西藏甲玛铜多金属矿床成矿系统元素的活动性的
矿化蚀变过程中,元素质量迁移常会导致元素的富集贫化,具有固有的内在规律性[1]。对蚀变岩石进行物质组成变化的研究有助于了解成矿流体系统特征及其成矿作用过程[2]。目前,对矿床成矿体系元素迁移规律的研究较多,并且取得了丰硕成果[13]。
西藏甲玛铜多金属矿床是冈底斯成矿带上新评价的超大型矿床,矿区内发育大规模的矽卡岩。与传统意义的典型矽卡岩矿床不同的是,甲玛矿区矽卡岩主要受早白垩世林布宗组角岩、板岩和晚侏罗世多底沟组大理岩之间的层间构造带所控制。岩体与大理岩之间形成传统类型矽卡岩的同时,外围沿角岩的岩性界面形成层状、似层状的远端矽卡岩[4]。角岩和矽卡岩之间的过渡地带,角岩常伴有明显的矽卡岩化,甚至被交代为矽卡岩。角岩进一步被交代为矽卡岩的现象与传统矽卡岩形成理论相悖,是甲玛矿区有别于其他斑岩成矿系统所特有的蚀变现象。王登红等认为,这种矽卡岩是岩浆流体交代早期热变质形成的角岩并使之发生矽卡岩化形成的[5]。岩浆流体与围岩发生交代的过程中常伴随着大量的元素迁移现象,研究元素迁移规律可以了解甲玛矿区矽卡岩的形成过程。对灰岩、大理岩等碳酸盐发生矽卡岩化及其所发生的物质组分交换的研究较多[67],而对角岩的矽卡岩化关注较少,但它确实与很多重要矿床类型有关。川西乌拉溪钨铍矿区自岩体向外依次形成岩体边缘混合花岗岩带、矽卡岩带、矽卡岩化大理岩带和矽卡岩化角岩带[8];广东大顶铁矿床西南部的角岩或弱矽卡岩化角岩层发现了层控矽卡岩型锡矿床和接触交代矽卡岩型铅锌矿化[9]。笔者运用质量平衡方法,针对甲玛矿区角岩在矽卡岩化过程中元素迁移特征进行研究,并用定量方法计算元素的迁出和迁入,以进一步丰富矽卡岩型成矿理论,为蚀变与成矿的关系研究提供参考和借鉴。
1研究区地质概况
甲玛铜多金属矿床位于西藏特提斯构造域冈底斯—念青唐古拉(地体)板片中南部, 是产出在冈底斯成矿带东南段的超大型矿床(图1)[1014]。冈底斯—念青唐古拉地体南缘的构造线总体走势近EW向,由于区域长期走滑效应,次级构造线多呈NWW向,推覆构造发育。甲玛矿区受控于由北向南的推覆构造及由南向北的滑覆构造。矿区推覆构造由一系列倒转褶皱组成:红塔背斜、牛马塘背斜以及夏工普向斜。矿区出露地层为一套被动陆缘期碎屑碳酸盐岩系,主要由下白垩统林布宗组(K1l)灰、暗灰色砂岩和板岩互层,灰黑色粉砂岩夹碳质泥页岩,黑色斑点板岩及灰白色绢云母板岩,上侏罗统多底沟组(J3d)灰黑色中厚层灰岩,发育不同程度的大理岩化以及在牛马塘一带出露的少量第四系组成。矿区岩浆岩发育,分布广泛,主要分布在雅江断裂以北,是冈底斯火山岩浆弧的重要组成部分。该岩浆岩在浅部呈脉状产出,其深部存在含矿斑岩体。主要岩浆岩类型有花岗斑岩、黑云母二长花岗斑岩、黑云母花岗斑岩、花岗闪长斑岩、石英闪长玢岩、闪长玢岩、角闪辉绿岩、石英辉长岩等[15]。其中,含矿花岗闪长斑岩中辉钼矿ReOs等时线年龄为(14.78±0.33)Ma[16]。
1-第四系残坡积物、冲洪积物;2-下白垩统林布宗组砂板岩、角岩;3-上侏罗统多底沟组灰岩、大理岩;4-矽卡岩化大理岩;5-花岗
闪长斑岩脉;6-石英闪长玢岩脉;7-花岗斑岩脉;8-花岗细晶岩脉;9-矽卡岩;10-矽卡岩型矿体;11-滑覆构造断裂;12-钻孔;
13-勘探线及编号;14-板边带及俯冲方向;15-洋壳仰冲推覆前缘;16-主边界推覆断裂;17-矿区地名;18-甲玛矿区;19-地名;图件引自文献[17]
图1西藏甲玛矿区地质图
Fig.1Geological Map of Jiama Mining Area in Tibet
甲玛斑岩系统由4种矿体类型构成:①产于斑岩中的钼(铜)矿体,主要呈筒状产于0~40线北边,赋矿斑岩主要为花岗闪长斑岩与二长花岗斑岩,目前已有钻孔(ZK2414)连续见矿厚度达544.73 m,铜平均品位为023%,钼平均品位为0052%;②产于矽卡岩中的铜多金属矿体,为斑岩矿床系统的重要组成部分,主矿体呈层状、厚板状产于下白垩统林布宗组砂板岩和角岩(矿体顶板)与上侏罗统多底沟组灰岩和大理岩(矿体底板)的层间因推覆滑覆构造引起的扩容空间内,矽卡岩型矿体中Ⅰ号主矿体走向300°,延长大于3 000 m,倾向30°,延伸大于2 500 m(未控制边界),矿体产状受推覆构造控制,具明显上陡下缓特点,上部矿体倾角一般为50°~70°,为铅锌(金银)矿石组合,下部矿体倾角一般小于20°,为铜钼(金银)矿石组合,目前控制的该矿体最大连续厚度约为32898 m(ZK1218钻孔),其Cu平均品位为049%,Mo平均品位为0073%;③产于角岩中的铜钼矿体,呈筒状产于0~40线斑岩矿体上部角岩中,目前该类矿体最大厚度达826 m(ZK3216钻孔),Cu平均品位0.24%, Mo平均品位0.054%;④脉状独立金矿体,目前已在ZK4702、ZK8807、ZK4504等多处发现该类矿体,尤其是在ZK4504, 产于闪长玢岩中的Au矿体总厚度为23.06 m, 其平均品位为859×10-6。
1-下白垩统林布宗组砂板岩、角岩;2-上侏罗统多底沟组灰岩、大理岩;3-斑岩体;4-角岩型铜多金属矿体;
5-矽卡岩型铜多金属矿体;6-采样位置;7-钻孔位置;图件引自文献[18]
图2甲玛矿区16号勘探线剖面及采样位置
Fig.2No.16 Prospecting Line Profile and Sampling Locations of Jiama Mining Area
2样品的采样和分析
矽卡岩化角岩多以矽卡岩矿物脉状充填形式发育,交代程度由弱至强表现出细脉状、脉状、角砾状构造,其交代界限较规则且交代范围较窄,矽卡岩矿物粒度较细。本文样品沿矿体勘探线方向的角岩和矽卡岩的过渡部位采集的,主要在16号勘探线上的探矿钻孔岩芯中采集矽卡岩和矽卡岩化角岩样品(图2)。矽卡岩样品均为钙铁石榴子石矽卡岩,矿物成分主要为钙铁石榴子石,呈暗红棕色,晶形不明显,偶见少量硅灰石,样品矿化弱。其中,矽卡岩化角岩采自角岩和矽卡岩接触带处,呈灰绿色—黄绿色,块状构造[图3(a)]。矿物成分已基本蚀变为石榴子石等矽卡岩矿物,矿化弱,岩石仍保留原来角岩致密脆性的特征[图3(b)]。
图3甲玛矿区矽卡岩化角岩和矽卡岩照片
Fig.3Photos of Skarnization Hornfel and Skarn in Jiama Mining Area
样品的主量、稀土元素及微量元素含量测试是在西南冶金地质测试中心完成的。主量元素分析方法见文献[19]。稀土元素采用过氧化钠熔融分解样品,稀土元素在碱性介质中随基体元素一起沉淀,通过过滤分离掉大量熔剂,再将沉淀用酸溶解,运用NexION 300x等离子体质谱仪测定。微量元素As、Sb采用王水溶解,抗坏血酸硫脲作为还原剂,运用AFS2202E原子荧光光度计测定;Ag、Sn采用摄谱法,运用802W二米平面光栅光谱仪测定(Ag质量分数大于5×10-6,采用王水溶解,用ICE3500原子吸收分光光度计测定,Sn质量分数大于100×10-6,采用过氧化钠熔融分解样品,用JP2D示波光谱仪测定);W、Mo采用过氧化钠熔融分解样品,运用JP2D示波光谱仪测定;Nb、Ta、Hf、Zr采用过氧化钠熔融分解样品,用NexION 300x等离子体质谱仪测定;其余微量元素则采用盐酸+硝酸+氢氟酸+高氯酸溶解,用iCAP6300全谱直读等离子发射光谱仪或NexION 300x等离子体质谱仪测定。分析测试结果见表1。
3质量平衡理论和方法
Gresens提出以实际岩石化学来分析交代过程中体积和浓度变化的方法,并导出Gresens方程。此方法被广泛应用到热液蚀变作用研究的众多领域,但由于Gresens方程涉及体积和质量两个相互关联的变量,无独立的方法确定其中一个[20],所以Grant在此基础上对原方程进行了修正,得出等浓度线(Isocon)方程[21]。
等浓度线方程体现了蚀变岩和原岩中化学成分浓度的线性关系。在蚀变岩和原岩的浓度图解上,等浓度线是一条穿过原点的直线,等浓度线的斜率表示原岩发生蚀变后与蚀变岩质量的比值,其他元素在该图上的投点与等浓度线的偏移量就是该元素的浓度变化。Grant对Gresens方程修正得到的等
表1甲玛矿区矽卡岩与矽卡岩化角岩主量、稀土元素和微量元素分析结果
Tab.1Analysis Results of Major, Rare Earth and Trace Elements for the Skarn and Skarnization Hornfel in Jiama Mining Area
岩性钙铁石榴子石矽卡岩矽卡岩化角岩
样品编号及平均值ZK1607256.11ZK1608317.2ZK1609386.6ZK1612381.2ZK1615574.5ZK1616647.06ZK1617625ZK1618699.58ZK1624817.7平均值ZK1617607.82ZK1607242ZK1609416.4平均值
(Dy)/10-66.745.914.664.720.690.360.583.581.143.154.673.925.234.61
w(Er)/10-64.483.652.782.920.520.300.452.140.832.012.872.383.062.77
w(Eu)/10-61.861.301.091.410.260.140.171.170.320.861.301.041.101.15
w(Gd)/10-67.676.965.545.490.800.480.724.131.203.666.944.335.365.54
w(Ho)/10-61.321.090.880.910.140.070.110.670.230.600.860.821.050.91
w(La)/10-65.4826.7010.4014.705.952.942.759.273.919.1237.7522.2021.2027.05
w(Lu)/10-60.540.470.290.340.070.030.050.280.110.240.360.340.450.38
w(Nd)/10-631.2031.6019.3023.904.362.523.6816.304.9515.3242.6921.1025.2029.66
w(Pr)/10-63.005.313.023.800.880.430.592.510.752.257.895.496.396.59
w(Sm)/10-65.935.914.414.470.710.360.553.580.942.986.804.515.395.57
w(Tb)/10-60.990.860.710.710.100.050.090.540.160.470.770.700.860.78
w(Tm)/10-60.520.460.320.330.060.030.050.280.100.240.340.340.440.37
w(Yb)/10-63.913.512.262.520.480.190.372.040.811.792.662.272.872.60
注:w(·)为元素或化合物含量;样品ZK1607242、ZK1609416.4数据引自文献[22]。
浓度线方程为
CAi=(MO/MA)(COi+ΔCi)(1)
式中:COi、CA i为原岩、交代岩中第i种元素的含量;MO、MA分别为原岩和交代岩的质量;ΔCi为元素i在交代过程中含量的变化。
当元素i为不活动元素时,其在交代过程中迁移量很小,可近似为0,因此,ΔCi近似为0。式(1)可简化为
CAi=(MO/MA)COi(2)
式(2)在CAiCOi图上表示斜率为MO/MA且穿过原点的直线,即等地球化学浓度线。令该直线的斜率为k,则
k=MO/MA=CAi/COi(3)
k值可以粗略反映岩石发生交代蚀变过程中的体积变化。当k>1时,体积亏损;当k<1时,t体积增大。将式(3)代入式(1)则可得到元素i的迁移量(i为活动元素)
ΔCi=CAi/k-COi(4)
运用质量平衡方程至关重要的一点是要确定体系的不活动元素。TiO2是交代蚀变过程中最保守的元素之一[2324],将其作为不活动元素具有普遍意义。本文选择TiO2作为不活动元素,根据表1中数据得出k值为0.380 8。其他元素在CAiCOi图上的投点位于等地球化学浓度线之上的元素为带入元素,位于等地球化学浓度线之下的元素为带出元素(图4),同时运用式(4)也可以定量计算元素迁移量ΔCi(表2)。ΔCi大于0表明该元素有带入,ΔCi小于0表明该元素有带出。
从图4和表2中可知,主量元素中只有Al2O3、Na2O和K2O有少量带出,其他元素均有不同程度带入,其中SiO2、Fe2O3和CaO带入量较大,1 g矽卡岩化角岩在交代蚀变过程中,SiO2可带入0370 6 g,Fe2O3可带入0403 8 g,CaO可带入0707 g。稀土元素只有Pr和La有少量带出,其他稀土元素均为带入元素,带入量由大到小为:Nd、Ce、Gd、Dy、Er、Sm、Yb、Eu、Ho、Tb,Lu和Tm带入量相同且带入量最小。微量元素中Cu、Mo、Cr、W、V带入量较大,10×106 g矽卡岩化角岩在交代蚀变过程中,Cu可带入937 g,Mo可带入51698 g,Cr可带入17549 g,W可带入1 02181 g,V可带入22211 g,As 可带入9616 g,Sn可带入6727 g,Bi、Ni、Pb、Ga带入量中等,10×106 g矽卡岩化角岩在交代
表2甲玛矿区矽卡岩化角岩中主量、微量和稀土元素向矽卡岩的迁移量
Tab.2Transfer Quantity of Major, Trace and Rare Earth Elements from Skarnization Hornfel to Skarn in Jiama Mining Area
元素或化合物SiO2Al2O3Fe2O3FeOMgOCaONa2OK2OTiO2MnOP2O5
CAi36.044.5917.150.911.9431.610.130.100.240.460.22
COi57.6014.644.
661.011.5312.321.782.930.630.230.13
ΔCi37.06-2.5740.381.393.5770.70-1.44-2.670.000.970.46
元素或化合物AsSbSnAgBiBaBeCdCoCrCs
CAi44.071.2628.160.7413.2216.361.240.886.1391.606.52
COi19.573.696.680.5014.13156.278.100.5211.3465.0516.37
ΔCi96.16-0.3867.271.4420.59-113.30-4.841.794.75175.490.74
元素或化合物CuGaHfLiMoNbNiPbRbScSr
CAi489.5811.310.655.16231.332.9927.1624.336.887.6720.59
COi349.0315.484.1315.7990.5012.2432.6318.40173.4614.6985.57
ΔCi937.0014.21-2.41-2.24516.98-4.3938.6945.50-155.385.45-31.49
元素或化合物TaThTlUVWZnZrCeDyEr
CAi0.203.100.199.03119.60410.4749.6756.8823.583.152.01
COi0.9614.571.285.3191.9756.1050.88184.5757.584.612.77
ΔCi-0.44-6.44-0.7818.39222.111 021.8179.55-35.224.333.672.51
元素或化合物EuGdHoLaLuNdPrSmTbTmYb
CAi0.863.660.609.120.2415.322.252.980.470.241.79
COi1.155.540.9127.050.3829.666.595.570.780.372.60
ΔCi1.114.080.67-3.090.2510.56-0.672.270.460.252.09
蚀变过程中,Bi可带入2059 g, Ni可带入3869 g,Pb可带入455 g,Ga可带入1421 g,其他微量元素带入量较小。Rb、Ba、Ta、Tl、Zr、Nb、Li、Hf、Be、Sb、Sr、Th有带出,带出量由大到小为:Rb、Ba、Zr、Sr、Th、Be、Nb、Hf、Li、Tl、Ta、Sb。
4元素活动性
凌其聪等根据质量平衡方程(COi-CAi)/COi=μ(CAi/COi)-μi(μ为系统质量变化,μi为活动元素i的质量变化率)[6],提出在(COi-CAi)/COiCAi/COi图解上可以判别元素的活动性及活动序列。若μ值恒定,则元素在图上沿斜率为1的直线排列,位于左上端的元素为迁出元素,位置愈靠上端,其迁出的趋势愈强;位于右下端的元素为带入元素,位置愈靠下端,其带入的趋势愈强。对常量元素、稀土元素和部分微量元素进行判别(图5)。从图5可以看出,主量元素Al2O3、Na2O和K2O带出序列由强至弱依次为K2O、Na2O、Al2O3,其余均为带入元素,其带入序列的趋势由强至弱依次为Fe2O3、CaO、MnO、P2O5、MgO、FeO、SiO2[图5(a)]。稀土元素中,Pr和La为带出元素,其他均为带入元素,其带入序列趋势由强至弱依次为Eu、Er、Yb、Dy、Ho、Gd、Tm、Lu、Tb、Sm、Nd、Ce[图5(b)]。微量元素中,Rb、Ta、Zr、Nb、Li、Be、Ba、Th、Sr为带出元素,其带出序列由强至弱依次为Rb、Ba、Be、Ta、Th、Sr、Nb、Zr、Li,其中带入元素序列由强至弱依次为W、Sn、As、U、Cd、V、Ni、Ga、Co、Sc、Cs[图5(c)]。成矿元素中,Ag、Cu、Mo、Pb、Zn均为带入元素,带入序列由强至弱依次为Mo、Ag、Cu、Pb、Zn[图5d)]。
图4甲玛矿区矽卡岩化角岩与矽卡岩的等浓度图解
Fig.4Isocon Diagrams of Skarn and Skarnization Hornfel in Jiama Mining Area
5元素质量迁移特征
矽卡岩化角岩被交代蚀变成矽卡岩过程中,各元素迁移量变化显示,元素在迁移过程中表现出了一定规律(表2)。
在角岩矽卡岩化过程中,元素迁移特征表现为:只有少数元素被带出,包括亲石元素、亲石分散稀碱元素和亲氧元素,其中K、Na、Li、Be带出量较少,K主要分散在造岩矿物中,在交代过程中与稀有元素和挥发分呈络合物形式迁移;Na主要富集在含长石较多的岩石中,在岩浆作用过程中,Na可以与稀有元素组成络合物Na2(NbF7)、Na2(TaF7)等进行迁移[25];黑云母是浓集与携带Li的主要矿物,Li含量与挥发分密切相关;Be可以在挥发分(F、Cl、OH、CO2)含量增加的条件下与K、Na元素形成络合物K2(BeF4)、Na2(BeF4)、K2(BeCO3)2等进行迁移;Zr带出量中等,自然化合物中的Zr经常与Hf、Ti、Nb、Ta、Th等元素进行类质同象置换,当岩浆中富碱及H2O、F、Cl等挥发分时,Zr呈络合物[ZrO4]4-、Na2[Zr(CO3)3]等形式存在于碱性溶液中[25]。由于K、Na、Li、Be、Zr均被带出,所以蚀变过程中K、Na、Li、Be、Zr以络合物形式存在于热液中,进而推测热液中含有F、Cl、OH、CO2等挥发分。带出元素中,Ba和Rb的带出量最大,10×106 g矽卡岩化角岩在交代蚀变过程中可带出155.3 g的Rb和 113.3 g的Ba。Rb常在云母、长石等含钾矿物中产生类质同象;同样,Ba也较多的与钾产生类质同象,Ba在含钾的黑云母及基质中含量最高,因此,含有钾的热水溶液可以从围岩中提取Ba,使其富集到溶液中[25]。甲玛矽卡岩化角岩的矿物成分主要为石英、长石,并且发育黑云母,而矽卡岩中的主要矿物是石榴子石和硅灰石,这与表2显示的带出元素相吻合。
从表2可知,多数元素为迁入元素,这些元素在甲玛矽卡岩中表现出富集的特征。其中,Cu、Mo、Cr、W、V迁入量大,Pb、Zn迁入量中等。Cu、Mo、Pb、Zn是主要的成矿元素,均具有强烈的亲硫性,在自然界主要以硫化物形式存在。热液中Cu的迁移方式主要呈氯的络合物及硫氢络合物等形式(如[Cu(HS)3]-、[CuCl3]2-等),热液迁移过程中条件发生变化,络合物分解而产生Cu沉淀[25]。甲玛铜多金属矿床主要以黄铜矿、斑铜矿为主,因此,成矿溶液中富硫、富铁有利于铜矿的富集;由于硫、铁以低价态出现,推测成矿溶液中贫氧。热液作用是Pb、Zn的重要析出阶段,Pb、Zn的氯化物络合物是其在溶液中的主要搬运方式,当温度变化时,pH值发生变化。当硫浓度增加时,Pb、Zn发生沉淀形成方铅矿和闪锌矿[25]。Mo能以卤化物(MoF6、MoCl2等)形式迁移,在硫逸度较高的介质中可形成少量辉钼矿[25]。由于成矿元素Cu、Mo、Pb 在矽卡岩中的含量高于在矽卡岩化角岩中的含量,推测蚀变热液也提供Cu、Mo、Pb。内生矿物中,V、Cr一般呈三价,三价的V作为类质同象的杂质存在于铁及部分铝的矿物中, 而三价Cr的化合物和相应铁的化合物相似,Cr几乎不进入钾长石和石英晶格[25]。W的带入量最大,10×106 g矽卡岩化角岩在交代蚀变过程中可带入1 02181 g的W,而且W具有形成各种卤化物和络合物的强烈倾向。甲玛矿床中W主要形成白钨矿,而且赋存于矽卡岩中,常与钙铁榴石、硅灰石和透
辉石等矽卡岩矿物共/伴生[26]。W的大量沉淀基本发生在成矿介质温度降低、pH值增高、氧硫逸度增高、氟降低的条件下[25]。
图5甲玛矿区矽卡岩化角岩在交代过程中元素活动序列图解
Fig.5Diagrams of Activity Sequence of Elements During Replacement of Skarnization Hornfel in Jiama Mining Area
综上所述, K、Na、Li、Be、Zr等元素与F、Cl、OH、CO2形成络合物被带入溶液中。Cu、Mo、Pb等元素也以络合物形式存在于蚀变流体中,溶液在迁移过程中当温度与pH值发生变化且硫逸度增加时,络合物发生分解而使上述元素沉淀。溶液中富铁有利于黄铜矿、斑铜矿形成,因此,推测溶液中富含硫和铁且贫氧。利用元素的带入带出,导出蚀变矿物中元素的富集特征,从而可以将这些元素应用到找矿预测中(如黑云母、绢云母富集Li,可以利用Li元素来指示蚀变分带和矿化分带;深部绿泥石富镁,浅部的富铁)。
6结语
(1)主量元素只有Al2O3、Na2O和K2O有少量带出,SiO2、Fe2O3和CaO带入量较大,其他主量元素有不同程度带入,带入序列的趋势由强至弱依次为Fe2O3、CaO、MnO、P2O5、MgO、FeO、SiO2。
(2)微量元素中,Cu、Mo、Cr、W、V带入量较大;Rb、Ba、Ta、Tl、Zr、Nb、Li、Hf、Be、Sb、Sr、Th有带出,带出量由大至小依次为Rb、Ba、Zr、Sr、Th、Be、Nb、Hf、Li、Tl、Ta、Sb。稀土元素的迁移行为具有一定规律性,其中Pr和La有少量带出,其他元素都为带入元素,带入序列的趋势由强至弱依次为Eu、Er、Yb、Dy、Ho、Gd、Tm、Lu、Tb、Sm、Nd、Ce。成矿元素Ag、Cu、Mo、Pb、Zn为带入元素,其中Cu和Mo带入量较大,10×106 g矽卡岩化角岩在交代蚀变过程中可带入937 g的Cu,可带入516.98 g的Mo,带入序列由强至弱依次为Mo、Ag、Cu、Pb、Zn。
(3)蚀变过程元素K、Na、Li、Be、Zr被带出与F、Cl、OH、CO2等组成络合物存在于溶液中。带入元素Cu、Mo、Pb、Zn在甲玛矽卡岩中表现出富集的特征,以硫化物形式存在。溶液中Cu、Mo、Pb、Zn以氯化物络合物形式搬运,当温度与pH值发生变化且硫浓度增加时,Cu、Mo、Pb、Zn发生沉淀形成相应的硫化物。这些硫化物中硫、铁为低价态,而贫氧的流体有利于硫、铁以低价态出现。由于成矿元素Cu、Mo、Pb 在矽卡岩中的含量高于在矽卡岩化角岩中的含量,所以推测蚀变热液也提供Cu、Mo、Pb。根据研究结果,推断蚀变流体富集F、Cl、OH、CO2,具有富含硫和铁元素且贫氧的特征。
西藏华泰龙矿业开发有限公司提供了野外工作支持,王勤硕士研究生在论文写作过程中给予了帮助,在此一并谢忱。
参考文献:
References:
[1]艾金彪,马生明,樊连杰.内蒙古乌努格吐山斑岩型铜钼矿床元素迁移定量探讨[J].地球学报,2013,34(2):193202.
AI Jinbiao,MA Shengming,FAN Lianjie.A Quantitative Discussion on Element Mass Migration in the Wunugetushan Porphyry CuMo Deposit,Inner Mongolia[J].Acta Geoscientica Sinica,2013,34(2):193202.
[2]张亚辉,张世涛.云南文山官房钨矿床化学元素迁移与钨矿化的关系[J].矿物学报,2011,33(增):923924.
ZHANG Yahui,ZHANG Shionship Between Elements Migration and Tungsten Mineralization of Guanfang Tungsten Deposit in Wenshan of Yunnan[J].Acta Mineralogica Sinica,2011,33(S):923924.
[3]李培,邓小虎,陈守余.个旧蚀变岩型铜多金属矿床围岩蚀变过程中元素迁移定量研究[J].地质找矿论丛,2011,26(2):176181.
LI Pei,DENG Xiaohu,CHEN Shoutative Study of Elements Migration During the Wallrock Alteration on Gejiu Altered Rocktype Copperpolymetallic Deposit[J].Contributions to Geology and Mineral Resources Research,2011,26(2):176181.
[4]姚晓峰,王友,畅哲生,等.西藏甲玛铜多金属矿矽卡岩特征及成因意义[J].成都理工大学学报:自然科学版,2011,38(6):662670.
YAO Xiaofeng,WANG You,CHANG Zhesheng,et teristics and the Genesis Implication of Skarn in the Jiama Copperpolymetallic Deposit,Tibet,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2011,38(6):662670.