,我们发现有效感受野有所增加很明显。 对于语义分割任务利用CamVid数据集进行城市场景分割。我们训练了一个“前端”模型,它是一个纯粹的卷积网络,它预测输出的分辨率略低。该网络与VGG网络在许多以前的著作中所起的作用相同。我们训练了一个ResNet,16个残差块交错,每个子采样操作的因子为2。由于这些子采样操作,输出是输入大小的1/16。对于这个模型,顶层卷积层单元的理论感受野为505×505。然而,如图3所示,在训练开始时,ERF只得到直径为100的部分。我们再次观察到,在训练过程中,ERF的尺寸增大,最后达到直径约为150的直径。

上述分析表明ERF只占理论接收野的一小部分,这对于需要较大接收能力的任务是不可取的领域。 新的初始化。 一增加有效感受野的简单方法是控制初始权重。我们提出了一种新的随机权值初始化方案,使得卷积核中心的权值具有较小的尺度,而外部的权值较大,这使得中心的集中度向外围扩散。实际上,我们可以用任何初始化方法对网络进行初始化,然后根据中心低标度、外标度高的分布来调整权重。 在极端情况下,我们可以优化w(m)以使ERF大小最大化,或者等价地使等式(前面推公式部分里的公式)中的方差最大化。解决这个优化问题的结果是在卷积核的4个角上平均地设置权重,而其他地方都是0。但是,使用此解决方案进行随机权重初始化过于激进,并且将大量权重保留为0会使学习变慢。这种想法的温和版本通常是有效的更好。 我们用这种初始化方法训练了一个用于CIFAR-10分类任务的CNN,使用了几种随机种子。在一些情况下,与更标准的初始化相比,我们的训练速度提高了30%。但总的来说,这种方法的好处并不总是如此很重要。 我们请注意,无论我们如何改变w(m),有效感受野仍然是高斯分布的,因此上述建议只解决了问题部分。 改变构架。 一个潜在的更好的方法是对cnn进行架构上的更改,这可能会改变在更基本的方面。例如,我们不用将CNN中的每个单元连接到本地矩形卷积窗口,而是可以使用相同的连接数将每个单元稀疏地连接到下层的一个较大区域。空洞卷积属于这一类,但我们可以进一步推进,并使用不类似网格的稀疏连接。

与生物神经的联系网络。 在我们的分析表明,深部CNN中的有效接收场实际上比我们以前想象的要慢得多。这表明即使经过许多卷积层,仍然保留了许多局部信息。这一发现与深层生物网络中一些长期持有的相关概念相矛盾。哺乳动物视觉系统的一个普遍特征是分为“什么”和“哪里”路径。沿着what或where路径进行,连通性的性质逐渐改变:感受野大小增加,空间组织变得松散,直到没有明显的视网膜色素组织;视网膜脱离意味着单个神经元对视野中的面部等物体做出反应。然而,如果ERF比RF小,这表明表示可以保留位置信息,同时也提出了一个有趣的问题,即这些区域在发育过程中的大小变化。 我们的分析的第二个相关影响是,它表明卷积网络可能会自动地产生一种中心凹表现形式。人类视网膜中央凹只在中心像素附近提取高分辨率信息。等分辨率的子场的排列使得它们的大小随着距中心的距离而增大固定。在视网膜的外围,低分辨率的信息是从图像的较大区域提取的。一些神经网络已经明确地构造了这种形式的表示。然而,由于卷积网络形成高斯感受野,其底层表示自然会有这种感受野特性。 与之前研究的联系。 虽然CNN中的感受野尚未得到深入研究,一些人在计算方差如何通过网络演化方面进行了类似的分析。他们开发了一个很好的卷积层初始化方案,遵循的原则是方差在经过网络。 研究人员为了理解神经网络是如何工作的,我们还利用了可视化技术。[14] 展示了使用自然图像先验的重要性,以及卷积层的激活将代表什么。[22]使用反褶积网络来显示图像中像素点与被激活神经元之间的关系。[23]对感受野进行了实证研究,并将其作为定位的提示。也有可视化研究使用梯度上升技术[4]产生有趣的图像,如[15]。这些都集中在单位激活或特征图上,而不是我们在这里研究的有效感受野。

本文对CNN的感受野进行了细致的研究,并对有效感受野大小进行了初步探讨。特别地,我们已经证明了在感受野内的影响分布是渐近高斯的,有效感受野只占整个理论感受野的一小部分。实证结果与我们建立的理论相呼应。我们认为这只是有效感受野研究的一个开始,它为深入了解CNN提供了一个新的视角。在未来的研究中,我们希望更多地研究在实践中影响有效感受野的因素以及如何更好地控制这些因素。

要深入理解卷积神经网络的结构,我们需要追根溯源,只有这样才能更好的理解 CNN 网络。 1998年 LeCun 和 Bengio 等人利用 LeNet-5 网络在手写体数字识别领域上的识别效果超过了传统方法,从此开启了卷积神经网络的在图像上的应用大门。据说,一开始美国银行的手写体数字识别就是用的这个算法。 Gradient -Based Learing Applied to Document Recognition 论文有点长,46页,估计很难读下来。 LeCun 做了一些网页展示,有兴趣可以去浏览。 上图是 LeCun 原论文中 LeNet-5 的结构图。

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

matlab神经网络毕业论文

好难啊~~~

我也要。。。贵求呢。。给我发一份。邮箱。。非常感谢

你好,能请教一下您吗

clc;

clearall;

closeall;

%%----BuildatrainingsetofasimilarversionofXOR

c_1=[00];

c_2=[11];

c_3=[01];

c_4=[10];

n_L1=20;%numberoflabel1

n_L2=20;%numberoflabel2

A=zeros(n_L1*2,3);

A(:,3)=1;

B=zeros(n_L2*2,3);

B(:,3)=0;

%createrandompoints

fori=1:n_L1

A(i,1:2)=c_1+rand(1,2)/2;

A(i+n_L1,1:2)=c_2+rand(1,2)/2;

end

fori=1:n_L2

B(i,1:2)=c_3+rand(1,2)/2;

B(i+n_L2,1:2)=c_4+rand(1,2)/2;

end

%showpoints

scatter(A(:,1),A(:,2),[],'r');

holdon

scatter(B(:,1),B(:,2),[],'g');

X=[A;B];

data=X(:,1:2);

label=X(:,3);

%%Usingkmeanstofindcintervector

n_center_vec=10;

rng(1);

[idx,C]=kmeans(data,n_center_vec);

holdon

scatter(C(:,1),C(:,2),'b','LineWidth',2);

%%Calulatesigma

n_data=size(X,1);

%calculateK

K=zeros(n_center_vec,1);

fori=1:n_center_vec

K(i)=numel(find(idx==i));

end

%UsingknnsearchtofindKnearestneighborpointsforeachcentervector

%thencalucatesigma

sigma=zeros(n_center_vec,1);

fori=1:n_center_vec

[n,d]=knnsearch(data,C(i,:),'k',K(i));

L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);

L2=sum(L2(:));

sigma(i)=sqrt(1/K(i)*L2);

end

%%Calutateweights

%kernelmatrix

k_mat=zeros(n_data,n_center_vec);

fori=1:n_center_vec

r=bsxfun(@minus,data,C(i,:)).^2;

r=sum(r,2);

k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));

end

W=pinv(k_mat'*k_mat)*k_mat'*label;

y=k_mat*W;

%y(y>=)=1;

%y(y<)=0;

%%trainingfunctionandpredictfunction

[W1,sigma1,C1]=RBF_training(data,label,10);

y1=RBF_predict(data,W,sigma,C1);

[W2,sigma2,C2]=lazyRBF_training(data,label,2);

y2=RBF_predict(data,W2,sigma2,C2);

扩展资料

matlab的特点

1、具有完备的图形处理功能,实现计算结果和编程的可视化;

2、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

3、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

参考资料来源:百度百科—MATLAB

循环神经网络毕业论文

题主是否想询问“python实现循环神经网络进行淘宝商品评论情感分析的研究结论?”python实现循环神经网络进行淘宝商品评论情感分析的研究结论具体如下:1、数据质量对结果影响较大,收集到的评论数据的质量和数量都会对模型的结果产生影响。在实际应用中,如果数据质量较低或者数量不足,可能需要使用数据增强或者其他方法来提高数据质量和数量。2、神经网络模型的设计和调参对结果影响较大,选择合适的神经网络模型、优化算法和参数对结果的影响非常重要。在实际应用中,需要根据具体场景和需求,选择适合的神经网络模型,并对模型的参数进行调整和优化。3、情感分析的准确率不够高,虽然使用循环神经网络进行情感分析可以得到不错的结果,但是仍存在一定的误差和不确定性。在实际应用中,可能需要考虑其他方法来提高情感分析的准确率和稳定性。

论文:论文地址: 论文题目:《Session-based Recommendation with Graph Neural Networks》SR-GNN github: 基于会话的推荐一般是将序列会话建模,将整个session进行编码,变成一个隐向量,然后利用这个隐向量进行下一个点击预测。但是这种方法没有考虑到item直接复杂的转换(transitions)关系,也就是item之间在点击的session中除了时间顺序外还有复杂的有向图内的节点指向关系,所以之前的方法不足以很好的对点击序列进行建模。 现有基于会话的推荐,方法主要集中于循环神经网络和马尔可夫链,论文提出了现有方法的两个缺点: 1)当一个session中用户的行为数量十分有限时,这些方法难以获取准确的用户行为表示。如当使用RNN模型时,用户行为的表示即最后一个单元的输出,论文认为只有这样并非十分准确。 2)根据先前的工作发现,物品之间的转移模式在会话推荐中是十分重要的特征,但RNN和马尔可夫过程只对相邻的两个物品的 单向转移关系 进行建模,而忽略了会话中其他的物品。 为了克服上述缺陷,本文提出了用图神经网络对方法对用户对session进行建模:下面具体介绍怎么进行图序列推荐 V = {v1,v2...vm}为全部的item,S = { }为一个session里面按时间顺序的点击物品,论文的目标是预测用户下一个要点击的物品vs,n+1,模型的任务是输出所有item的预测概率,并选择top-k进行推荐。 我们为每一个Session构建一个子图,并获得它对应的出度和入度矩阵。 假设一个点击序列是v1->v2->v4->v3,那么它得到的子图如下图中红色部分所示:另一个例子,一个点击序列是v1->v2->v3->v2->v4,那么它得到的子图如下:同时,我们会为每一个子图构建一个出度和入度矩阵,并对出度和入度矩阵的每一行进行归一化,如我们序列v1->v2->v3->v2->v4对应的矩阵如下:这个矩阵里面的值是怎么计算的呢?下面讲一下: 看左边的出度矩阵,第一行为 0 1 0 0 ,代表着v1->v2,因为v1,只有一个指向的item,所以为1;看第二行,0 0 1/2 1/2,因为v2有指向v3和v4的边,所以进行归一化后每一个值都变成了1/2。入度矩阵的计算方法也是一样的,就不再说了。 本文采用的是GRU单元进行序列建模,将图信息嵌入到神经网络中,让GRU充分学习到item之间的关系,传统的GRU只能学到相邻的两个物品之间的关系,加入图信息后就能学到整个session子图的信息。 计算公式如下:为了刚好的理解这个计算过程,我们还是使用之前那个例子:v1->v2->v3->v2->v4来一步步分析输入到输出的过程。 (1) 是t时刻,会话s中第i个点击对应的输入, 是n✖️2n的矩阵,也就是会话子图的完整矩阵,而 是其中一行,即物品vi所对应的那行,大小为1✖️2n,n代表序列中不同物品的数量。 如果按照例子来看,如果i取2,那么 为 [0 0 1/2 1/2 1/2 0 1/2 0] 进一步的,可以把 :拆解为[ , ] (2) 可以理解为序列中第i个物品,在训练过程中对应的嵌入向量,这个向量随着模型的训练不断变化,可以理解为隐藏层的状态,是一个d维向量。    (3)  H是d*2d的权重向量,也可以看作是一个分块的矩阵,可以理解为H=[Hin|Hout],每一块都是d*d的向量。 那么我们来看看计算过程: 1)[ ..., ] ,结果是d * n的矩阵,转置之后是n*d的矩阵,计作 2) : H相当于[   ],即拆开之后相乘再拼接,因此结果是一个1 * 2d的向量。 上面就是完整的第i个点击的输入的计算过程,可以看到,在进入GRU计算之前,通过跟As,i矩阵相乘,把图信息嵌入到了神经网络中取,加深了神经网络学习到的item之间的交互信息。 此外,就是GRU的计算过程了,跟原始的GRU不一样的地方在于输入从xt变成了嵌入了图信息的as,i。 通样也有更新门和重置门,计算方法跟原始GRU一模一样。 这里的 其实就是相当于原始gru中的 ,只不过在SR-GNN里面,进行一轮运算的时候i是没有变化,相当于每个物品单独进去GRU进行计算,得到自己的向量,也就是说在GRU的计算过程中, 是不断变化的,看一下源码更易于理解: hidden就是公式里面的 ,在gru的每一个step计算中都会进行更新,这里我有个疑问,如果所有item的hidden都更新的话,那么应该是整个序列中所有的item并行进入GRU中进行计算,每一个step都得到自己的vector,当每个item的vector更新后,下一个step就重新根据新的 计算 ,接着计算下一个step。 计算过程大概就是下面这样:这里有四个GRU并行计算,没次更新自己的hidden状态,输入则考虑所有的hidden和图信息。 从上面的图看来,每一个item都要进行T个step得到自己的item-vec,所以经过T个step后,我们就得到了序列中所有item的向量,即:图中用蓝色框框画出来的向量,有了这些向量后,我们怎么得到预测结果呢?这就引入了下一个问题。 观察上面的模型结构,我们看到attention,没错,我们认为一个session中的这些item-vec并不都对预测结果产生影响,有些item对结果影响很大,有些影响很小,所以我们进行了加权求和。同时,论文认为session对最后一个item-vec,s1=vn是重要的,所以单独拿出来:公式(6)就是简单的attention操作,其实从公式上来看就是计算每个vi跟最后一个向量vn的权值,然后进行加权求和。 在最后的输出层,使用sh和每个物品的embedding进行内积计算,这里vi应该是item的embedding层出来的向量,而不是后面一直更新的hidden:最后通过一个softmax得到最终每个物品的点击概率: 损失函数为交叉熵损失函数:从数据上来看,SR-GNN超过了经典的GRU4REC,这也说明了图信息的嵌入能带来更好的推荐效果。 本论文很巧妙的将图信息嵌入的神经网络中,更高地让GRU学习到每个item之间的关系,不再局限于相邻的物品之间进行学习。近年来,图神经网络的思想和方法屡屡被用在推荐系统中,学好图神经网络应该是推荐系统的下一个热潮。

神经网络毕业论文难吗

我简单说一下,举个例子,比如说我们现在搭建一个识别苹果和橘子的网络模型:我们现在得需要两组数据,一组表示特征值,就是网络的输入(p),另一组是导师信号,告诉网络是橘子还是苹果(网络输出t):我们的样本这样子假设(就是):p t1 0 3 12 1 4 2这两组数据是这样子解释的:我们假设通过3个特征来识别一个水果是橘子还是苹果:形状,颜色,味道,第一组形状、颜色、味道分别为:1 0 3(当然这些数都是我随便乱编的,这个可以根据实际情况自己定义),有如上特征的水果就是苹果(t为1),而形状、颜色、味道为:2 1 4的表示这是一个橘子(t为2)。好了,我们的网络模型差不多出来了,输入层节点数为3个(形状、颜色,味道),输出层节点为一个(1为苹果2为橘子),隐藏层我们设为一层,节点数先不管,因为这是一个经验值,还有另外的一些参数值可以在matlab里设定,比如训练函数,训练次数之类,我们现在开始训练网络了,首先要初始化权值,输入第一组输入:1 0 3 ,网络会输出一个值,我们假设为4,那么根据导师信号(正确的导师信号为1,表示这是一个苹果)计算误差4-1=3,误差传给bp神经网络,神经网络根据误差调整权值,然后进入第二轮循环,那么我们再次输入一组数据:2 0 4(当仍然你可以还输入1 0 3,而且如果你一直输入苹果的特征,这样子会让网络只识别苹果而不会识别橘子了,这回明白你的问题所在了吧),同理输出一个值,再次反馈给网络,这就是神经网络训练的基本流程,当然这两组数据肯定不够了,如果数据足够多,我们会让神经网络的权值调整到一个非常理想的状态,是什么状态呢,就是网络再次输出后误差很小,而且小于我们要求的那个误差值。接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是,之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x<=0,5、x=、x>=,我一般都是舍弃的,表示未知。总之就是你需要找本资料系统的看下,鉴于我也是做图像处理的,我给你个关键的提醒,用神经网络做图像处理的话必须有好的样本空间,就是你的数据库必须是标准的。至于网络的机理,训练的方法什么的,找及个例子用matlab仿真下,看看效果,自己琢磨去吧,这里面主要是你隐含层的设置,训练函数选择及其收敛速度以及误差精度就是神经网络的真谛了,想在这么小的空间给你介绍清楚是不可能的,关键是样本,提取的图像特征必须带有相关性,这样设置的各个阈值才有效。OK,好好学习吧,资料去matlab中文论坛上找,在不行就去baudu文库上,你又不需要都用到,何必看一本书呢!祝你顺利毕业!

图神经网络好发论文吗如下:

图神经网络将深度学习的预测能力应用于丰富的数据结构中,这些数据结构将物体及其对应关系描述为图中用线连成的点,图神经网络读博好。在图神经网络中,被称为“节点”的数据点通过被称为“边”的线连接,各种元素均以数学形式表达,这使机器学习算法可以在节点、边或整个图的层面做出有用的预测。

这个理科生应该都清楚,图有点(Vertex)和边(Edge)两部分组成,一个图就代表了各个实体节点(node)之间的关系(edge):每个节点或者边都可以包含它的一些属性信息,比如如果一个节点表示一个人,那么就可以包含这个人的姓名、性别、身高、体重之类的..我们研究需要的信息。而这些信息,都可以用通用的向量的形式存入其中:

还有别忘了一点,边是可以有方向的,按此我们还能分为有向图或是无向图。边的方向代表了信息的传递方向,例如a是b的微信好友,那b也是a的微信好友,好友关系自然是没方向的,而比如a是b的爹,那显然b就不是a的爹,此时叫爹的关系就是有有方向的。图结构的构建是非常灵活的,可以根据个人的设计构建出各种不一样的图。而作为开发者显然要结合实际解决的问题来构建合适的图。

神经网络是人工智能的一部分,只是解决问题的一种方法,不过现在神经网络很“流行”,说它流行是因为神经网络还有好多需要改进和完善的地方,正因如此大家才会去研究它,说明这种方法很具有研究的潜质。其实只要你有恒心和兴趣(兴趣很重要),神经网络也不是那么难学的,先看一些入门的知识,最好能做一下像C++(较难)或Matlab(交易)的神经网络编程,这对你的神经网络学习会很有帮助的。祝你成功!

你不翻译了???

神经网络识别毕业论文

我简单说一下,举个例子,比如说我们现在搭建一个识别苹果和橘子的网络模型:我们现在得需要两组数据,一组表示特征值,就是网络的输入(p),另一组是导师信号,告诉网络是橘子还是苹果(网络输出t):我们的样本这样子假设(就是):p t1 0 3 12 1 4 2这两组数据是这样子解释的:我们假设通过3个特征来识别一个水果是橘子还是苹果:形状,颜色,味道,第一组形状、颜色、味道分别为:1 0 3(当然这些数都是我随便乱编的,这个可以根据实际情况自己定义),有如上特征的水果就是苹果(t为1),而形状、颜色、味道为:2 1 4的表示这是一个橘子(t为2)。好了,我们的网络模型差不多出来了,输入层节点数为3个(形状、颜色,味道),输出层节点为一个(1为苹果2为橘子),隐藏层我们设为一层,节点数先不管,因为这是一个经验值,还有另外的一些参数值可以在matlab里设定,比如训练函数,训练次数之类,我们现在开始训练网络了,首先要初始化权值,输入第一组输入:1 0 3 ,网络会输出一个值,我们假设为4,那么根据导师信号(正确的导师信号为1,表示这是一个苹果)计算误差4-1=3,误差传给bp神经网络,神经网络根据误差调整权值,然后进入第二轮循环,那么我们再次输入一组数据:2 0 4(当仍然你可以还输入1 0 3,而且如果你一直输入苹果的特征,这样子会让网络只识别苹果而不会识别橘子了,这回明白你的问题所在了吧),同理输出一个值,再次反馈给网络,这就是神经网络训练的基本流程,当然这两组数据肯定不够了,如果数据足够多,我们会让神经网络的权值调整到一个非常理想的状态,是什么状态呢,就是网络再次输出后误差很小,而且小于我们要求的那个误差值。接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是,之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x<=0,5、x=、x>=,我一般都是舍弃的,表示未知。总之就是你需要找本资料系统的看下,鉴于我也是做图像处理的,我给你个关键的提醒,用神经网络做图像处理的话必须有好的样本空间,就是你的数据库必须是标准的。至于网络的机理,训练的方法什么的,找及个例子用matlab仿真下,看看效果,自己琢磨去吧,这里面主要是你隐含层的设置,训练函数选择及其收敛速度以及误差精度就是神经网络的真谛了,想在这么小的空间给你介绍清楚是不可能的,关键是样本,提取的图像特征必须带有相关性,这样设置的各个阈值才有效。OK,好好学习吧,资料去matlab中文论坛上找,在不行就去baudu文库上,你又不需要都用到,何必看一本书呢!祝你顺利毕业!

神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)神经网络的理论和学习算法还有待于进一步完善和提高。神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 二、离心式制冷压缩机的特点与特性 离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点: (1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。 (2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。 (3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。 (4)能经济方便的调节制冷量且调节的范围较大。 (5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。 (6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。 制冷与冷凝温度、蒸发温度的关系。 由物理学可知,回转体的动量矩的变化等于外力矩,则 T=m(C2UR2-C1UR1) 两边都乘以角速度ω,得 Tω=m(C2UωR2-C1UωR1) 也就是说主轴上的外加功率N为: N=m(U2C2U-U1C1U) 上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2 ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷 W=U2C2U-U1C1U≈U2C2U (因为进口C1U≈0) 又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2) 故有 W= U22(1- Vυ1 ctgβ) A2υ2U2 式中:V—叶轮吸入蒸汽的容积流量(m3/s) υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg) A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s) β—叶片安装角 由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。 按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。 三、离心式制冷压缩机的调节 离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

你不翻译了???

简单说,神经就是神经元,用于存储单个的信息,网络就是利用各神经元共同协作处理信息的功能。这是人脑的处理方式,而人工神经网络就是模拟人脑来处理各种问题。应用在图像识别上,就是预先将已知的图像特征分成很多个小点,逐个作为神经元存储,这点是必须的,在神经元存储到一定范围后,就可以应用神经网络的协作能力去识别其他的图像了。另外,神经网络还有学习记忆功能,他会在实际使用中不断丰富自己的神经元,从而使后面的图像识别更加快速,准确。 你的论文应该更多的强调神经网络的优越性,至于算法等概念,理解后,作为介绍COPY过来就好。相关书籍:《神经网络》作 者: 候媛彬,杜京义,汪梅 出 版 社: 西安电子科技大学出版社 这本书我没看过,我们自编的教材中有部分资料是参考这里的。

  • 索引序列
  • 毕业论文卷积神经网络
  • matlab神经网络毕业论文
  • 循环神经网络毕业论文
  • 神经网络毕业论文难吗
  • 神经网络识别毕业论文
  • 返回顶部