图像融合算法的分析与比较
摘 要:图像拼接技术一直是计算机视觉、图像处理和计算机图形学的热点研究方向。图像融合算法是图像拼接过程中非常重要的一个步骤,本文介绍了几种常用图像融合算法,并且结合实验对它们的进行了分析和比较。
关键词:图像融合;图像拼接
一、引言
图像拼接(Image Stitching)技术是由于摄像设备的视角限制,不可能一次拍出很大图片而产生的。图像拼接技术可以解决由于相机等成像仪器的视角和大小的局限,不可能一次拍出很大图片而产生的问题。它利用计算机进行自动匹配,合成一幅宽角度图片,因而在实际使用中具有很广泛的用途,同时对它的研究也推动了图像处理有关的算法研究。
图1 图像拼接流程图
图像拼接技术的基本流程如图1-1所示,首先获取待拼接的图像,然后是图像配准和图像融合,最终得到拼接图。图像拼接技术主要包括两个关键环节,即图像配准和图像融合。
图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息后寻找图像间的变换模型,然后由待拼接图像经变换模型向参考图像进行对齐,变换后图像的坐标将不再是整数,这就涉及到重采样与插值的技术。图像拼接的成功与否主要是图像的配准。
待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像进行匹配。
图像融合的任务就是把配准后的两幅图像根据对准的位置合并为一幅图像。由于两幅相邻图像之间存在重叠区域,因此,采用配准算法可以实现图像的对齐。然而图像拼接的目的是要得到一幅无缝的拼接图像陶波,于志伟,郑筱祥.图像的自动拼接.中国生物医学工程学报,1997,.16(4):316-322.
下一篇:利用access实现表格自动填充