首页 > 期刊发表知识库 > 论文中t检验是用来干什么的

论文中t检验是用来干什么的

发布时间:

论文中t检验是用来干什么的

t检验是对各回归系数的显著性所进行的检验,(--这个太不全面了,这是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等) 目的:比较样本均数 所代表的未知总体均数μ和已知总体均数μ0。 计算公式: t统计量: 自由度:v=n - 1适用条件 (1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本来自正态或近似正态总体。 例1 难产儿出生体重n=35, =42, S =40, 一般婴儿出生体重μ0=30(大规模调查获得),问相同否? 解:建立假设、确定检验水准α H0:μ = μ0 (无效假设,null hypothesis) H1:(备择假设,alternative hypothesis,) 双侧检验,检验水准:α=05 计算检验统计量 ,v=n-1=35-1=34 查相应界值表,确定P值,下结论 查附表1,05 / 34 = 032,t < 05 / 34,P >05,按α=05水准,不拒绝H0,两者的差别无统计学意义 T检验(T Test) 什么是T检验 T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。 T检验的适用条件:正态分布资料 T检验注意事项 要有严密的抽样设计随机、均衡、可比 选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布) 单侧检验和双侧检验 单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。 假设检验的结论不能绝对化 不能拒绝H0,有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误 正确理解P值与差别有无统计学意义 P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同 假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。t检验举例说明 例如,T检验可用于比较药物治疗组与安慰剂治疗组病人的测量差别。理论上,即使样本量很小时,也可以进行T检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,只好使用非参数检验代替T检验进行两组间均值的比较。 T检验中的P值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧T检验概率。 1、数据的排列 为了进行独立样本T检验,需要一个自(分组)变量(如性别:男女)与一个因变量(如测量值)。根据自变量的特定值,比较各组中因变量的均值。用T检验比较下列男、女儿童身高的均值。 对象1 对象2 对象3 对象4 对象5 男性 男性 男性 女性 女性 111 110 109 102 104 男性身高均数 = 110 女性身高均数 = 103 2、多组间的比较 科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是T检验的推广。在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。(进行多次的T检验进行比较设计中不同格子均值时)。

原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。意义:T检验对数据的正态性有一定的耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定的。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。两个独立样本T检验的原假设为两个总体均值之间不存在显著性差异,需分两步完成:①利用F检验进行两总体方差的同质性判断;②根据方差同质性的判断,决定T统计量和自由度计算公式,进而对T检验的结果给予恰当的判定。如果待检验的两个样本均值差异较小,那么t值也就较小,说明两样本均值不存在显著差异;相反,t值越大,说明两样本均值之间差异越显著。SPSS将计算的t值和T分布表给出相应的显著性概率值,如果显著性概率值P小于或等于显著性水平α,则拒绝原假设,认为两总体均值之间存在显著差异;相反,显著性概率值P大于显著性水平α,则不拒绝原假设,认为两总体均值之间不存在显著差异。扩展资料t检验的前提条件:无论是单样本T检验、独立样本T检验还是配对样本T检验,都有几个基本前提:一是,T检验属于参数检验,用于检验定量数据(数字有比较意义的),若数据均为定类数据则使用非参数检验。二是,样本数据需要服从正态或近似正态分布。1、独立T检验(也称T检验),要求因变量需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是MannWhitney检验进行研究。2、单样本T检验,其默认前提条件是数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。3、配对样本T检验,其默认前提条件是差值数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。其实配对样本T检验与单样本T检验的原理是一模一样,无非是进行了一次数据相减(即差值)处理而已,因而其和单样本T检验保持一致。参考资料来源:百度百科-t检验

原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。意义:单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内。双样本检验:其零假设为两个正态分布的总体的均值是相同的。这一检验通常被称为学生t检验。但更为严格地说,只有两个总体的方差是相等的情况下,才称为学生t检验;否则,有时被称为Welch检验。检验同一统计量的两次测量值之间的差异是否为零。扩展资料:单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误。正确理解P值与差别有无统计学意义。P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率 。参考资料来源:搜狗百科——t检验

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与z检验、卡方检验并列。适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。步骤:建立假设、确定检验水准α计算检验统计量查相应界值表,确定P值,下结论

论文t检验是什么

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与z检验、卡方检验并列。适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。步骤:建立假设、确定检验水准α计算检验统计量查相应界值表,确定P值,下结论

他俩是一个东西。。。大小写无所谓的啊。。

不是一定的。硕士论文做独立样本t检验关键是看有多少个样本,如果就是一个处理组和一个对照组,可以进行T检验,若无显著差异进行t检验则无意义。t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

论文中的t检验

不是一定的。硕士论文做独立样本t检验关键是看有多少个样本,如果就是一个处理组和一个对照组,可以进行T检验,若无显著差异进行t检验则无意义。t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

按照你的思路方法可能可行也可能不可行,如果前测成绩没有显著差异说明两个班级基础相同然后可以直接采用你说的独立样本t检验就可以的;但是如果说前测成绩有差异,说明两个班级的基础不同,此时就没法直接采用t检验对后侧来直接进行比较了此时需要用协方差分析就好了,将前测成绩作为协变量纳入进行分析就好了至于配对比较没什么必要

论文t检验是什么意思

心理学论文,原创的网上没有的

他俩是一个东西。。。大小写无所谓的啊。。

运用t检验的论文

spss高端大气上档次

独立样本T检验前首先是要做一个方差齐性检验,也就是看你比较的两个独立样本组的方差是否具有统计学差异,如果有差异,也就是不齐性,说明两个组所属的分布不同,那么等于说两个组单位不同,就不具备可比较的条件,就比如拿重量和长度进行比较,加减乘除的结果就不具意义。因此独立样本T检验,首先要方差齐性,就看那个F检验的结果,如果F检验后面那个sig值>05,代表方差齐性,就可以正常做T检验,结果参考假设方差相等那一行的T值,主要看T后面那个sig(双侧),如果<05,代表两个样本组均值差异显著。不显著就不具备统计学差异。如果方差不齐性,结果可以参考假设方差不相等那一行,那是一个对方差不齐性的矫正后的结果。

结合日常工作实践,做出某一方面的数据统计分析,得出相应的研究结果,并根据研究结果撰写论文。(二)论文选题及内容要求1、论文选题限定在教学课件讲授内容中的如下知识点: (1)应用T检验方法进行数据统计分析的研究。(2)应用方差分析方法进行数据统计分析的研究。(3)应用相关分析方法进行数据统计分析的研究。(4)应用回归方法进行数据统计分析的研究。2、论文结构包括:问题提出,研究意义,实验过程,使用的数据统计分析方法,结论分析等5部分。3、研究中使用的数据一律采用考生自己虚拟的数据,只注重研究问题的价值和意义,为什么选择这样的研究方法和结论解释。4、字数限制: 2000字左右。 我来回答匿名

  • 索引序列
  • 论文中t检验是用来干什么的
  • 论文t检验是什么
  • 论文中的t检验
  • 论文t检验是什么意思
  • 运用t检验的论文
  • 返回顶部