中国不同区域高砷地下水化学特征的
0引言
高砷地下水是一个世界性的环境问题,全球数亿人面临着高砷地下水的威胁[1]。慢性砷中毒是饮用高砷地下水导致的主要地方病。中国是受慢性砷中毒危害最为严重的国家之一[2]。高砷地下水主要分布在内蒙古、新疆、山西、吉林、江苏、安徽、山东、河南、湖南、云南、贵州、台湾等省(自治区)的40个县(旗、市)。暴露在砷质量浓度等于或超过50 μg·L-1饮用水中的人口为560×104,暴露在砷质量浓度等于或超过10 μg·L-1饮用水中的人口为1 466×104[3]。据调查,在内蒙古高砷暴露区饮水型地方性砷中毒患病率高达15.54%[45]。因此,地下水中砷异常以及由此产生的环境问题已引起各国政府和公众的高度关注。
疾病防控部门经过两轮饮水型地方性砷中毒调查(包括2002~2004年饮水型地方性砷病区和高砷区水砷筛查和2010年饮水型地方性砷中毒监测),基本掌握了中国范围内饮水型地方性砷中毒的分布和高砷地下水中砷质量浓度范围。近几年,国土资源部也相继开展了北方平原盆地地下水资源及环境问题调查评价、中国第二轮水资源评价、地下水污染调查评价以及严重缺水区和地方病区地下水勘查与供水安全示范等方面的调查研究工作,对主要高砷区水文地质条件、地下水化学特征等有了进一步认识。笔者选择以河套盆地、呼和浩特盆地、大同盆地、银川盆地为代表的干旱内陆盆地和以江汉平原、珠江三角洲为代表的湿润河流三角洲为研究对象,主要介绍了中国不同地区高砷地下水的常量组分、氧化还原敏感组分特征,分析了其地下水的水文地球化学过程,探讨了不同区域高砷地下水形成机理的差异。
1中国高砷地下水的分布
在中国大陆地区,高砷地下水主要分布在干旱内陆盆地和河流三角洲(图1,其中ρ(·)为离子或元素质量浓度)。内陆干旱盆地主要包括新疆准噶尔盆地、山西大同盆地、内蒙古呼和浩特盆地和河套盆地、吉林松嫩盆地、宁夏银川盆地等。河流三角洲主要包括珠江三角洲、长江三角洲、江汉平原等。
1.1干旱内陆盆地
1.1.1新疆准噶尔盆地
1980年,中国大陆第一起大面积地方性砷中毒在新疆奎屯地区被发现,在20世纪60年代当地人开始打井开采并饮用地下水,从而引发砷中毒。王连方等在1983年报道这种饮用地下水中砷质量浓度达850 μg·L-1[6]。在天山以北、准噶尔盆地南部的奎屯123团地下水砷污染严重,自流井水中砷质量浓度为70~830 μg·L-1[7]。相比之下,浅层地下水(或地表水)中砷质量浓度较低(从小于10 μg·L-1到68 μg·L-1),这些水源是20世纪60年代以前居民的饮用水。19世纪60年代居民饮用自流的高砷地下水后,产生了慢性砷中毒[8]。在北疆地区,高砷水点分布以准噶尔盆地西南缘最为集中,西起艾比湖,东到玛纳斯河东岸的莫索湾[9]。到目前为止,尽管对地下水中砷质量浓度、土壤砷分布及健康效应等开展了大量的调查和研究,但是这些高砷地下水形成的水文地质条件、水文地球化学环境和过程却缺乏足够的认识。
1.1.2山西大同盆地
山西大同盆地首例地方性砷中毒患者在19世纪90年代早期被发现。该病的流行发生在19世纪80年代中期居民把饮用水源从10 m以内的大口井转变为20~40 m的压把井之后的5~10年间。1998年,王敬华等研究表明,地下水中砷质量浓度为20~1 300 μg·L-1[10]。近期调查显示,所测试的3 083口井中544%超出了50 μg·L-1[11]。高砷地下水的pH值较高,一般为71~87,PO3-4质量浓度达127 mg·L-1,而SO2-4质量浓度较低(一般低于20 mg·L-1)[1214]。高砷地下水主要赋存于冲积湖积沉积物中,其有机碳含量(质量分数,下同)相对较高,可达1.0%[15]。As(Ⅲ)是地下水中砷的主要形态,占总砷的55%~66%[12]。基于同位素研究,Xie等认为地下水中的砷主要来自于恒山变质岩的风化作用[16]。灌溉水的入渗和径流冲洗是控制地下水系统中砷释放的重要过程[17]。
1.1.3内蒙古呼和浩特盆地和河套盆地
在内蒙古地区,砷质量浓度大于50 μg·L-1的地下水主要存在于克什克腾旗、河套盆地和土默特盆地(呼包盆地)[1819]。砷影响区面积达到3 000 km2,超过10×105位居民受到威胁。超过40×104位居民饮用砷质量浓度大于50 μg·L-1的地下水,在776个村庄中有3 000位确诊的地方性砷中毒患者[4]。马恒之等调查研究表明,内蒙古地方性砷中毒的临床症状包括肺癌、皮肤癌、膀胱癌、过度角质化、色素异常等[20]。克什克腾地区的高砷地下水主要由毒砂矿的开采造成的,而河套盆地和土默特盆地(呼包盆地)高砷水主要是由地质成因引起的,主要存在于晚更新世—全新世冲湖积含水层中[2023]。
在呼和浩特盆地,主要受还原环境的影响,地下水中砷质量浓度高达1 500 μg·L-1,60%~90%的砷以As(Ⅲ)形式存在[22,24]。在盆地的低洼处,情况更糟。在一些大口井中,地下水中砷质量浓度也较高(达到560 μg·L-1)。由于蒸发浓缩作用的影响,浅层地下水中盐分和F-质量浓度均较高,尽管F-和砷质量浓度之间并不具有相关性[22]。
在河套平原,浅层地下水中砷质量浓度为11~969 μg·L-1,90%以上的砷以As(Ⅲ)形式存在[21]。Guo等提出高砷地下水主要在还原环境下形成[2,21,25]。相反,Zhang等认为地下水中的砷主要受狼山山前采矿活动的影响,砷从采矿区迁移至地下水流动系统的下游[26]。Guo 等发现,高砷地下水主要存在于浅层冲湖积含水层中,地下水中的砷主要来源于含水层沉积物中的交换态砷和铁/锰结合态砷[2]。这一点被室内原状沉积物微生物培养试验研究所证实[27]。在高砷地下水中,砷主要与细颗粒的有机胶体结合,而与含Fe胶体无关,意味着有机胶体对地下水中砷分布的控制作用[28]。此外,水文地质和生物地球化学对砷活化的制约作用显著,在灌渠和排水干渠附近存在低砷地下水[23]。浅层地下水中砷的分布非常不均匀,无论是在平面上,还是在垂向上,地下水中砷质量浓度差异很大[29]。这种差异导致局部地段地下水中砷质量浓度的动态变化[30]。
1.1.4吉林松嫩平原
2002年在松嫩平原的西南部发现砷中毒新病区。砷中毒主要分布在通榆县和洮南
市,当地居民大多以潜水作为饮水水源,部分饮用承压水[31]。地下水水化学特征具有明显的水平分带性和垂直分带性[32]。在垂向上,砷主要富集在深度小于20 m的潜水和深度在20~100 m的白土山组浅层承压水中。在水平方向上,地下水中砷质量浓度为10~50 μg·L-1的潜水主要分布在山前倾斜平原的扇前洼地及与霍林河接壤的冲湖积平原内。砷质量浓度大于100 μg·L-1的高砷水主要分布在新兴乡、四井子乡沿霍林河河道区域[33]。在重点砷中毒疑似病区的调查发现,地下水中砷的超标率为4665%,砷质量浓度为50~360 μg·L-1,均值为96 μg·L-1[34]。在地形极为平缓的低平原区,含水层以湖积相沉积的粉细砂为主,各含水层之间有黏土、亚黏土隔水层,地下水径流不畅,水位埋深变浅,导致地下水中砷和氟的富集[33]。
1.1.5宁夏银川盆地
宁夏银川盆地于1995年发现有地方性砷中毒病区和砷中毒病人[35]。地下水中砷质量浓度为20~200 μg·L-1[3536]。高砷地下水主要分布在银川平原北部沿贺兰山东麓的黄河冲积平原与山前洪积扇地带[36],呈2个条带分布于冲湖积平原区:西侧条带位于山前冲洪积平原前缘的湖积平原区,在全新世早期为古黄河河道;东侧条带靠近黄河的冲湖积平原区,在全新世晚期为黄河故道,平行于黄河分布。在垂向上,地下水中砷质量浓度随深度增加而降低,高砷地下水一般赋存于10~40 m 的潜水含水层(砷质量浓度从小于10 μg·L-1到177 μg·L-1);第一、二承压水大部分地区未检出砷或检出砷质量浓度低于10 μg·L-1[3738]。高砷地下水呈中性—弱碱性,为HCO3NaCa、ClHCO3Na、ClHCO3NaCa型水,氧化还原电位较低[3940]。特殊的古地理环境特征、地下水径流条件、氧化还原环境等被认为是地下水中砷富集的重要因素[41]。地下水中砷质量浓度随水位改变呈现出动态变化特征[38]。
1.2河流三角洲
1.2.1珠江三角洲
珠江三角洲也存在高砷地下水。地下水中砷质量浓度为2.8~161 μg·L-1。
1.2.2长江三角洲
长江三角洲高砷地下水也普遍存在。20世纪70年代以来相继发现长江三角洲南部南通—上海段第一承压水中砷质量浓度(大于50 μg·L-1)严重超过国家饮用水卫生标准[45]。这一带地下水的还原性相对较强。高砷地下水中Fe2+质量浓度普遍较高,多数大于10 mg·L-1[4546]。地下水中砷质量浓度高时,相应Fe2+质量浓度也较高。长江三角洲南部地下水中砷质量浓度高的主要原因是,在还原环境中,AsO3-4还原为AsO3-3,而且与砷酸盐相结合的高价铁还原成比较容易溶解的低价铁形式[47]。于平胜研究表明,在长江南京段,沿岸5 km内地下水中砷质量浓度普遍高于远离长江的地下水[48]。浅层地下水(潜水)中砷质量浓度普遍较低(小于40 μg·L-1)。
1.2.3汉江平原
2005年,江汉平原首次发现高砷水源和首例地方性砷中毒病例[49]。其中,仙桃市和洪湖市是江汉平原砷中毒最为严重的地区。调查表明,仙桃市848口井中有115口井砷质量浓度超过50 μg·L-1[4950],地下水中砷质量浓度最高达2 010 μg·L-1。该区属于亚热带季风气候,降雨量充沛,地下水埋深浅,地下水以HCO3CaMg型为主。相对于内陆干旱盆地,地下水溶解性总固体(TDS)较低(0.5~1 g·L-1)。
2不同区域高砷地下水化学特征
以大同盆地、河套盆地、呼和浩特盆地、银川盆地为代表的内陆干旱盆地地下水和以珠江三角洲、江汉平原为代表的河流三角洲地下水中砷质量浓度较高,现以这些地区为例,简要总结中国高砷地下水的水化学特征。其中,大同盆地的数据引自文献[12]~[14];河套盆地的数据引自文献[14]、[23];呼和浩特盆地的数据引自文献[22];银川盆地的数据为笔者2012 年的调查结果;珠江三角洲的数据引自文献[43];江汉平原的数据引自文献[51]。
2.1常量组分
高砷地下水中常量组分质量浓度分布范围广。从江汉平原大同盆地银川盆地呼和浩特盆地河套盆地珠江三角洲,地下水中Na+和Cl-质量浓度逐渐升高[图2(a)]。在江汉平原,地下水中Na+质量浓度明显大于Cl-;在河套盆地、银川盆地,Na+与Cl-质量浓度近似相等;而在珠江三角洲,Cl-质量浓度大于Na+。这些地区地下水中HCO-3质量浓度较为相近,而Ca2+质量浓度相差较大[图2(b)]。总体来说,珠江三角洲Ca2+质量浓度最高,银川盆地次之,然后江汉平原、河套盆地和大同盆地均较低,这些地区TDS值为200~20 000 mg·L-1,江汉平原TDS值最低(平均为427 mg·L-1),其次是大同盆地、银川盆地和河套盆地,珠江三角洲则最高[图2(c)、(d)]。除江汉平原外,高砷地下水中Na+质量浓度和TDS值具有显著的正相关关系[图2(c)];在江汉平原,高砷地下水中HCO-3质量浓度与TDS值之间呈显著的正相关关系[图2(d)],而其他地区HCO-3质量浓度总体上低于TDS值。
由图4可知:河套盆地、呼和浩特盆地和大同盆地高砷地下水的Stiff图比较类似,说明其水化学性质比较相近,尽管河套盆地中高砷地下水常量组分质量浓度高于呼和浩特盆地和大同盆地;银川盆地地下水与其他地区存在显著区别,表现为SO2-4和HCO-3是主要阴离子,且质量浓度相近,Na+和Ca2+是主要阳离子;江汉平原地下水更为特殊,表现为HCO-3是主要阴离子,Ca2+是主要阳离子;相比之下,珠江三角洲高砷地下水常量组分质量浓度较高,Cl-为主要阴离子,Na+为主要阳离子。
2.2氧化还原敏感组分
无论是干旱内陆盆地,还是河流三角洲,高砷地下水总体上处于还原环境,其氧化还原电位绝大部分小于0 mV[图5(a)]。其中,河套盆地高砷地下水氧化还原电位最低,其次是呼和浩特盆地、大同盆地和银川盆地。相应
地,地下水中的溶解性有机碳(DOC)质量浓度较高,大部分为5~20 mg·L-1[图5(a)]。其中,河套盆地高砷地下水中DOC质量浓度最高,平均达到12.0 mg·L-1;其次是呼和浩特盆地(平均为8.3 mg·L-1)、银川盆地(平均为6.0 mg·L-1)和大同盆地(平均为5.0 mg·L-1)。此外,珠江三角洲地下水中DOC质量浓度与呼和浩特盆地相当,平均为8.7 mg·L-1;江汉平原地下水中DOC质量浓度与银川盆地相当,平均为62 mg·L-1。总体而言,高砷地下水中DOC质量浓度与氧化还原电位呈负相关关系,DOC质量浓度越高,氧化还原电位越低。这表明,溶解性有机碳质量浓度是促进地下水中还原环境形成的主要因素。
在还原环境中,高砷地下水中SO2-4和NO-3质量浓度较低[图5(b)]。其中,江汉平原SO2-4质量浓度最低,平均为2.5 mg·L-1;河套盆地NO-3质量浓度最低,平均为2.3 mg·L-1。这表明江汉平原地下水中SO2-4来源有限。尽管银川平原NO-3质量浓度与江汉平原相当(平均为4.5 mg·L-1),但是其SO2-4质量浓度(平均为277 mg·L-1)远高于江汉平原。河套盆地SO2-4质量浓度最高,平均达230 mg·L-1。相对于河套盆地和银川盆地,大同盆地和呼和浩特盆地NO-3质量浓度(平均分别为12.5、9.2 mg·L-1)较高,而SO2-4较低(分别为61.5、65.8 mg·L-1)。低质量浓度的NO-3和SO2-4意味着高砷地下水中发生了脱硫酸作用和反硝化作用。
3.2蒸发浓缩作用
除了风化作用外,蒸发浓缩作用也影响高砷地下水的化学特征(特别是在干旱—半干旱的内陆盆地)。这里采用Gibbs图来说明蒸发浓缩作用对地下水化学成分的影响[5556]。图7表明:江汉平原主要受岩石风化作用影响,这与上述分析一致;其他地区除了受风化作用影响外,还受到蒸发浓缩作用的控制。其中,河套盆地受蒸发浓缩作用影响最大,其次是呼和浩特盆地、大同盆地和银川盆地。高砷地下水中Cl-和砷质量浓度之间的相关性并不显著,这种关系表明地下水中砷质量浓度受蒸发浓度作用的影响有限。
3.3阳离子交换吸附作用
3.4还原作用
氧化还原条件对地下水中砷的富集起着至关重要的作用。从图9(a)可以看出,砷质量浓度大于50 μg·L-1的地下水主要位于氧化还原电位小于-50 mV的区域。地下水中氧化还原电位越低,砷质量浓度相应越高。相对于大同盆地、河套盆地和呼和浩特盆地,银川盆地地下水中氧化还原电位较高,相应地砷质量浓度较低(平均为28.0 μg·L-1)。因此,还原条件有利于含水层中砷的释放[5859]。
在还原环境中,铁/锰氧化物矿物的还原性溶解被认为是地下水中砷富集的主要原因[4,5960]。在含水介质中,铁/锰氧化物矿物对砷的吸附起主要作用[61],被认为是地下水系统中砷的主要载体[62]。在还原环境中,这种富砷的矿物可被还原为溶解态组分,进入地下水中;与此同时,矿物上吸附的砷也被释放出来,并在一定条件下在地下水中积累。然而,地下水中砷与铁质量浓度之间的相关性并不显著[图5(d)]。在江汉平原,地下水中铁/锰质量浓度相对高,砷质量浓度也较高;在大同盆地、河套盆地和呼和浩特盆地,地下水中铁/锰质量浓度低,但砷质量浓度较高[图9(b)]。因此,地下水中砷质量浓度不受铁/锰质量浓度的限制。高砷地下水中,铁/锰质量浓度既可能高,也可能低[63]。造成这种现象的原因可能包括以下几点。
(1)As(V)的还原性解吸附是地下水中砷释放的主要原因。在还原环境中,被吸附的As(V)直接被还原为As(Ⅲ),由于在铁/锰氧化物表面,As(Ⅲ)的附着能力比As(V)低,所以As(V)被还原为As(Ⅲ)后被释放出来[64]。在此过程中,没有涉及铁/锰的还原,铁/锰并没有释放出来,因此地下水中铁/锰质量浓度并不高。
(2)在还原性溶解中产生的Fe(Ⅱ)重新被吸附到沉积物的表面。羟基氧化铁对Fe(Ⅱ)具有很强的亲和力,可大量吸附Fe(Ⅱ)[6566]。
(3)由于地下水相对于黄铁矿和菱铁矿过饱和,还原性地下水中Fe(Ⅱ)以黄铁矿和菱铁矿的形式沉淀,所以被从地下水中去除[63,6768]。尽管部分砷可与黄铁矿共沉淀[69],或被菱铁矿吸附[70],但是还原性溶解所释放的砷远多于被黄铁矿/菱铁矿去除的砷。
(4)在pH值较高的情况下,铁/锰氧化物吸附态砷进行解吸附。由于在pH值较高时,矿物对As(V)的吸附能力较低[71],这种解吸附主要以As(V)为主。
高砷地下水存在于SO2-4和NO-3质量浓度均较低的江汉平原,也存在于SO2-4和NO-3质量浓度均较高的银川盆地、河套盆地和呼和浩特盆地[图9(c)];并且,高砷地下水中发生了脱硫酸作用和反硝化作用。在较强还原条件的河套盆地和呼和浩特盆地,铁、锰质量浓度较低的原因可能与SO2-4质量浓度有关。由于铁的硫化物矿物溶解度低,还原环境中较高质量浓度SO2-4还原产生的S2-限制了铁、锰在地下水中的积累。因此,在河套盆地和呼和浩特盆地,黄铁矿沉淀可能是控制地下水中铁、砷质量浓度的一个重要过程。这一结果与河套盆地地下水中Fe同位素研究和化学特性时空演化研究结果一致[63,68]。相比之下,在江汉平原,低质量浓度SO2-4还原产生的S2-比较有限,不能有效控制铁在地下水中的积累,因此铁/锰氧化物矿物的还原性溶解和Fe(Ⅱ)的再吸附可能是地下水中的主要水文地球化学过程,尽管确切证据需要来自于含水层沉积物中Fe形态的结果。此外,在大同盆地、河套盆地和呼和浩特盆地,地下水中pH值较高,因此在碱性条件下吸附态砷的解吸附也是一个重要的富砷过程。
4结语
(1)中国高砷地下水既存在于干旱内陆盆地,也存在于湿润的河流三角洲。尽管这2类地区地下水中砷质量浓度均较高,但是地下水化学特点却存在显著差异。在干旱内陆盆地,高砷地下水的pH值较高,呈弱碱性;而湿润河流三角洲地下水的pH值为中性。江汉平原的高砷地下水以HCO3Ca型为主;大同盆地、河套盆地和银川盆地高砷地下水主要为HCO3Na型;而珠江三角洲高砷地下水为ClNa型。高砷地下水中氧化还原电位低,处于还原环境。总体上,SO2-4和NO-3质量浓度较低。其中,江汉平原SO2-4质量浓度最低,河套盆地NO-3质量浓度最低。此外,铁与砷之间的相关性并不显著。在珠江
三角洲,铁、锰质量浓度最高,但砷质量浓度相对较低;而大同盆地高砷地下水中铁、锰质量浓度最低,但砷质量浓度相对较高。
(2)在高砷地下水系统中发生了不同程度的风化作用、阳离子交换吸附作用和还原作用。河套盆地、大同盆地、呼和浩特盆地和银川盆地地下水均位于全球平均硅酸盐风化区;江汉平原地下水位于全球平均碳酸岩风化区附近;而珠江三角洲地下水位于蒸发岩风化区附近。相对而言,河套盆地和呼和浩特盆地地下水中阳离子交换吸附程度高,而银川盆地和江汉平原阳离子交换吸附程度较低。高砷地下水中发生了反硝化作用、脱硫酸作用以及铁、锰氧化物还原过程。在较强还原条件的河套盆地和呼和浩特盆地,铁、锰质量浓度较低的原因可能与SO2-4质量浓度有关。还原环境中较高质量浓度SO2-4还原产生的S2-限制了铁、锰在地下水中的积累。在河套盆地和呼和浩特盆地,黄铁矿沉淀可能是控制地下水中铁、砷质量浓度的一个重要过程。在江汉平原,铁/锰氧化物矿物的还原性溶解和Fe(Ⅱ)的再吸附是地下水中主要的水文地球化学过程。此外,在地下水pH值较高的干旱内陆盆地,吸附态砷的解吸附也是一个重要的富砷过程。
参考文献:
.Journal of Hazardous Materials,2001,84(2/3):229240.