首页 > 毕业论文 > 板带钢的板形控制毕业论文

板带钢的板形控制毕业论文

发布时间:

板带钢的板形控制毕业论文

在轧制过程中,轧件的塑性延伸,若沿横向处处相等则产生平坦板形;反之,则产生不同形状的板形。其原因是由于延伸不均而在轧件横断面上纵向纤维之间产生内拉或压应力,在轧制较薄钢板时,应力作用较为明显,使轧件失稳而形成瓢曲或波浪。箱面的板形不得大于301、纵向或斜向局部凸起的,轧制及分切工艺参数控制不合理:铝箔表面呈现的细小的,一些在轧制时仅仅表现为板形不良的铝箔在分切或退火后的使用时却表现为起皱。由于板形严重不良;卷取轴精度不够,必然起皱。皱纹的主要产生原因;压平辊压力控制不当,其本质为张力不足以使箱面拉平。

刘宏民的研究成果是:热轧辊型在线检测装置研制、高精度板带轧机板形控制的理论体系、冷轧带钢厚度和板形控制模型。

1、热轧辊型在线检测装置研制

该项目来源于宝山钢铁公司。热带连轧辊型在线检测是指在轧机正常运转的情况下,对轧辊的表面形状进行检测。热带连轧检测是当前热带钢连轧机板形控制技术的前沿课题。

本项目采用电涡流测距传感器作为辊型在线检测用传感器,研制了一种新的电涡流传感器径向运动和定位系统,并制定了辊型在线检测策略和数据处理方法。

通过对模拟工况的实验研究表明,该成果可用于热轧现场的辊型在线检测。研究工作于2002年完成,填补了国内空白。

2、高精度板带轧机板形控制的理论体系

该研究建立了板带轧机板形控制的理论体系、机理模型和仿真软件。包括5个方面:轧件三维变形理论模型、轧辊变形理论模型、板形判别理论模型。

板形模式识别理论模型、板形控制策略和传递矩阵法。对实际轧制过程进行数字仿真,并用工程数据验证,证明了本理论模型和仿真软件是可靠的。

3、冷轧带钢厚度和板形控制模型

该项目来源于重庆钢铁设计研究院。用条元法建立金属三维塑性变形模型,用分割模型影响系数法建立辊系的弹性变形模型,用条元法建立轧后带材的板形判别模型,用人工神经网络方法建立板形模式识别模型,将上述模型集成,形成板形预设定控制的数学模型,并开发了相应的仿真软件。

扩展资料:

刘宏民在科研领域为国家和社会做出的突出贡献得到了党和国家的充分肯定,刘宏民教授是国务院政府特殊津贴专家,教育部优秀教师,国家百千万人才工程1997年度第一、二层次人选。

刘宏民教授承担了多个国家与河北省的科研项目与课题,其中模拟轧制过程条元法,1996年12月获原机械工业部科技进步二等奖。

板形控制的机理模型与条元分析方法,2003年1月获教育部提名国家科学技术奖自然科学二等奖;工程三维轧制理论及其应用,1997年3月获原国家教委科技进步二等奖。

参考资料来源:百度百科—刘宏民

板形是板、带材平直度的简称,一般是指浪形、瓢曲或旁弯的有无及其程度。常见的酸洗设备板形缺陷有“镰刀弯”,浪形和瓢曲“肋状皱”和“眼睛”属于特殊的浪瓢缺陷。来并无浪瓢,但一经纵剪后即出现旁弯或者浪瓢,这便是潜在板形缺陷。板形控制的总目标是将上述两类缺陷都控制在允许范围之内。通常意义上的板形还包括板、带材横向断面分布的均匀度,一般用板材中央与边部厚度之差的绝对值或相对值来表示,此差值越小,均匀度越好。实际轧出的板材断面有时呈鼓形、楔形、中凹形或其他不规则形状,这都是板形不良的表现。板形不良会限制轧制速度的提高及轧机所能轧出的最薄规格,板形严重不良会导致勒辊、轧卡、断带、撕裂等事故的出现,甚至可能损坏轧机。箱面的板形不得大于301、纵向或斜向局部凸起的,轧制及分切工艺参数控制不合理:铝箔表面呈现的细小的,一些在轧制时仅仅表现为板形不良的铝箔在分切或退火后的使用时却表现为起皱。由于板形严重不良;卷取轴精度不够,必然起皱。皱纹的主要产生原因;压平辊压力控制不当,其本质为张力不足以使箱面拉平。板形缺陷(shape defect of strip)带钢各横截面的中性线不在同一水平面内而出现的板形不平直的缺陷。常见的板形缺陷有:边浪,中浪,1/4浪、横向波浪和上凸下凹等。(见图)边浪 带钢边部厚度减薄量大于中部,从而引起边部的延伸量大于中部的现象。边浪又有单边浪、双边浪和不对称双边浪3种。产生边浪的主要原因是总轧制力过高;正弯辊力小,负弯辊力大(见弯辊技术);原始凸度和热凸度(见辊型控制)小。边浪可以由弯辊和轧辊轴移(见移辊技术)来消除。单边浪由调整压下解决。中浪 带钢中部的厚度减薄量大于边部,从而引起中部的延伸量大于边部的现象。产生中浪的主要原因是总轧制力太小;正弯辊力大,负弯辊力小;原始凸度和热凸度大。中浪可以由弯辊和轧辊轴移来消除。

在国际上首创提出“模拟轧制过程三维变形的条元法”,主持国家自然科学基金、河北省自然科学基金、博士点基金、国家重点科技攻关及企业技术合作项目12项。在国内外科技刊物上发表60 余篇论文,出版专著2部。是国家百千万人才工程第一、第二层次人选,教育部优秀骨干教师,中国工程院院士有效候选人。板形理论体系及设定控制数学模型研究 获2003年河北省科技进步一等奖本课题为河北省自然科学基金项目。1998年完成了对“板形理论体系及设定控制数学模型”的研究,该项研究用三次样条函数条元法研究金属带材三维塑性变形,用影响函数法研究辊系弹性变形,用三次样条函数条元法研究轧后带材失稳,上述三项工作中的理论模型联立,形成了独具特色的板形理论体系和板形设定控制数学模型,在板形控制理论方面完成了开创性的工作,达到国际先进水平。研究成果应用于河北斌杨集团山海关冷轧带钢厂和邯钢集团衡水薄板有限公司,取得了明显的经济效益。获2003年度教育部提名国家科学技术奖自然科学奖二等奖。热轧辊型在线检测装置研制该项目来源于宝山钢铁公司。热带连轧辊型在线检测是指在轧机正常运转的情况下,对轧辊的表面形状进行检测。热带连轧检测是当前热带钢连轧机板形控制技术的前沿课题。本项目采用电涡流测距传感器作为辊型在线检测用传感器,研制了一种新的电涡流传感器径向运动和定位系统,并制定了辊型在线检测策略和数据处理方法。通过对模拟工况的实验研究表明,该成果可用于热轧现场的辊型在线检测。研究工作于2002年完成,填补了国内空白。高精度板带轧机板形控制的理论体系 和机理—智能模型国家自然科学基金: 50175095该研究建立了板带轧机板形控制的理论体系、机理模型和仿真软件。包括5个方面:轧件三维变形理论模型、轧辊变形理论模型、板形判别理论模型、板形模式识别理论模型、板形控制策略和传递矩阵法。对实际轧制过程进行数字仿真,并用工程数据验证,证明了本理论模型和仿真软件是可靠的。本项目在以下几个方面处于国内领先、国际先进水平:(1) 形成板形控制理论体系;(2) 提出板形判别的条元法;(3) 提出板形模式识别的6参数输入、3参数输出的神经网络模型;(4) 提出HC轧机板形控制策略;(5) 基于智能模型的传递矩阵法。本项目在邯钢900HC六辊冷带钢轧机上已成功应用,弯辊力降低40%,成品率提高12%。目前正准备应用于邯钢1050HC六辊冷带钢轧机,进一步推广应用到国内其它冷轧机上。冷轧带钢厚度和板形控制模型 技术开发该项目来源于重庆钢铁设计研究院。用条元法建立金属三维塑性变形模型,用分割模型影响系数法建立辊系的弹性变形模型,用条元法建立轧后带材的板形判别模型,用人工神经网络方法建立板形模式识别模型,将上述模型集成,形成板形预设定控制的数学模型,并开发了相应的仿真软件。该软件具有以下功能:(1)离线板形分析;(2)板形预设定控制;(3)轧机板形控制性能分析;(4)开发新的板形控制技术;(5)提高冷轧带钢厚度在线控制数学模型。研究工作于2001年完成。该成果已应用于重庆钢铁设计研究院项目投标技术分析论证中。刘宏民教授领导的课题组完成的“板带轧机板形控制的理论体系、数学模型、仿真软件及其应用”项目获得2004年国家科技进步二等奖。这是刘宏民教授20年来在板形理论和控制数学模型的科学研究中坚持自主创新取得的又一重大成果。 2012年2月14日,在北京人民大会堂举行的2011年度国家科学技术奖励大会上,刘宏民教授科研团队与鞍山钢铁集团公司等单位合作完成的“冷轧板形控制核心技术自主研发与工业应用”项目成果获得国家科技进步二等奖。“冷轧板形控制核心技术自主研发与工业应用”项目是刘宏民教授所带领的科研团队获得的第二项国家科技进步奖。该项目实现了冷轧带钢板形检测这一核心关键技术的自主创新,实现了板形闭环控制的国产化,突破了国外的技术垄断和封锁,跨越提升了我国冷轧带钢板形控制技术水平,可用于新建冷轧机的高水平研制,现有轧机的改进提高,提升了我国冷轧机的装备水平

板带钢轧制工艺的毕业论文

1 轧制过程轧制过程是由轧件与轧辊之间的摩擦力将轧件拉进不同旋转方向的轧辊之间使之产生塑性变形的过程。金属材料尤其是钢铁材料的塑性加工,90%以上是通过轧制完成的。由此可见,轧制工程技术在冶金工业及国民经济生产中占有十分重要的地位。轧制工艺按照产品类型可以分为板带轧制、管材轧制、型材轧制以及棒、线材轧制四种基本类型; 按生产工艺可以分为热轧和冷轧工艺;按厚度可分为薄板(厚度<4mm)、中板(厚度4~20mm)、厚板(厚度20~60mm),特厚板(厚度>60mm、最厚达700mm) 。在实际工作中,中板和厚板统称为"中厚板"。轧制过程是将金属坯料通过一对旋转轧辊的间隙(各种形状),因受轧棍的压缩使材料截面 减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产型材、板材、管材。2 轧制变形理论 轧制变形区轧制时轧件在轧辊作用下发生变形的部分称为轧制变形区。 简单理想轧制及几何变形区简单理想轧制的条件:轧辊直径相同、转速相等、轧辊为圆柱形刚体、轧件为均匀连续体,轧制时变形均匀,轧件为平板。几何变形区:轧件与轧辊接触面之间的几何区,即从轧件入轧棍的垂直平面到轧件出轧辊的垂直平面所围成的区域ACBD。 简单轧制时变形区参数间的关系1)咬入角轧件被咬入轧辊时轧件和轧辊最先接触点和轧辊中心的连线与两轧辊中心连线所构成的角度。2)变形区长度轧件和轧辊接触圆弧的水平投影长度。两轧辊直径相等时:3)接触面积接触面水平投影面积。解析算式如下: 变形理论沿轧件断面高度方向上的变形分布不均匀带钢表面粗晶区的形成和轧制状态有关 :1)轧制时 ,由于摩擦力的存在 ,在轧件和轧辊接触部位存在难变形区 ,当轧制润滑条件不好时,容易在表面层产生粗晶区,可以通过开启机架间冷却水来改善润滑。2)沿轧件高向上变形分布是不均匀的,表面层变形小。压下量分配不合理时 ,使得轧件表面层变形量小,从而产生粗晶。 不均匀变形理论:1)沿轧件断面高度方向上的变形、应力和金属流动分布都是不均匀的。2)在几何变形区内,在轧件与轧辊接触表面上,不但有相对滑动,而且还有粘着,在粘着区轧件与轧辊之间无相对滑动。3)变形不但发生在几何变形区内,也产生在几何变形区以外,其变形分布都是不均匀的,轧制变形区分为变形过渡区,前滑区,后滑区和粘着区。4)在粘着区有一个临界面,在这个面上金属的流动速度分布均匀,且等于该处轧辊的水平速度。3 几种轧制工艺介绍 异步轧制异步轧制是一种速度不对等轧制,上下工作辊表面线速度不等,以降低轧制力;因此又称差速轧制,也称搓轧。异步轧制用于轧制双金属板,将引起轧件的弯曲变化,异步轧制可以调节双金属板的弯曲曲率,而且在同一异步比的条件下,两金属组元的厚比在某一变形程度条件下,可以得到平直的轧件。异步轧制是一个新的轧制工艺,有许多优点。采用异步轧制可以大大地降低轧制力,所以设备重量轻,能耗低,轧机变形小,产品精度高;减少了轧辊的磨损和中间退火,降低了生产费用;轧制道次少,生产率高;轧机可轧厚度大。异步轧制不但适用于冷轧板带,并且可以用于热轧板等,是一项很有发展前途的生产工艺。异步轧制的不足主要是容易引起轧机震颤。 累积叠轧焊累积叠轧焊( accumulative roll bonding,ARB) 是将表面进行脱脂、加工硬化等处理后尺寸相等的两块薄板材料在一定温度下叠轧并使其自动焊合,然后重复进行相同的工艺反复叠片、轧制焊接,从而使材料的组织得到细化,夹杂物均匀分布,大幅度提高材料的力学性能。 双驱动轧制双驱动轧制常用于环件加工,其基本工作原理与常规环件轧制基本相似,不同之处在于双驱动轧制过程中芯辊上加载一个驱动力矩,使得芯辊的转动方式由随动转动变为自主驱动控制转动。环件双驱动轧制设备是在常规环件轧制设备的基础上将芯辊部件改成带液压驱动旋转的芯辊,能够实现芯辊自主运动。在驱动辊和芯辊旋转作用下,环件连续进入由驱动辊与芯辊构成的轧制孔型。由于芯辊自主运转并不随环件运转,在轧辊与环件表面摩擦力的作用下,环件内、外表面材料旋转速度不相匹配,犹如环件内、外表面材料发生搓动,增大了环件组织的塑性变形量使得环件产生连续局部塑性变形。壁厚减小、直径扩大、截面轮廓成形的同时,环件内部组织因产生较大的塑性变形而改善零件的组织性能。环件经反复多转轧制使直径达到预定值时,环件外表面与信号辊接触,驱动辊停止进给运动,环件双驱动轧制过程结束。轧制过程中,导向辊的导向运动保证了环件的平稳转动。

海宝钢钢铁厂实习报告实习目的:通过这次对钢铁厂的认识实习,是我们对钢铁生产的主要设计和工艺流程,运输联系、工厂布局,钢铁冶金企业的车间组成和总图布置,铁路线路及站场,机车车辆、厂矿道路及汽车运输,机械化运输及装卸设备等,有一较全面的感性认识。并对总图设计专业所涉及的范围和主要内容能有所了解,以便为以后课程的学习打下基础。实习日期:2005年9月22日星期四实习地点:上海宝山钢铁公司总厂宝钢概况上海宝山钢铁集团公司(以下简称:宝钢)位于上海市宝山区北部,北临长江入海口南支河段,与崇明岛隔江相望。宝钢是以宝山钢铁集团公司为主体,联合重组上海冶金控股公司和上海梅山钢铁公司,于1998年11月17日成立的特大型钢铁联合企业,注册资本达458亿元,年产钢能力2000万吨左右,盈利水平居世界领先地位,产品畅销国内外市场。截止2003年底,拥有全资子公司22家(其中境外子公司9家),控股子公司14家(其中境外2家),参股子公司24家,包括钢铁、化工、金融、贸易等众多领域。将成为中国汽车用钢、油气开采和输送用钢、不锈钢、家电用钢、交通运输器材用钢、电工器材用钢、锅炉和压力器用钢、食品饮料包装、金属制品用钢以及高等级建筑用钢等钢铁精品基地,中国钢铁工业新技术、新工艺、新材料的研发基地。宝钢注重环保,打造绿色宝钢,厂区绿化率答,空气质量达到国家风景区标准,是中国第一个国家级工业旅游景区。建厂20年至今,累计产钢亿吨,利润亿元,利税亿元,科技成果转化率达95%以上,目前位居世界500强企业309位,钢铁企业世界第3位。原料码头及原料堆场宝钢原料码头位于厂区的北方,长江入海口南支河段南侧,由主原料码头、副原料码头、重油码头和工作码头组成,呈反写的“下”型。如图示:在码头的一侧停泊着巨型货轮“河北奔腾”号,码头上巨大的机械臂正从轮船上卸下由山西大同煤矿运来的煤。然后通过码头一侧的机械传送带送到煤堆场去,供宝钢使用。具介绍,铁矿石也是如此,全部由此码头的传送带运至矿石料场。煤堆场紧靠矿石料场,二者占地都很大,但这也是宝钢的重要部位,对宝钢的连续生产有着“生命线”和“血库”的意义。料场中平时都贮有相当部分的煤和铁矿石,以备在紧急状态下利用,可保证宝钢40多天的连续生产。宝钢使用的煤主要来自山西大同和海南,铁矿石主要靠进口,来自巴西和澳大利亚品位高的铁矿石以及国内部分铁矿。这样布局主要是考虑到上海特殊的区位优势,濒临长江和东海,便利的航运及发达的沪宁杭三角洲地带,更有利于产品销售和出口,属于典型的临海型钢铁企业布局。从原料码头到堆场,全部由机械化作业。封闭的皮带运输,减少原料的流失,还利于环保,这样就大大的降低了劳动成本,为企业赢得了竞争的资本。炼铁厂炼铁厂是以高炉为核心的一个较为复杂的部位。我们主要看了高炉和粉煤楼。宝钢炼铁厂位于堆场的下位,主要由四座高炉构成,其中4号BF是新近投产的,国产化程度较高,由于含有多项技术秘密,未对外开放。我们通过对比宝钢4座高炉的指标:成本:1BF 元/t-p;2BF 元/t-p;3BF 元/t-p;4BF 元/t-p。产量:1BF 329万吨;2BF 328万吨;3BF 378万吨;4BF 235万吨。可见,我国的技术和国外还是有一定差距的。我们在2号高炉参观实习。该厂采用半岛式布置,有独立的铁水罐车停放线,这对于具有多个出铁口铁场的大型高炉车间提高运输能力是有益的。每个出铁口均有两条独立的配车线路,并且在停放线上有摆动流嘴,出一次铁可以放几个铁水罐,提高了生产效率。我们看到有标着编号的300吨鱼雷罐车将高炉中的铁水运往炼钢车间。2号高炉的生产工艺流程如图所示:其设计年限为10年,有效容量为4063立方米,年产量为320万吨。在每个出铁口,都有一个滤渣器,将铁水和铁渣分开。两条铁水沟和两条出渣沟,沿着出铁渣沟走,这里温度还很高,到最下边是水渣系统。高压水枪朝刚刚出炉不久的铁渣喷水成渣,铁渣用等候在下边的卡车拉走,送往水泥厂或渣砖厂作原料用。而用过的水收集后再冷却,重新利用,这样既节约了用水,又减少了渣水排到河海中造成环境污染严重,环境保护和经济效益一举两得,实现可持续发展的目标。A、B制粉作业区位于高炉的一侧,卡车把原煤从堆煤场拉过来,然后倒入粉煤楼下面的煤仓中,再由抽风机把煤吸入煤楼进行制粉作业。经过一系列处理加工,用吹风机吹入高炉座炼铁用的燃料。在13层高的粉煤楼上可以看到宝钢的大部分厂区,可以对宝钢的大体布置有一个全面的认识,以及宝钢炼铁厂的铁路线路和铁水罐车的运输有一个全面了解,这对我们以后做总图设计时是有极大好处的。但由于当日受台风影响未能在上面多看,而失去了一个很好的机会。炼钢厂及铸造车间炼钢厂位于宝钢的中部,其上部是炼铁厂,下部是无缝钢管厂。其基本流程为(混铁车)铁水——转炉——钢包——连铸车间,进入庞大的生产车间,迎面扑来的是由火红的铁水发出的阵阵热浪,参加走道上沾满了铁粉。一个起重能力为40吨的吊车正吊着一桶铁水,缓缓移向2号转炉,然后将铁水倒到转炉中炼钢。该厂有转炉3座,具体参数如下:类型:顶底复吹。公称容量:300吨。最大供氧流量:80000Nm3/h。烟气处理型式:OG系统。设计能力:年产铁671万吨。投产日期:1985年9月。可用于产品:汽车板、船板、管线、耐候钢、结构钢、模具钢等。可见,其适用的是世界当今容量较大较先进的转炉。我们看到,1号转炉刚出完钢水,正在检修。长长的检修杆深入转炉内部,将粘挂在壁炉上的钢水渣用高压空气吹下,然后喷上耐火材料用于对炉壁的修复。从走道到达转炉的操作处,刚刚倒入钢水的2号转炉正在冶炼钢铁,几个工人师傅在操作着设备,通过火镜观察炉中的温度及变化,以便准确及时地加入原料。当炉中温度达到一定的程度,转炉旁吊门打开,接着是长长的钢包探头伸进炉中喷入氧化剂,除去P、S等有害杂质,提高钢质量。接着我们进入了连铸车间。这里是宝钢3号连铸机建有一台垂直弯曲型二机二流宽厚板坯连铸机,年产设计能力230万吨,可生产厚度220、250、300mm宽为1200——2300mm连铸坯,3号连铸机汇集了大包倾动、F渣检测、结晶器液压振动、结晶热成像、扇形轻压、冷幅切控制、分节辊离排等技术。其平面布置如图:我们实习在3号浇钢作业区上部,当钢水从大包操作室位置由连铸机铸成具有一定宽度和厚度的板坯,经切割打磨送进热轧厂或板坯场。火红的板坯到一定的长度时,由乙炔焰进行切割,然后喷水冷却,表面处理防止氧化,再经毛面打磨,后送到冷坯厂进行冷却。热轧车间:(1050mm、1580mm)我们主要在1050厂和1580厂实习,两个厂的工艺流程差不多,只是在具体设备上有区别,生产钢卷宽度不一样。其工艺流程图如下:加热炉——高压水枪除表面氧化层——粗轧——压轧机组(SMS)水冷却——侧宽仪——打卷机——标号——出厂。在1050厂我们看到,当钢坯加热后,首先除去氧化层,粗轧,经过往返5次压轧、测宽,再经过七组压轧机(SMS)轧制成型,然后15×6水幕带进行冷却,测宽,然后打卷。据介绍此厂生产钢板厚3mm。在压轧过程中,测得不合格的将推至一侧作废品。有3组打卷机,平时两个工作一个备用,保证连续作业。在1580厂不同的是加热后先使其变窄,热轧时只需3次,然后检测,再进行精整,冷却打卷。这一系列工艺过程中,全部由机器完成,从生产到运输流水自动化作业,这里温度达40多度,工人很少,高度的自动化是有利的,这也是现代化工厂企业的标志。冷轧车间(1420、1550)1420冷轧厂位于宝钢工业区南部,在热轧1580厂的下位。其基您正在浏览的实习报告是上海宝钢钢铁厂实习报告 本工艺流程为:热轧后钢卷——酸洗——轧机——镀锡厚板连续退火——准备机组——电镀锡——精整——电镀锡板卷。进入宽大的厂房,热浪迎面扑来,刚刚从热轧厂送来的钢卷放在厂房中冷却,其为青紫色。顺着流程走,这里是1550mm冷轧车间。我们看到开始有机组用高压水枪对热轧的钢卷进行酸处理,以除去其表面的氧化层,保证钢片的质量。然后是切头,保证接口的平整紧密,下面就是焊接,将切头后的两块钢板接起来,增加长度然后再经过几组轧机的压轧、定宽、检测,最后变成很薄的钢片,呈银白色。每个轧机上一般有两个轧辊,交替使用,更有利于生产。经过一系列的机组后,检测为合格产品,送入清洁工厂进行处理。生产好的带钢钢卷送到产品库中。在清洁工厂中,我们看到一台台清洁机正在工作,将钢卷表面进行处理,除去氧化层,并涂抹上专用油,保护钢材不被氧化,保证产品质量。再朝里面走是钢产品展。据介绍,该厂生产的钢材用于各种汽车板,如一汽奥迪A6、上海大众帕萨特B5、上海通用别克等,还出口意大利Fiat等。在展厅里边,一辆奥迪A6的车体及红旗、通用别克等汽车模型。还有家电用钢,广泛应用于电视、洗衣机、电脑、可口可乐易拉罐、VCD、冰箱等用品。产品已进入了生活中的方方面面,正如它上面所说的“钢铁融入生活,共享丰富人生”。高线厂和无缝钢管厂高速线材厂和无缝钢管厂相邻,同位于钢轧的工作下位。有时初轧厂检修,我们就去高速线材厂实习。高线轧制工艺流程如下:加热炉区——粗轧机组——中轧机组——预精轧机组——经轧机组——减定径机——水箱——测径仪——夹送辊——吐丝机——冷却线——集卷机——P&F线——打捆机——成品进入厂房,首先是加热炉对钢坯进行加热,然后是除P等有害杂质,然后经过竖向(H)与横向轧制(V)交替12组,飞剪,13、14号轧机,然后是预精轧机(15H—18V),S18剪,再到精轧机组轧制,测径,加送辊,到吐丝机时,把火红的钢线卷成像弹簧一样。后面就是较长的冷却线,检测、打捆、标号、运输。其方式是钩式运输线,全长560米,有60个吊钩组成。V=。据介绍,打捆机的工作周期是34秒,这和钩式运输线相配合,保证连续生产。无缝钢管厂位于粗轧车间的下位。其原材料是粗轧后的钢锭,这样布置是有利的,减少了场内的运输。1400mm连轧管机旧工艺流程图:管坯——环形炉加热——穿孔——空心坯减径——连轧——再加热——张力减径——冷却——分段锯——中间库——切头——精整检测——成品库。这里的温度很高,40多度,加热后的钢锭被切断后,再朝前送,在高温下用芯棒对钢坯进行穿孔。先定心,第一次钻头不动,钢坯推进,然后再用芯棒推进、钻头旋转打磨,抽出芯棒。钢管冷却,再送进精整车间,进行深一步的加工精整到成品。在此,我们注意到厂房全部用钢板做地板,据介绍,这样做有两方面的好处:一是好多设备在地下便于检修;二是由于这需要消耗大量的油,废油流到地下便于回收利用,防止废油流入地下污染土地和地下水资源。这可谓是环保和节约一举两得。心得体会通过这次实习使我对宝钢有了大体的认识,进一步了解了钢铁生产的主要设计及工艺流程、运输和车间布置、厂区路网及绿化程度。这次认识实习使我了解了工艺流程对厂址选择及车间布置的决定作用,认识宝钢是我们人生的一大财富。宝钢的科学选址和合理布局、先进的生产线、人性化的设计与管理、花园式的厂区,都给我们留下深刻的印象,这将对我们今后的工作产生重大的影响。我归结为以下几点:1、 科学选址和合理布局上海资源缺乏,既没有铁矿石也缺少煤,为什么会选址在上海宝山区呢?就是因为上海有着发达的交通运输系统,廉价的水运是重要因素。上海地区属于亚热带季风气候区,盛行东南风。宝山区位于上海市的西北部,选址在宝山区,即位于盛行风向的下风向,减少了工业气体、粉尘对市区的污染。选址在上海,充分考虑了厂区的区位优势。有长江、东海的水运,还有便利的京沪、陇海、沪杭线等铁路运输;又位于沪宁杭经济带、东部沿海经济带和沿长江流域经济带的交汇处,有着广阔的腹地,发达的科技和巨大的钢铁销售市场,并且也便于出口国外。从巴西、澳大利亚进口铁矿石,用山西大同的煤,借助廉价的河运、海运,是典型的临海型布局。从厂区的布置来说是很合理的。像炼铁、炼钢等污染大的都在离生活区较远的老厂区,而像冷轧等污染小的车间距生活区相对较近。由原料码头——料场——炼铁厂——炼钢厂——连铸车间——初轧厂——热轧厂——冷轧厂等合理布置,从原料到成品流水作业线,根据生产的连续性布局,如炼钢上位是炼铁厂,下位是连铸车间等,并且厂区还留有相当的发展余地。减少了厂内的运输,提高了生产效益。2、 高效的创新机制强势的企业离不开强势的技术创新。宝钢坚持“引进、消化、吸收、创新”的企业技术进步方针,引进最新技术,注重自主开发,不断企业的核心竞争力。“掌握新技术,要善于学习,更要善于创新”,邓小平同志的勉励和要求,“严格苛求的精神,学习创新的道路,争创一流的目标”,构成了宝钢创新文化理念的主线,成为宝钢25年来前进的不竭动力。每个分工厂都有自己的学习创新活动,大家参加创新竞赛,促进了宝钢的科技进步。我们在每个行政楼大厅里就能看到工人们创新的成果。在这种机制下,宝钢科研成果达1300多项,专利授权1199件,已拥有企业技术秘密3339项。国内外技术贸易也迅速发展,成为技术加管理输出的先进企业集团。3、 花园式的工厂宝钢的另一大优势就是厂区的绿化,绿化率达到。在宝钢里面,你觉得是风景区而不是钢铁厂。每个厂房周围都有着近10米的绿化带,能吸烟止尘、净化空气、降低噪声、美化环境,给人良好的心情,提高工人的劳动积极性。从这几张照片上你可以看到宝钢的厂区的美化水平:青草、绿叶、红花,给人一种心旷神怡的感觉。另外,宝钢有很好的人文素质,人性化的公共设施。比如一个小小的警示牌,把棱角都折起来或者打磨平滑,防止伤人,在这一方面,许多城市或公园都自叹不如。因此,宝钢股份分公司成为中国冶金系统第一家通过ISO—14001环境认证的企业。在资源循环利用等方面,宝钢坚持走可持续发展的道路,为众多的企业树立了很好的榜样。4、先进的工业生产线宝钢自动化程度很高,企业员工较少,但产量却很高,一个大的厂房平时只需十几个甚至几个工人就可以安全生产了。从原料码头的抓斗卸料机开始,传送带、吊车等一系列大型的自动化设备,工人只需在操作间按键就行了。一个公里长的一个高线厂房,只有几个工人检察员、几个机器操作员就可以了。从原料到成品,几乎全部由机器完成,包括加热、控温、添料、轧铁、制品、检测、运输等。机械化、自动化,这是现代化工业的标志,宝钢在这一方面一直走在前列。并不断地改进生产线,使其更加完善,更加安全和高效,积极自助研究开发新的项目,提高企业的自主创新能力和竞争力。吴进朴2005年9月25日

课题性质(打√选择)设计(√)论文( )一、文献综述1.液压AGC简介厚度自动控制(Automatie Gauge control简称AGC)在钢板轧机,特别是带钢轧机上得到普遍应用,从50年代初到现在,已发展到十分成熟的地步。AGC系统的作用是消除轧件厚度的偏差。传统的电动AGC由于调节精度差,效率低,响应速度慢等原因,已被液压AGC取代。液压AGC系统包括测厚,厚度比较和调节,辊缝调整三部分。一般由位置反馈回路和压力反馈回路组成。两个反馈回路的反馈信号经过综合比例调节器进行比较后,输入电液伺服阀,调整阀的流量,控制液压缸的行程,从而实现轧件厚度的自动控制。2.课题研究意义现在我国大型轧机用液压AGC伺服油缸的试验与诊断技术还不成熟。大型轧机伺服油缸行程短、轧制力大、频率响应高,国内还没有合适的方法、标准及相关技术,往往无法判断故障部位,会造成备件和人力的大量浪费。因此,研制精度高、适宜检测大型轧机AGC伺服油缸的试验设备具有重要意义。3. 现代轧机AGC发展现状我国现有中厚板轧机27套,其中辊身长度在3000mm以上的中厚板轧机有7套,其余的辊身长度为3000mm。我国最宽的轧机为鞍钢4300mm厚板轧机,该轧机是改造过的国外二手设备。我国有4200mm厚板轧机1套,现安装在武钢。3500mm厚板轧机2套,分别安装在济钢和秦皇岛轧钢厂。另外,3300mm轧机安装在首钢和上钢三厂,2800mm中板轧机分别安装在武钢、邯钢、安钢、柳钢、酒钢等厂[1]。国外有建造紧凑式连轧机的趋势。例如,日本松岛公司安装了三机架六辊轧机,供冷轧带钢,带钢初始厚度为~,最终厚度为~,宽600~1300mm,轧制速度可达35m/s,卷重可达50t。此轧机的每架机架都包括工作辊、中间辊和支承辊,轧辊直径分别为385mm、510mm和1300mm,辊身长度为1420mm。4. 轧机机架作用轧机是钢铁板材生产线的主要设备,机架是轧机的重要部件,它承受轧机工作的全部轧制力。在轧制过程中,被轧制的金属作用在轧辊上的全部轧制力,通过轧辊轴承、轴承座、压下螺丝及螺母传给机架,并由机架全部吸收不再传给地基。因此,机架必须有足够的强度与刚度[2]。二、设计(论文)主要内容总体结构的初步确定:掌握AGC液压系统的基本组成,结构和轧制原理;设计主要内容:1.液压缸试验台总体结构设计2.机架结构的设计3.机架强度,弹性变形计算三、设计(研究)方案1.调研,搜集资料,阅读有关资料;2.了解AGC系统基本组成,结构和轧制原理;3.总体结构的初步确定;4.设计主要内容:⑴液压缸试验台总体结构设计⑵机架结构的设计⑶机架强度,弹性变形计算5.毕业论文的撰写,万字以上;6.翻译英文资料1000字符以上;7.毕业答辩。四、工作进度安排阶段应完成的主要工作计划起止时间1查阅、收集相关资料,写出开题报告试验台的总体结构设计机架结构设计机架强度及弹性变形计算 论文整理及翻译英文文献评阅及答辩五、主要参考文献[1]王凤喜.大型轧机的发展.重型机械科技.2000(1):50[2]韩波.1500轧机机架的有限元仿真优化.重工与起重技术.2006(3):14[3]成大先.机械设计手册—液压控制.化学工业出版社,2004[4]成大先.机械设计手册—液压传动.化学工业出版社,2004[5]孙占刚.轧机闭式机架的有限元分析及优化设计.冶金设备.2004(3):8~11[6]王洪斌.大吨位液压缸试验台结构分析.工程机械.1997(10):26~27[7]曹玉平,阎详安.液压传动与控制.天津大学出版社,2003 六、指导教师意见签字: 年 月 日 七、系毕业设计( 论文)工作领导小组意见 签字: 年 月 日

带钢厚度自动控制毕业论文

根据轧钢机的型号命名的.轧辊的直径。1米7轧机就是轧辊直径米,宝钢有。650就是直径650毫米的双棍轧机。带钢热轧机,按轧辊辊身长度命名,辊身长度在914mm以上的称为宽带钢轧机。精轧机工作辊辊身长度为1700mm的,称为1700mm带钢热轧机,这种轧机能生产1550mm宽的带钢卷。 所以,900是压下辊 的长度.带钢厚度自动控制系统(AGC)是控制带钢厚度的重要因素和手段。实践中发现,电动AGC的负载和响应特性不能适应大轧制压力和高速轧制的工况。 而液压系统响应快速,控制精度高!液压系统来调节辊缝实现带钢厚度自动控制(AGC液压控制),不同 于AGC电气控制,在于换辊时轧辊的升降调节方式不一样。液压AGC具有响应速度快、压下速度快、辊缝设定精度高、控制系统比较简单、带钢厚度精度高等特点。

课题性质(打√选择)设计(√)论文( )一、文献综述1.液压AGC简介厚度自动控制(Automatie Gauge control简称AGC)在钢板轧机,特别是带钢轧机上得到普遍应用,从50年代初到现在,已发展到十分成熟的地步。AGC系统的作用是消除轧件厚度的偏差。传统的电动AGC由于调节精度差,效率低,响应速度慢等原因,已被液压AGC取代。液压AGC系统包括测厚,厚度比较和调节,辊缝调整三部分。一般由位置反馈回路和压力反馈回路组成。两个反馈回路的反馈信号经过综合比例调节器进行比较后,输入电液伺服阀,调整阀的流量,控制液压缸的行程,从而实现轧件厚度的自动控制。2.课题研究意义现在我国大型轧机用液压AGC伺服油缸的试验与诊断技术还不成熟。大型轧机伺服油缸行程短、轧制力大、频率响应高,国内还没有合适的方法、标准及相关技术,往往无法判断故障部位,会造成备件和人力的大量浪费。因此,研制精度高、适宜检测大型轧机AGC伺服油缸的试验设备具有重要意义。3. 现代轧机AGC发展现状我国现有中厚板轧机27套,其中辊身长度在3000mm以上的中厚板轧机有7套,其余的辊身长度为3000mm。我国最宽的轧机为鞍钢4300mm厚板轧机,该轧机是改造过的国外二手设备。我国有4200mm厚板轧机1套,现安装在武钢。3500mm厚板轧机2套,分别安装在济钢和秦皇岛轧钢厂。另外,3300mm轧机安装在首钢和上钢三厂,2800mm中板轧机分别安装在武钢、邯钢、安钢、柳钢、酒钢等厂[1]。国外有建造紧凑式连轧机的趋势。例如,日本松岛公司安装了三机架六辊轧机,供冷轧带钢,带钢初始厚度为~,最终厚度为~,宽600~1300mm,轧制速度可达35m/s,卷重可达50t。此轧机的每架机架都包括工作辊、中间辊和支承辊,轧辊直径分别为385mm、510mm和1300mm,辊身长度为1420mm。4. 轧机机架作用轧机是钢铁板材生产线的主要设备,机架是轧机的重要部件,它承受轧机工作的全部轧制力。在轧制过程中,被轧制的金属作用在轧辊上的全部轧制力,通过轧辊轴承、轴承座、压下螺丝及螺母传给机架,并由机架全部吸收不再传给地基。因此,机架必须有足够的强度与刚度[2]。二、设计(论文)主要内容总体结构的初步确定:掌握AGC液压系统的基本组成,结构和轧制原理;设计主要内容:1.液压缸试验台总体结构设计2.机架结构的设计3.机架强度,弹性变形计算三、设计(研究)方案1.调研,搜集资料,阅读有关资料;2.了解AGC系统基本组成,结构和轧制原理;3.总体结构的初步确定;4.设计主要内容:⑴液压缸试验台总体结构设计⑵机架结构的设计⑶机架强度,弹性变形计算5.毕业论文的撰写,万字以上;6.翻译英文资料1000字符以上;7.毕业答辩。四、工作进度安排阶段应完成的主要工作计划起止时间1查阅、收集相关资料,写出开题报告试验台的总体结构设计机架结构设计机架强度及弹性变形计算 论文整理及翻译英文文献评阅及答辩五、主要参考文献[1]王凤喜.大型轧机的发展.重型机械科技.2000(1):50[2]韩波.1500轧机机架的有限元仿真优化.重工与起重技术.2006(3):14[3]成大先.机械设计手册—液压控制.化学工业出版社,2004[4]成大先.机械设计手册—液压传动.化学工业出版社,2004[5]孙占刚.轧机闭式机架的有限元分析及优化设计.冶金设备.2004(3):8~11[6]王洪斌.大吨位液压缸试验台结构分析.工程机械.1997(10):26~27[7]曹玉平,阎详安.液压传动与控制.天津大学出版社,2003 六、指导教师意见签字: 年 月 日 七、系毕业设计( 论文)工作领导小组意见 签字: 年 月 日

轧辊的直径。1米7轧机就是轧辊直径米,上海宝钢有。650就是直径650毫米的双棍轧机。

快速电动压下装置的工作制度也就是工作要求。快速电动压下装置一般为不“带钢”的压下装置(一般压下速度大于)。这种压下装置多用在可逆式热轧机上,如初轧机、中厚板轧机、连轧机组的可逆式粗轧机等。一、其工艺特点是:1、工作时,要求上轧辊快速、大行程、频繁的调整;2、轧辊调整时,不带轧钢负荷,即不“带钢”压下。二、为适应上述特点,对压下装置的要求是:1、采用惯性小的传动系统,以便频繁的启动、制动;2、有较高的传动效率和工作可靠性;3、必须有克服压下螺丝阻塞事故(“坐辊”或卡钢)的措而对于板带轧机的电动压下装置,冷热板带轧机的电动压下速度在范围内(有时,压下速度也可达到)由于压下速度的绝对值较小,过去曾称它为“慢速压下”。但是,这个名称并没有反映出板带轧机压下装置的特点。事实上,现代化的高速轧机上,为实现带钢的厚度自动控制,需要压下已很高的速度对轧辊位置(辊缝)做微量调整。三、板带轧机的扎件既薄又宽又长,并且轧制速度快,扎件精度要求高,这些工艺特征使得电动压下装置有以下特点:1、轧辊调整量小。2、调整精度高。3、经常地工作制度是“频繁的带钢提出方案及其方案论证压下”。4、必须动作快,灵敏度高。5、轧辊平行度的调整要求严格。四、快速电动压下装置的解释1、电动压下装置是采用的是压下螺丝、螺母来调整轧辊辊缝,而液压压下装置则是用液压缸。2、电动压下装置的优缺点(1)优点:电动压下装置压下速度一般比较大,可实现快速压下要求;在快速压下装置工作时候,上轧辊可以进行快速的、大行程的、频繁的调整,且轧辊调整时,不带轧制负荷,即不带钢压下。电动压下的压下装置采用惯性较小的传动系统,可以实现频繁地调整;同时,传动效率较高,并且工作可靠性高;电动压下装置采用了压下回松装置,能够有效的克服压下丝杆“坐辊”或“卡钢”等阻塞事故。(2)缺点:由于结构的限制,可能采用复杂的传动系统;并且传动系统小,则造价较高,动作迅速、灵敏度较低。在高速度下调整轧件厚度偏差,压下动作迅速,但是反应不太灵敏。且传动系统惯性大、加速度大。

控制led灯带毕业论文

首先肯定要用压力传感器,输出信号是模拟信号,有条件的可以用单片机来控制,也可以用模拟电路来,可以用lm3914,输出10个led

LED ,它的基本结构是一块电致发光的半导体材料,是一种固态的半导体器件,它可以直接把电转化为光。置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。

led日光灯以质优、耐用、节能为主要特点,投射角度调节范围大,15W的亮度相当于普通40W日光灯。抗高温、防潮防水、防漏电。 使用电压有:110V、220V可选,外罩可选玻璃或PC材质。灯头与普通日光灯一样。

LED日光灯采用最新的LED光源技术,数位化外观设计,节电高达70%以上,12W的LED日光灯光强相当于40W的日光灯管(用于镇流器和启辉器, 36W的日光灯真正的耗电量为42W至44W)。LED日光灯寿命为普通灯管的10倍以上,几乎免维护,无须经常更换灯管、镇流器、启辉器。绿色环保的半导体电光源,光线柔和,光谱纯,有利于使用者的视力保护及身体健康。6000K的冷光源给人视觉上清凉的感受,人性化的照度差异设计,更有助于集中精神,提高效率。

LEDA节能灯相比普通日光灯的优点:

是不是:使单片机能够直接控制每个LED?则:——如果LED的个数少于或等于单片机的I/O端口数量,则可以用单片机的I/O端口直接驱动单个LED(如单片机I/O口的驱动能力不够,可以用I/O口接较大功率的器件来驱动,如三极管等);——如果LED的个数大于单片机的I/O端口数量,则可以用单片机的I/O端口驱动译码器(如3-8译码器,或4-16译码器等),再由译码器驱动LED(如译码器的驱动能力不够,可以用译码器接较大功率的器件来驱动,如三极管等)。(供参考)

LED灯带一、关于LED灯带LED灯带就像带子一样,再加上用的是LED光源,顾名思义,称之为LED灯带,直接接220V的市电就可以亮了,用固定卡固定,用起来不难。LED灯带是*近几年,随着LED技术的发展而诞生的,在没有LED灯带时,用的是T4、T5灯管来做背光,但T4、T5灯管*小尺寸是米,这意味着如果有不足米时,会留下暗区,而LED灯带均匀发光,而且可以根据实际长度进行裁剪,非常方便,再加上红、绿、蓝、黄、白、暖白等这么多的光色可选,甚至还有七彩变幻,成为很多家庭的。二、LED灯带电路设计LED灯带的电路包括串联电路和并联电路,还有就是串并联电路。1、串联电路串联电路的优点是电流恒定,比较容易控制LED的驱动电流。缺点是如果其中一个LED损坏,则所有的LED都会不亮,但不会影响其它LED的寿命。LED灯带电路设计2、并联电路并联电路的优点是任何一个LED坏了都不影响其它LED的使用。缺点是如果不加限流电阻的话,任何一个LED有损坏,就会造成其它的LED两端电流加大,会烧坏其它LED。并且因为单个LED的驱动电压很低,会造成大部分的电压做无用功,对于资源也是一种浪费。

智能控制毕业论文模板

你去找个 安防 监控 系统 活着联网报警系统……的 随便搜搜 有很多

不知道你还需要吗???要的话,我这多的很

机电系统智能控制目前主要有三个方面的应用:a.单片机的智能控制的智能控制c.工业PC的智能控制看你学的是哪个方面的控制了,可以根据具体的项目实例,进行智能控制系统的功能分析、原理设计、选型计算、程序编写以及后续的调试运行,希望对你有帮助~~~

用PLC实现智能交通控制 1 引言 据不完全统计,目前我国城市里的十字路口交通系统大都采用定时来控制(不排除繁忙路段或高峰时段用交警来取代交通灯的情况),这样必然产生如下弊端:当某条路段的车流量很大时却要等待红灯,而此时另一条是空道或车流量相对少得多的道却长时间亮的是绿灯,这种多等少的尴尬现象是未对实际情况进行实时监控所造成的,不仅让司机乘客怨声载道,而且对人力和物力资源也是一种浪费。 智能控制交通系统是目前研究的方向,也已经取得不少成果,在少数几个先进国家已采用智能方式来控制交通信号,其中主要运用GPS全球定位系统等。出于便捷和效果的综合考虑,我们可用如下方案来控制交通路况:制作传感器探测车辆数量来控制交通灯的时长。具体如下:在入路口的各个方向附近的地下按要求埋设感应线圈,当汽车经过时就会产生涡流损耗,环状绝缘电线的电感开始减少,即可检测出汽车的通过,并将这一信号转换为标准脉冲信号作为可编程控制器的控制输入,并用PLC计数,按一定控制规律自动调节红绿灯的时长。 比较传统的定时交通灯控制与智能交通灯控制,可知后者的最大优点在于减缓滞流现象,也不会出现空道占时的情形,提高了公路交通通行率,较全球定位系统而言成本更低。 2 车辆的存在与通过的检测 (1) 感应线圈(电感式传感器) 电感式传感器其主要部件是埋设在公路下十几厘米深处的环状绝缘电线(特别适合新铺道路,可用混凝土直接预埋,老路则需开挖再埋)。当有高频电流通过电感时,公路面上就会形成如图1(a)中虚线所形成的高频磁场。当汽车进入这一高频磁场区时,汽车就会产生涡流损耗,环状绝缘电线的电感开始减少。当汽车正好在该感应线圈的正上方时,该感应线圈的电感减到最小值。当汽车离开这高频磁场区时,该感应线圈电感逐渐复原到初始状态。由于电感变化该感应线圈中流动的高频电流的振幅(本论文所涉及的检测工作方式)和相位发生变化,因此,在环的始端连接上检测相位或振幅变化的检测器,就可得到汽车通过的电信号。若将环状绝缘电线作为振荡电路的一部分,则只要检测振荡频率的变化即可知道汽车的存在和通过。 电感式传感器的高频电流频率为60kHz,尺寸为 2×3m,电感约为100μH.这种传感器可检测的电感变化率在%以上[1,2]。 电感式传感器安装在公路下面,从交通安全和美观考虑, 它是理想的传感器。传感器最好选用防潮性能好的原材料。 (2) 电路 检测汽车存在的具体实现是在感应线圈的始端连接上检测电感电流变化的检测器, 并将之转化为标准脉冲电压输出。其具体电路图由三部分组成:信号源部分、检测部分、比较鉴别部分。原理框图如图2所示, 输出脉冲波形见图1(b)。 (3) 传感器的铺设 车辆计数是智能控制的关键,为防止车辆出现漏检的现象,环状绝缘电线在地下的铺设我们设采取在每个车行道上中的出口地(停车线处)以及在离出口地一定远的进口的地方各铺设一个相同的传感器,方案如图3(以典型的十子路口为例),同一股道上的两传感器相距的距离为该股道正常运行时所允许的最长停车车龙为好。 3用PLC实现智能交通灯控制 控制系统的组成 车辆的流量记数、交通灯的时长控制可由可编程控制器(PLC)来实现。当然,也可选用其他种类的计算机作为控制器。本例选用PLC作为控制器件是因为可编程控制器核心是一台计算机,它是专为工业环境应用而设计制造的计算机。它具有高可靠性丰富的输入/输出接口,并且具有较强的驱动能力;它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程;它采用模块化结构,编程简单,安装简单,维修方便[3]。 利用PLC,可使上述描叙的各传感器以及各道口的信号灯与之直接相连,非常方便可靠。 本设计例中,PLC选用FX2N-64,其输入端接收来自各个路口的车辆探测器测得的输出标准电脉冲,输出接十字路口的红绿信号交通灯。信号灯的选择:在本例中选用红、黄、绿发光二极管作为信号灯(箭头方向型)。 车流量的计量 车流量的计量有多种方式: (1) 每股行车道的车流量通过PLC分别统计。当车辆进入路口经过第一个传感器1(见图3)时,使统计数加1,经过第二个传感器2出路口时,使统计数减1,其差值为该股车道上车辆的滞留量(动态值),可以与其他道的值进行比较,据此作为调整红绿灯时长的依据。 (2) 先统计每股车道上车辆的滞留量,然后按大方向原则累加统计。如,将东西向的(见图3)左行、直行、右行道上的车辆的滞留量相加,再与其它的3个方向的车流量进行比较,据此作为调整红绿灯时长的依据。 (3) 统计每股车道上车辆的滞留量后按通行最大化原则(不影响行车安全的多道相向行驶)累加统计。如,东、西相向的2个左行、直行、右行道上的车辆的滞留量全部相加,再与南北向的总车流量进行比较,据此作为调整红绿灯时长的依据(下面的例子就是按此种方式)。 以上计算判别全部由PLC完成。可以把以上不同计量判别方式编成不同的子程序,方便调用。 程序流程图 本例就上述所描述的车流量统计方式,就图3中的十字路口给出一例PLC自动调整红绿灯时长的程序流程图如图5所示,其行车顺序与现实生活中执行的一样[4],只是时间长短不一样。 (1) 当各路口的车辆滞留量达一定值溢满时(相当于比较严重的堵车),红绿灯切换采用现有的常规定时控制方式; (2) 当东、西向路口的车辆滞留量比南、北向路口的大时(反之亦然),该方向的通行时间=最小通行定时时间+自适应滞环比较增加的延时时间(是变化的),但不大于允许的最大通行时间。其中最小定时时间是为了避免红绿灯切换过快之弊;最大通行时间是为了保障公平性,不能让其它的车或行人过分久等。进一步的说明在后面的注释中。 (3) 自适应滞环比较(本例的核心控制规律)增加的时间的确定若东、西向车辆滞留量≥南、北向一个偏差量σ(如30辆车或其它值)时,先让东、西向的左转弯车左行15s(定时控制,值可改),再让直行车直行30s(直行时间的最小值,值可改)后再加一段延时保持,直至东、西向的车辆滞留量比南、北向的车辆滞留量还要少一个偏差量σ,才结束该方向的通行,切换到其它路上,否则一直延时继续通行下去,直至到达最大通行时间而强制切换。滞环特性如图6所示。实际应用时σ的值需整定,过小则导致红绿灯切换过频,过大又不能实现适时控制。 流程图注释 (1) 流程图中的15s、30s、75s等时间分别为交管部门定的车辆左转弯时间、直行最小时间、允许的最大通行时间;σ为车流量的偏差量。以上值及其4个路口车流量的满溢值均可在程序初始化中任意更改。 (2) 车辆左转弯是造成交通堵塞很重要的一个方面,应加以适当限制,故车辆左转弯始终采用最小定时控制,以减小系统的复杂程度,提高可靠性。 (3) 车辆通行的时间中包含绿、黄灯闪烁的时间,红、黄、绿各灯的切换与现用的方式相同,不再赘述。 (4) 人行道的红绿灯接线与现用的方式相同,其绿灯点亮的时刻与该方向车辆直行绿灯点亮的时刻同步一致,但要较车辆直行绿灯提前熄灭,采用定时控制,如绿灯定时亮18s。其目的是不让右转弯车辆过分受人行道灯的限制。若人车分流,右转弯车辆不受限制。较简单,流程图中略。 (5) 车流量的计量是不间断的,与控制呈并行关系,该系统属多任务处理,编程尤其应注意。 4 结束语 比较传统的定时交通灯控制与智能交通灯控制,可知后者的最大优点在于减缓滞流现象,也不会出现空道占时的情形,提高了公路交通通行率,较全球定位系统而言成本更低,特别适合繁忙的、未立交的交通路口,更适合于四个以上的路口,也可方便连网。 参考文献 [1] 黄继昌等. 传感器工作原理及应用实例[M]. 北京:人民邮电出版社,1998. [2 ]张万忠. 可编程控制器应用技术[M]. 北京:化学工业出版社,2001. [3] 英.索尔特. 道路交通分析与设计[M]. 张佐周等译. 北京:中国建筑工业出版社,1982. 不是很完整,您可以拿去做借鉴, 希望对您有帮助。

  • 索引序列
  • 板带钢的板形控制毕业论文
  • 板带钢轧制工艺的毕业论文
  • 带钢厚度自动控制毕业论文
  • 控制led灯带毕业论文
  • 智能控制毕业论文模板
  • 返回顶部