首页 > 期刊发表知识库 > 大数据在互联网领域的应用论文

大数据在互联网领域的应用论文

发布时间:

大数据在互联网领域的应用论文

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:  1、大数据对商业模式影响  2、大数据下地质项目资金内部控制风险  3、医院统计工作模式在大数据时代背景下改进  4、大数据时代下线上餐饮变革  5、基于大数据小微金融  6、大数据时代下对财务管理带来机遇和挑战  7、大数据背景下银行外汇业务管理分析  8、大数据在互联网金融领域应用  9、大数据背景下企业财务管理面临问题解决措施  10、大数据公司内部控制构建问题  11、大数据征信机构运作模式监管  12、基于大数据视角下我国医院财务管理分析  13、大数据背景下宏观经济对微观企业行为影响  14、大数据时代建筑企业绩效考核和评价体系  15、大数据助力普惠金融

大数据只是一个时代背景,具体内容可以班忙做

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。  从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?  大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。  大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。  大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。  大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。  大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。  当下我国大数据研发建设应在以下四个方面着力  一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。  二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。  三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。  四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

大数据在互联网金融领域应用的论文10000字

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:  1、大数据对商业模式影响  2、大数据下地质项目资金内部控制风险  3、医院统计工作模式在大数据时代背景下改进  4、大数据时代下线上餐饮变革  5、基于大数据小微金融  6、大数据时代下对财务管理带来机遇和挑战  7、大数据背景下银行外汇业务管理分析  8、大数据在互联网金融领域应用  9、大数据背景下企业财务管理面临问题解决措施  10、大数据公司内部控制构建问题  11、大数据征信机构运作模式监管  12、基于大数据视角下我国医院财务管理分析  13、大数据背景下宏观经济对微观企业行为影响  14、大数据时代建筑企业绩效考核和评价体系  15、大数据助力普惠金融

大数据技术在金融行业中的典型应用近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。大数据在金融行业的典型应用场景大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。第一,数据体量大(Volume),海量性也许是与大数据最相关的特征。第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性,让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。当前,大数据在金融行业典型的应用场景有以下几个方面:在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。在证券行业的应用主要表现为:一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度,帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。金融大数据的典型案例分析为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。百度的搜索技术正在全面注入百度金融。百度金融使用的梯度增强决策树算法可以分析大数据高维特点,在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。百度“磐石”系统基于每日100亿次搜索行为,通过200多个维度为6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为百度内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500家社会金融机构,帮助其提升了整体风险防控水平。金融大数据应用面临的挑战及对策大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。

获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。

事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。  数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。  而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。  大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。  数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。  不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)

大数据应用领域论文

大数据只是一个时代背景,具体内容可以班忙做

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。  从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?  大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。  大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。  大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。  大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。  大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。  当下我国大数据研发建设应在以下四个方面着力  一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。  二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。  三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。  四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。

树妈妈生了一些可爱的嫩芽弟弟妹妹许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机  忽然,从远处传来了一阵扑鼻的芳香原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷走近一看,哦,原来花儿们正在比美比艺花儿们有的显示着自己有的在唱歌,声音是那么好听,所有的演员都被吸引住了有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等真是太精彩了

互联网+大数据论文2000字

互联网我知道怎么做我分析结果内容就这么多

简单的说:”大数据“就是用常规的方法不能在可容忍的时间内进行处理的数据,要处理大数据需要”云计算“;”互联网“思维是指因为互联网深入并影响我们的生活和我们的经济,在此基础上所形成的新的思维模式,但具体内容各说不一,而且还在继续变化。

驳论是就一定的事件和问题发表议论,揭露和驳斥错误的、反动的见解或主张。驳斥错误的、反动的论点有三种形式:①直接驳斥对方的论点。先举出对方的荒谬论点,然后用正确的道理和确凿的事实直接加以驳斥,揭示出谎言同事实、谬论与真理之间的矛盾。有的文章,首先证明与论敌的论点相对立的论点是正确的,以此来证明论敌的论点是错误的。②通过批驳对方的论据来驳倒对方的论点。论据是论点的根据,是证明论点的。错误和反动的论点,往往是建立在虚假的论据之上的,论据驳倒了,论点也就站不住脚了。③通过批驳对方的论证过程的谬误(驳其论证)来驳倒对方的论点。驳倒了它的论证中关键问题,也就把谬论驳倒了。驳论文的驳法有三种:反驳论点、反驳论据、反驳论证。反驳论证相对于前两者更高了一个层次。议论虽有立论、驳论两种方式,但两者不是完全分开的。驳和立是辨证的统一。在立论性的文章中,有时也要批驳错误论点;在驳论性的文章中,一般也要在批驳错误论点的同时,阐明正确的观点。因此,立论和驳论在议论文中常常是结合起来使用的。直接驳和间接驳的差别①如果直接以论点出发,那就算是直接驳论②如果通过各种论据来反驳论点的算间接驳论③如果从始至终都通过论点论据来论证中心的,就是典型的驳论文,如鲁迅先生的《友邦惊诧论》就是典型的驳论文章。总之,写驳论性的文章,还应注意以下几点:①要对准靶子。写驳论性的文章,首先要摆出对方的谬论或反动观点,树起靶子。怎样树起靶子呢?通常有两种方式。一是概述。即用概括的语言,将所批驳的敌论复述一下。并且还要强调出敌论的弊端。概述时,可适当引用一些原词句,但要有重点,倾向性要鲜明。二是摘引。即把反面材料的关键部分或有关部分,摘录下来,然后对准靶子,进行驳斥。可以引用一些较为典型的事例,和古典名句。更加强有力的证明自己的观点。②要抓住要害。鲁迅说:“正对‘论敌’之要害,仅以一击给予致命的重伤。”对谬论,一定要抓住其反动本质,深入地进行揭露和批判。③要注意分寸。对于敌人的反革命谬论和人民内部存在的错误思想,必须加以区别。对敌人,要无情揭露,痛加批驳,给以致命打击;对于人民内部的错误思想,就要本着“团结——批评——团结”的原则,决不可相提并论。古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文。论文一般由 题名、 作者、 摘要、 关键词、 正文、 参考文献和附录等部分组成,其中部分组成(例如 附录)可有可无。论文题目要求准确、简练、醒目、新颖。目录目录是论文中主要段落的简表。(短篇论文不必列目录)内容提要是 文章主要内容的摘录,要求短、精、完整。1、先确立一个论点。全文围绕这一论点展开论证。对“开卷有益”这种说法,既不能全盘否定,写驳论文;也不宜全盘肯定,写成立论文。因为这种说法既有它正确的一面。又有它不够全面的地方,所以对这个看法要采取“一分为二”的方法进行分析,肯定其有益的一面,否定其有害的一面,从中总结出正确的论点来。只有这样才能对这一说法作出合乎事实的评价,最终达到以理服人的目的。2、运用“一分为二”的方法进行分析,要防止出这样一个毛病:自相矛盾。一会儿说开卷有益,一会儿说开卷有害,令人不知所云。为了避免这种现象,文章中还要将二者的联系点明,才算把道理真正说透。3、从论证方法看,如果所读的书是坏书,则开卷未必有益,这里可以采取例证法,并辅之以引证法和喻证法,用前几年社会上黄书泛滥成灾毒害青少年作为事实论据,用名人名言作为理论论据,充分论证黄书的害处和读好书的益处。在此基础上,再把这两者辩正地统一起来。说明我们中学生既要多读书,又要慎重地加以选择、读好书。这样从正反两方面进行论证,就将问题说得比较全面而深刻,文章也就具有了不可辩驳的逻辑力量。导思:这是一篇给材料作文。该题虽然规定了作文题目,但仍给学生思维留下了很大的空间,从文体来看,写议论文是最好的选择。学生可以从是非观、处世态度、治学精神等方面谈自己的看法,阐述自己的见解和主张。要写好议论文,必须做好以下三点:1、确定论点。根据命题提供的材料,可从不同角度提炼出诸多观点,但短短600字的文章不可能面面俱到。因此,一定要选准一个论点充分论证。2、选好论据。论据能起到充分证明论点的作用,论据选择要遵循两个原则:①真实确凿,不能有虚假成分;②具有典型性,有说服力,才能发挥更大的作用。3、组织好论证结构。最常用的结构一般为“提出问题(引论)——分析问题(本论)——解决问题(结论)”。

事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。

论文引用的数据来自互联网

网址

若引用网站上的文章,也就是引用电子文献,方法如下:一、参考文献的格式:[序号]主要责任者电子文献题名[电子文献及载体类型标识]电子文献的出版或获得地址,发表更新日期/引用日期二、电子文献及载体类型标识主要有以下几类:[J/OL]:网上期刊,[EB/OL]:网上电子公告,[M/CD]:光盘图书,[DB/OL]:网上数据库,[DB/MT]:磁带数据库。三、举例如下:[12]王明亮关于中国学术期刊标准化数据库系统工程的进展[EB/OL][8]万锦中国大学学报文摘(1983-1993)英文版[DB/CD]北京:中国大百科全书出版社,

如果是正规论文,例如学年论文、毕业论文的话是一定要的,而参考文献的电子类文献的格式为:[编号]作者电子文献题目[文献类型/标识]电子文献的出处或可获得地址,引用日期。电子文献类型主要有:数据库[DB]、计算机程序[CP]、电子公告[EB];电子文献标识主要有:磁带[MT]、磁盘[DK]、光盘[CD]、联机网络[OL]。如:[1]漓江烟雨我的爱慢慢飘过你的网[EB/OL]hppt:// /xs/htm, 2005-12-

可以,但是要注意以下几点:1、一定要注明出处,即引用文献的作者、文献名称、出版社、年限等信息;引用的章节也最好给予注明;引用文献一般放在论文最后的参考文献加以列示;2、引用论文内容时,一定要注意不可以大段大段地抄袭下来,最好只引用作者的观点、或者有论证的论据,以及图表、研究数据等;3、除非是学校有特殊要求外,一般不建议引用本年段或者未经发表的本校的其他的师生的论文,因为无法公开查询,会导致“抄袭”嫌疑。

  • 索引序列
  • 大数据在互联网领域的应用论文
  • 大数据在互联网金融领域应用的论文10000字
  • 大数据应用领域论文
  • 互联网+大数据论文2000字
  • 论文引用的数据来自互联网
  • 返回顶部