试析基于补偿模糊神经网络的高职院校教师教学
发布时间:2015-07-02 13:51
论文关键词:补偿模糊神经网络 教学评价模型 六步法则 高职院校
论文摘要:利用补偿模糊神经网络构建高职院校教师的教学评价模型,借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程。数据验证结果表明,该模型评价精度较高,有利于合理地对教师教学能力的评价,并将有效地促进学校推行绩效考核机制,促进人才培养质量的提升。
高等职业教育在我国高等教育规模中占半壁江山,在人才培养方面起着举足轻重的作用。如何更快更好地发展高职教育,提高人才培养的质量显得越来越重要。高水平的培养质量归根结底是要建立一支过硬的教师队伍。因此,各高职院校目前十分注重利用绩效考核来促进教师队伍整体水平的提高。所谓绩效考核,就是依据教师岗位职责,对教师是否胜任本岗位工作所规定的政治思想、职业道德、工作实绩等进行全面系统的评价。那么如何通过绩效考核对每位教师进行一个客观、全面的评价呢?这主要依赖于教学评价模型的正确性与合理性。笔者依据多年来的教务管理经验,以及通过教授《机械制图》这门课程得到的启发,采用六步法则与补偿模糊神经网络相结合,实现了教学评价模型的构建,旨在提高评价的合理性与客观性。
1六步法则及其由来
六步法则的由来,是笔者受《机械制图》课程教学的启发而得出的:对于一个零件制作而言,大体经过以下六个步骤:(1)通过“看”来对市场上所出现的类似零件进行比对,比如说用途、特点等;(2)分析其利弊;(3)确定自己制作该零件的方案进行草图绘制:确定绘图的纸张大小等,从而对零件的结构图(主视图、剖面图等)进行细心绘制,最后对细节进行加工;(4)根据绘制的图形,对该零件进行加工;(5)加工样品检验零件的合理性;(6)通过使用不断地对零件进行修改完善。综上所述,零件的加工制作可以归结为:“看、想、画、作、查、改”。其中“画”尤其重要,因为最终图的正确与否将直接关系到产品的质量,影响整个公司的经济效益因此在设计过程中强调的是在正确的前提下注意细而精。对于教学评价也是如此。如果教学评价模型建立的不合理,将直接导致对教师能力评价的不客观、不全面,那么对教师绩效工资的分配将不合理,激励导向效果就不会理想。为此,按照全面质量管理的“三全一多样”的特征,借鉴机械制图的6大步骤,总结得出“六步法则”,运用此法则,对教学评价模型进行构建。
所谓六步法则,是指一看、二分析、三建模、四检验、五实施、六改善。“一看”是指对目前高职院校的教师能力进行全面调查,目前采用教师教学评价机制进行搜索比对;“二分析”是指通过调查之后分析高职院校教师能力体现较为全面的几项重大指标,确定评价的标准;“三建模”是指通过确定的几项评价指标和最终评价结果,采用先进的数学建模方法进行评价模型的建立;“四检验”主要是通过利用建好的模型,采用以前的评价数据、结果进行对比,验证模型的合理性与客观性;“五实施”是指通过验证的模型对目前的教师教学能力进行评价;“六改善”是指在实施过程中对一些细枝末节进行调整、改善,以促进教师教学水平的提高,不断完善绩效考核机制。
2教学评价模型的构建
(1)看。高职院校的教师能力除了需要具备一定的专业知识与技能外,还须具备操作技术及实践经验。最好是“双师型”的教师。在北京召开的第四届高等学校教学名师奖表彰大会上有位名师指出:作为高职院校的教师,既要有扎实的理论知识,更要注重实践经验的积累;既要把握专业领域学术发展前沿,又要与行业及企业保持密切联系,时刻关注行业发展动态。他说:“一名优秀教师需要不断与时俱进,创新课程体系,调整教学内容,既要注重学生基本理论知识的传授、专业技能的培养,还要注重学生的个性发展和综合素质的培养;只有这样,才能获得良好的教学效果,因此,目前评判教师水平主要关注于知识、素质、能力这三方面。
知识结构包括围绕职业岗位的知识、技术,及本专业领域的最新发展动态和职业岗位上的新知识、新技术、新工艺等;素质结构包括良好的道德素质和职业素质,道德素质是树立正确的世界观、人生观和价值观,职业素质是指角色意识、敬业精神、时效意识、团队精神等;能力结构包括教育教学能力、岗位实践能力、现代教育技术使用能力和科研能力等川。
根据确定的评价内容,目前采用的评价体系具有一定的多维性和动态性,评价的方式大多采用“定性”与“定量”相结合的方法,主要有:1)专家评价法,如专家打分综合法。2)运筹学与其他数学方法,如层次分析法、数据包络法、模糊综合评价法、绝对评价法。3)新型评价方法,如人工神经网络评价法、灰色综合评价法、综合评分法。4)组合评价法,这是几种方法混合使用的情况。
(2)分析。教学质量的高低是由多种因素交互作用决定的,但其最主要的因素体现在知识、素质、能力这三方面,因此为了能够较为全面的进行评判,这里采用多主体多角度的评价方式。“多主体”是指教师、学生、专家(含同行)评价和教学主管部门评价以及外聘工程师等。“多角度”是指每个评价主体对应的评价指标不同,即设计的调查问卷不同。其中表1为学生对教师课堂教学的总体评价表。
(3)模型构建。人们在教育评价中所用的方法,可以简单地归结为两大类:定性评价方法和定量评价方法。其中定量评价方法需要用刻一些数学模型对评价对象进行处理。到目前为止,教学评价所用的数学模型主要有确定(性)数学模型、随机(性)数学模型和模糊数学模型三类。具体来讲,确定(性)数学模型有线性规划、动态规划、数据包络分析、层次分析方法等;随机(性)数学模型有回归分析、因素分析、聚类分析、齐次马尔科夫链等;模糊数学模型有模糊综合评判模型、模糊积分模型、灰色数学模型等。在教育评价中,上述方法均有各自比较适宜的评价对象.
在融合模糊理论和神经网络技术的基础上,通过补偿神经元来执行补偿模糊推理,动态地调整模糊规则,从而形成了一种新的网络—补偿模糊神经网络,由此进行教学评价模型的构建。
1补偿模糊神经网络的特点
采用补偿模糊神经网络对某=系统进行辨识时,不需要事先知道索统的精确的数学模型,它能借助于人类的模糊推理知识以及神经网络的逼近性能来实现对过程的建模。它拥有许多优点,如鲁棒性、无需模型、全局逼近。
:提据高职院校对教师工作素质的要求,结合高职院校的培养目标,采用多z多角摩多丰体的评价机制,对教师教学质量模型进行合理建构。但是如何制定一个合理的评价指标,是一个七啦复杂而且困难的课题,本文在教育部已有评拈体系的基础上,根据前人研究成果,利用学生对教师的网上评教、教师个人的_自我评价、同行评价以及家评价得分作为模型的输入、(艺‘1一4),每个评价因子得分范围是,分为三个等级:较差、良好,一优秀。但是如何确定这三个等级的标准,这里采用高斯函数才)”作为模糊隶属度函数从而对其等级进行划分。其中“,·““(隶属度中‘。·宽度’均属于可调参数。具体建构的教学评价模型如图1所示。
整个模型分为5层,第一层作为评价指标输人层,第二层对评价指标进行分类(较差、良好、优秀),然后根据模糊推理的规则来推理得出教师教学质量的好坏。
3)模型的训练
运用多年来积累的数据报表,通过聚类分析的方式对数据进行有效性验证,在现有数据的基础上挑选了2000多个样本进行评价模型的训练,采用梯度下降法对模糊隶属度函数中的参数进行训练,其训练过程的误差mse变化曲线如图2所示。
最后从样本中选取200个样本对其进行验证,结果误差达到了i.5%,精确度较高。
3.结论
借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程,利用补偿模糊神经网络构建高职院校教师的教学评价模型,结果表明模型的预测评价准确性较高。由于模型正处于试验阶段,应用于以后的教学评价过程后,还应不断对其进行检验,不断完善。同时,还需要根据企业对人才需求的变化不断地更新评价指标,完善教学评价模型,科学地对教师教学质量进行评价,有效地促进绩效管理方式的推行,促进高职院校人才培养水平的提高。
论文摘要:利用补偿模糊神经网络构建高职院校教师的教学评价模型,借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程。数据验证结果表明,该模型评价精度较高,有利于合理地对教师教学能力的评价,并将有效地促进学校推行绩效考核机制,促进人才培养质量的提升。
高等职业教育在我国高等教育规模中占半壁江山,在人才培养方面起着举足轻重的作用。如何更快更好地发展高职教育,提高人才培养的质量显得越来越重要。高水平的培养质量归根结底是要建立一支过硬的教师队伍。因此,各高职院校目前十分注重利用绩效考核来促进教师队伍整体水平的提高。所谓绩效考核,就是依据教师岗位职责,对教师是否胜任本岗位工作所规定的政治思想、职业道德、工作实绩等进行全面系统的评价。那么如何通过绩效考核对每位教师进行一个客观、全面的评价呢?这主要依赖于教学评价模型的正确性与合理性。笔者依据多年来的教务管理经验,以及通过教授《机械制图》这门课程得到的启发,采用六步法则与补偿模糊神经网络相结合,实现了教学评价模型的构建,旨在提高评价的合理性与客观性。
1六步法则及其由来
六步法则的由来,是笔者受《机械制图》课程教学的启发而得出的:对于一个零件制作而言,大体经过以下六个步骤:(1)通过“看”来对市场上所出现的类似零件进行比对,比如说用途、特点等;(2)分析其利弊;(3)确定自己制作该零件的方案进行草图绘制:确定绘图的纸张大小等,从而对零件的结构图(主视图、剖面图等)进行细心绘制,最后对细节进行加工;(4)根据绘制的图形,对该零件进行加工;(5)加工样品检验零件的合理性;(6)通过使用不断地对零件进行修改完善。综上所述,零件的加工制作可以归结为:“看、想、画、作、查、改”。其中“画”尤其重要,因为最终图的正确与否将直接关系到产品的质量,影响整个公司的经济效益因此在设计过程中强调的是在正确的前提下注意细而精。对于教学评价也是如此。如果教学评价模型建立的不合理,将直接导致对教师能力评价的不客观、不全面,那么对教师绩效工资的分配将不合理,激励导向效果就不会理想。为此,按照全面质量管理的“三全一多样”的特征,借鉴机械制图的6大步骤,总结得出“六步法则”,运用此法则,对教学评价模型进行构建。
所谓六步法则,是指一看、二分析、三建模、四检验、五实施、六改善。“一看”是指对目前高职院校的教师能力进行全面调查,目前采用教师教学评价机制进行搜索比对;“二分析”是指通过调查之后分析高职院校教师能力体现较为全面的几项重大指标,确定评价的标准;“三建模”是指通过确定的几项评价指标和最终评价结果,采用先进的数学建模方法进行评价模型的建立;“四检验”主要是通过利用建好的模型,采用以前的评价数据、结果进行对比,验证模型的合理性与客观性;“五实施”是指通过验证的模型对目前的教师教学能力进行评价;“六改善”是指在实施过程中对一些细枝末节进行调整、改善,以促进教师教学水平的提高,不断完善绩效考核机制。
2教学评价模型的构建
(1)看。高职院校的教师能力除了需要具备一定的专业知识与技能外,还须具备操作技术及实践经验。最好是“双师型”的教师。在北京召开的第四届高等学校教学名师奖表彰大会上有位名师指出:作为高职院校的教师,既要有扎实的理论知识,更要注重实践经验的积累;既要把握专业领域学术发展前沿,又要与行业及企业保持密切联系,时刻关注行业发展动态。他说:“一名优秀教师需要不断与时俱进,创新课程体系,调整教学内容,既要注重学生基本理论知识的传授、专业技能的培养,还要注重学生的个性发展和综合素质的培养;只有这样,才能获得良好的教学效果,因此,目前评判教师水平主要关注于知识、素质、能力这三方面。
知识结构包括围绕职业岗位的知识、技术,及本专业领域的最新发展动态和职业岗位上的新知识、新技术、新工艺等;素质结构包括良好的道德素质和职业素质,道德素质是树立正确的世界观、人生观和价值观,职业素质是指角色意识、敬业精神、时效意识、团队精神等;能力结构包括教育教学能力、岗位实践能力、现代教育技术使用能力和科研能力等川。
根据确定的评价内容,目前采用的评价体系具有一定的多维性和动态性,评价的方式大多采用“定性”与“定量”相结合的方法,主要有:1)专家评价法,如专家打分综合法。2)运筹学与其他数学方法,如层次分析法、数据包络法、模糊综合评价法、绝对评价法。3)新型评价方法,如人工神经网络评价法、灰色综合评价法、综合评分法。4)组合评价法,这是几种方法混合使用的情况。
(2)分析。教学质量的高低是由多种因素交互作用决定的,但其最主要的因素体现在知识、素质、能力这三方面,因此为了能够较为全面的进行评判,这里采用多主体多角度的评价方式。“多主体”是指教师、学生、专家(含同行)评价和教学主管部门评价以及外聘工程师等。“多角度”是指每个评价主体对应的评价指标不同,即设计的调查问卷不同。其中表1为学生对教师课堂教学的总体评价表。
(3)模型构建。人们在教育评价中所用的方法,可以简单地归结为两大类:定性评价方法和定量评价方法。其中定量评价方法需要用刻一些数学模型对评价对象进行处理。到目前为止,教学评价所用的数学模型主要有确定(性)数学模型、随机(性)数学模型和模糊数学模型三类。具体来讲,确定(性)数学模型有线性规划、动态规划、数据包络分析、层次分析方法等;随机(性)数学模型有回归分析、因素分析、聚类分析、齐次马尔科夫链等;模糊数学模型有模糊综合评判模型、模糊积分模型、灰色数学模型等。在教育评价中,上述方法均有各自比较适宜的评价对象.
在融合模糊理论和神经网络技术的基础上,通过补偿神经元来执行补偿模糊推理,动态地调整模糊规则,从而形成了一种新的网络—补偿模糊神经网络,由此进行教学评价模型的构建。
1补偿模糊神经网络的特点
采用补偿模糊神经网络对某=系统进行辨识时,不需要事先知道索统的精确的数学模型,它能借助于人类的模糊推理知识以及神经网络的逼近性能来实现对过程的建模。它拥有许多优点,如鲁棒性、无需模型、全局逼近。
2)模型的建构
:提据高职院校对教师工作素质的要求,结合高职院校的培养目标,采用多z多角摩多丰体的评价机制,对教师教学质量模型进行合理建构。但是如何制定一个合理的评价指标,是一个七啦复杂而且困难的课题,本文在教育部已有评拈体系的基础上,根据前人研究成果,利用学生对教师的网上评教、教师个人的_自我评价、同行评价以及家评价得分作为模型的输入、(艺‘1一4),每个评价因子得分范围是,分为三个等级:较差、良好,一优秀。但是如何确定这三个等级的标准,这里采用高斯函数才)”作为模糊隶属度函数从而对其等级进行划分。其中“,·““(隶属度中‘。·宽度’均属于可调参数。具体建构的教学评价模型如图1所示。
整个模型分为5层,第一层作为评价指标输人层,第二层对评价指标进行分类(较差、良好、优秀),然后根据模糊推理的规则来推理得出教师教学质量的好坏。
3)模型的训练
运用多年来积累的数据报表,通过聚类分析的方式对数据进行有效性验证,在现有数据的基础上挑选了2000多个样本进行评价模型的训练,采用梯度下降法对模糊隶属度函数中的参数进行训练,其训练过程的误差mse变化曲线如图2所示。
最后从样本中选取200个样本对其进行验证,结果误差达到了i.5%,精确度较高。
3.结论
借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程,利用补偿模糊神经网络构建高职院校教师的教学评价模型,结果表明模型的预测评价准确性较高。由于模型正处于试验阶段,应用于以后的教学评价过程后,还应不断对其进行检验,不断完善。同时,还需要根据企业对人才需求的变化不断地更新评价指标,完善教学评价模型,科学地对教师教学质量进行评价,有效地促进绩效管理方式的推行,促进高职院校人才培养水平的提高。