请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦
第93回 甄家仆投靠贾家门 水月庵掀翻风月案 第94回 宴海棠贾母赏花妖 失宝玉通灵知奇祸第95回 因讹成实元妃薨逝 以假混真宝玉疯癫 第96回 瞒消息凤姐设奇谋 泄机关颦儿迷本性
论文,简单的理解是为了阐述一个观点,就一件事和情况,发表自己的意见。(学术论文除外) 论文,在语言上要求有论点,论心,以及支持论点的一些材料等。 学术论文,一般是在某个学术方面做的研究课题,而总结发表的一些文章
数据分析主要就是通过数据去解决企业实际遇到的问题,包括根据数据分析的原因和结果推理以及预测未来进行制定方案、对调研搜集到的各种产品数据的整理、对资料进行分类和汇总等等。主要就是学习Python、R、SAS等编程工具,数据仓库,分布式存储HDOOP,云计算,数据可视化,大数据技术,还可以到九道门数据分析实训官网上去看一些案例,自己做做训练,总之要学习很多东西。
论文问卷数据的分析,看起来简单,好像每个人都会做。但是做起来还真的有点难度。很多初次使用问卷调查方法的人大多以为,问卷数据分析嘛,无外乎对单选题做做频率分析,看看选择不同的选项的人占比有多少。对于评分题目,看看均值是多少,不同性别,年龄段的人群均值是多少。对于一般的小调查,这样粗略的分析可能够了,但是对于学术论文中的问卷分析而言,以上所做的工作,只是其最简单的一部分,后面还有大量的工作要做。51调查,让调查更简单方便!
第93回 甄家仆投靠贾家门 水月庵掀翻风月案 第94回 宴海棠贾母赏花妖 失宝玉通灵知奇祸第95回 因讹成实元妃薨逝 以假混真宝玉疯癫 第96回 瞒消息凤姐设奇谋 泄机关颦儿迷本性
数据收集分析过程包括以下几个环节:1、数据完整性分析数据汇总分析之前,先确认调研数据是否已收集完成。可根据用户反馈数据时间的正太分布情况来推测数据收集是否已基本完成。问卷回收率要能够保障足够的样本数量,才能保证分析结果有价值。2、对反馈数据进行清理,保证数据的有效性问卷收集完,就要对结果进行分析,分析前先要剔除无效问卷,问卷的有效率是保证分析结果价值的基础。常见的无效问卷的形式如下:问卷中出现大量空白的问卷答案中出现大量选项连续一样的情况的问卷专门设计用来验证答题有效性的地雷题出错的问卷答题时长比较极端或者偏离平均值太多的问卷开放式问题的答题质量,比较敷衍甚至乱答的题目或选项之间隐藏逻辑答案冲突的3、对清理后的数据进行汇总调研范围的选取方式不同,反馈数据的汇总方式也不同。1、全量人员1)若人员之间存在明显分层变量,则需要按分层分别统计,再进行汇总;2)若人员之间无需分层,则直接统一汇总处理即可;2、简单随机抽样,直接统一汇总处理即可3、分层抽样1)先按分层分别统计,再进行汇总;2)若分层人员的抽取比例与分层人员之间的比例不同,汇总时还需要考虑权重的设置;注:有时候问题里某些选项填写的数量远远少于其他选项的数量,我们可以把它们进行整合,从而减少干扰;4、对汇总数据进行计算、分析1、定量分析对数据进行平均数、众数、中位数的计算、对比:1)计算前要注意剔除极端数值;2)标准的是正态分布状态,若出现双峰分布(众数与平均值相差大),需要进一步分析3)在对计算结果进行分析时,可以考虑第三变量的影响,即交叉制表,通过两个问题的答案合成一份表格,发现更有针对性的问题2、定性分析定性分析具有探索性的特点,这种分析依靠参与工作的人员的业务水平和专业度,因此难度较高,且这种解释是有特殊性的,理解也是不同的。5、根据分析结果,得出初步结论将定性分析的结论和定量分析的结果相结合,再与网站分析数据进行对比和补充,能够让数据更有说服力,得出的结论更加准确;在对数据分析结果进行总结时,需要注意以下几点:两件事情的发生时间相当接近并不足以说明两者有因果关系总结时,要细分人口子群不要混淆事实和观点人们即使对答案没有强烈的感觉,也会选择一个,注意退出选项的选择情况人们总会爱猜测调查的意图,要重审问题是否暗含引导性人们什么都想要,问卷并非准确体现了人们的需求范围,但问卷能够体现人们需求的优先级人们可能会夸大其词、会撒谎
如果你是做问卷调查类(发放问卷,收集数据<通常学营销的人会这样做>)的,那么就根据你的题项设置变量,并录入数据(通常是用SPSS分析,也有用其他工具比如说Eviews的)。然后做数据的信度和效度检验(此处KMO值是比较重要的),再做基本的描述性统计分析,然后是主成份提取(即因子分析),从多个变量中提取几大因子,结果主要看旋转成分矩阵,然后用几个因子跟因变量做回归,得出影响关系的回归方程。举个例子说,你的问卷中有30个题项(前提是你已经做过小规模问卷测试以验证题项设置的合理性),则对应30个变量X1,X2,,X29,X30,录入这30个变量的数据,如果你收集了500份问卷,其中420份是有效问卷的话,则你有420条针对30个变量的有效数据。然后做信度效度检验,描述性统计分析,因子分析,假设通过因子分析提取出4个主成份(因子),分别为F1,F2,F3,F4,这个时候对因子命名并将其生成新的变量,然后再将F1,F2,F3,F4和Y做回归分析,得到回归方程,通过R方和系数检验表来判断方程和系数的有效性。这个时候你就能得到影响消费者态度的是哪些因素了。PS:你这里的因变量消费者态度需要量化,在设计问卷的时候要考虑如何量化才有利于后续的分析。
SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存下面将从这四个方面来对问卷的处理做详细的介绍Spss处理:第一步:定义变量大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类)我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值现在我们以问卷第一个问题为例来说明变量的设置为了便于说明,可假设此题为:请问你的年龄属于下面哪一个年龄段( )?A:20—29 B:30—39 C:40—49 D:50--59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用
数据最好不要自己编。调查分析类的软件(如果你是学营销或管理学的)可以用SPSS。一般人编的数据数据分析结果都能看出端倪来的,老师都不是傻子,到时候一旦被看出来你就会很难过了。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。还是哪句话,一般不是长期做学术或很有经验的人,编的数据结果都很明显的能看出端倪的。建议不要数据造假,学术上是最鄙视也不能接受的。这是比你论文框架错了还要严重的错误。
调查问题的回答分类整理,分条得出结论。最后总结。。。
编数据没有问题,但是数值结果里面有一些联系的,也不是你想编什么值就行的,编的不好,一下子就露馅了,最好找点数据来做
一、学习背景本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。二、问卷编制+数据分析类论文框架(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越,B就越”、“C的总体水平较低/高”、“D的比E的水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!
你还是自己多去看看汉斯出版社官网上的文献吧,多看看你就不会不知道怎么写了