欢迎来到学术参考网
当前位置:教育论文>化学论文

基于化学观念的化学1模块 元素化合物的教学研究

发布时间:2016-04-19 17:00

  化学观念是学习者对不同层次具体化学知识的概括提升,是学习者对化学学科特征和化学知识的深刻理解,它具有超越具体知识的持久价值和广泛的迁移作用,影响着学生解决实际问题的价值取向和行为方式。如何以化学观念为指导提高元素化合物教学的实效,进而促进学生化学观念的发展?本文以化学1模块的元素化合物教学为例进行探讨与分析。


  一、化学1模块中的化学观念


  高中化学1模块通过精选核心知识、设计丰富多彩的探究活动,引导学生进一步发展相关的化学观念。“元素观”“分类观”“转化观”这三大化学观念的发展是教师在进行化学1模块元素化合物知识教学时需要关注的。


  元素观元素观建构的价值在于它可以帮助学生形成化学的思维方法,有序地认识物质,指导其化学的学习和研究。元素观的具体内容可以表述为:物质由元素组成、物质按照元素组成进行分类、化学式能表示物质的元素组成、物质间转化的本质是元素原子间的重新组合、元素是同一类原子的总称、元素化合价与元素原子的最外层电子数有关、元素性质呈周期性变化,等等。在化学1模块,积累钠、铝、铁、铜、硅、氯、硫、氮元素代表物质的相关知识,并使之有序化,是重要的教学目标之一。当学生对元素观的认识达到一定水平的时候,他们就能在具体元素的学习过程中运用元素的观点来寻找含该元素的物质、按元素组成对相关物质进行分类、按照物质间的关系整理物质的性质及其转化;他们就能在具体物质的学习和研究中运用元素的观点思考该物质的核心元素是什么、该元素可能具有哪些价态、物质的类别是什么、该类物质的通性和特性有哪些、该物质可能存在怎样的转化关系,等等。


  分类观分类是_种_般科学方法,广泛应用于各个学科领域。通过分类,学习者可以更好地认识同类物质的本质。化学学科的研究对象是物质及其变化,分类标准是分类的核心,理解根据不同的分类标准对物质及其发生的变化进行不同角度、不同层次的分类;同类物质具有相似的性质,可以发生相似的化学变化,是学习者必须要掌握的科学方法。H人教版化学1教材按照金属及其化合物、非金属及其化合物将元素化合物内容分为两章,以物质分类思想整合众多的教学内容。学习者可以通过探究或阅读等丰富多彩的自主活动获取教材中的感性信息,采用分类、归纳的方法获得系统的化学知识。如,教材在第三章先对钠、铝、铁三种金属单质的通性与特性进行介绍,再介绍钠的氧化物与盐、铁的氢氧化物与盐、铝的氧化物与氢氧化物的性质,最后安排了金属材料的性质和用途内容。由此可见,以物质的组成和性质进行分类研究的方法必将成为贯穿元素化合物知识的学习主线,教师应引导学习者适时应用物质的通性、物质类别之间的反应规律、氧化还原反应理论、离子反应理论等工具进行元素化合物知识的自主学习。


  转化观物质的存在不是静止和孤立的,物质总是在不断变化,当某种物质生成或消失时,一定会伴随着其他物质的消失或生成,所以不同物质间发生着有规律的转化。物质转化的本质是物质的化学变化,转化体现物质的化学性质。由于物质发生化学变化时元素种类不变,所以转化是以元素为核心的各种物质性质的知识结构的核心。元素化合物知识的教学应探究反应的内在规律、建立以元素为核心的物质转化观。以元素为核心的物质转化主要有两种形式:一是相同元素价态,不同物质类别间的转化,如氢氧化铝与氯化铝的转化;二是不同元素价态间的转化,如氯化铁与氯化亚铁的转化。第一种转化通过复分解反应就可达成,第二种转化必须通过氧化还原反应来实现。当学生能够把物质的类别与性质视为统一的整体,把物质的变化与转化视为统一的过程,利用规律性知识完成相关变化,实现相关转化时,就可以说学生对于转化观的认识达到了较高水平。


  二、化学1模块元素化合物教学与化学观念的关系


  化学1模块中的元素化合物知识与化学观念的关系可以概括为两个方面,一是元素化合物知识作为知识载体可以很好地承载“元素观”“分类观”“转化观”的发展任务;二是元素化合物内容的结构化需要以上三大化学观念的引领。


  (一)元素化合物内容对化学观念发展的承载需要认识知识的价值并辅以活动落实


  面对元素化合物内容,教师应着力于挖掘核心化学知识的教学价值,将教学目标从“学习物质性质”转向“形成研究物质性质的思想方法”和“发展对化学观念的认识”,将教学行为从“知识为本”转向“观念建构”。化学观念的形成需要学生在积极主动的探究活动中,深刻理解和掌握有关的化学知识,并在对知识的应用过程中概括提炼而成。因此,教师应深入分析具体知识对化学观念发展的支持度,并为核心知识的学习过程设计合理的探究活动,引导学生加深对核心知识的认识,促进其化学观念的发展。


  例如,人教版化学1第三章第一节“金属的化学性质”内容,教材的编写注重学生已有的知识基础和学习习惯,教师教学应以分类观为具体金属性质学习的指导,探究金属与其他物质类别间的反应,同时注意物质特性的研究;学生通过钠与氧气反应、钠与水反应、铁与水反应、铝与氢氧化钠反应等新知识的获得,建立金属性质研究的新角度,或提升分类标准,构建更完善的金属性质的研究框架,发展物质分类观念。在学生充分认识到了“金属化学性质”对物质分类观发展价值的基础上,教师应通过一系列活动给予落实。例如,通过让学生回忆并举例说明金属的化学性质,初步建立金属性质分类研究的框架;通过完成钠与氧气反应、铝箔加热的探究实验获取的感性认识,对金属与氧气反应的知识进行补充,增加生成过氧化物的分类研究角度,增加致密氧化膜对于金属性质的影响这一分类研究角度;通过对铁与氯气、铁与硫反应的实验现象的观察,对钠与水、铁与水反应现象的观察解释及产物预测,将金属与氧气反应的分类角度提升为金属与非金属反应的知识规律总结,将金属与酸反应的分类角度提升为金属与酸或水反应的规律总结;通过铝与盐酸、与氢氧化钠反应的探究实验,认识到铝的特性,增加研究金属性质的新角度一特殊金属与碱的反应。教师只有认识到金属化学性质的具体知识点对于物质分类观的发展作用,并且在教学中通过认识建构活动和认识发展反思活动,才能使学生深刻理解分类观对于认识金属具体化学性质的指导作用,通过具体知识点的学习深刻理解物质分类观,特别是基于分类观的金属性质的认识角度得到丰富和发展。


  (二)元素化合物内容的结构化需要化学观念的引领并辅以可操作的学习工具


  对于元素化合物知识,很多学生头脑中都只是片段。学生缺乏一种工具,把知识整合起来,形成结构化的知识网络。化学观念具有促进元素化合物知识结构化的重要作用,出于可操作的需求,要把观念工具化,二维物质关系图就是一种体现“元素观”“分类观”“转化观”指导下实现元素化合物知识结构化的工具,如图1所示。在此工具化图示中,“元素观”“分类观”“转化观”是一体的,核心是元素,方法是分类,内涵是转化。此工具化图示是以元素为核心的、以价态和物质类别为坐标的二维物质关系图,应用于不同元素时,坐标可能出现变化,具体变化实例如图2、图3、图4。


  

blob.png

blob.png

  在建构二维物质关系图的过程中,化学观念对学生的思维和行为起指导作用,并在学生深入思考、反复尝试的过程中得到应用和发展。如,在建立如图2所示的以钠元素为核心的二维物质关系图时,学生首先要寻找核心元素为钠的物质,然后按照钠元素的价态0价或+1价及物质类别把这些物质标识在图中合理的位置上。在此过程中,学生思维和行动的指导就是元素观,而元素观也在学生的自主活动中得到巩固和应用层面的发展。又如,图2、3、4都是以金属元素为核心构建的物质关系图,但盐类物质出现了物质和离子两种不同的呈现方式。为什么钠盐在关系图中没有呈现为“Na+”?碳酸钠可与多种物质发生符合盐类通性的复分解反应,但“Na+”并没有真正参与离子反应的过程。反观氯化铁,它与碱发生复分解反应、与铁发生氧化还原反应,“Fe3+”真正参与了离子反应过程。由此可见,在考虑物质呈现方式的过程中,学生需要综合利用各种化学分类知识,认识物质的组成与性质,分类观也在学生不断的思考和利用中得到巩固和发展。再如,图2、3、4的物质呈现顺序不同,其中蕴含的深层次原因为可溶的金属氧化物能与水反应生成碱,而不溶的金属氧化物不具此性质。通过建立适当的物质类别顺序、全面的物质间连线,学生就能够把物质的类别与性质视为统一的整体,把物质的变化与转化视为统一的过程,利用规律性知识完成相关转化,学生对于转化观的认识水平得以不断提升。


  学生在学习建构二维物质关系图的过程中,配合自然现象、学习生活、工业生产、环境问题等多角度的应用活动也是必不可少的。在应用环节,学生需要从二维物质关系图中准确提取结构化的知识信息,即反应物性质知识及反应物和生成物在图中的结构关系信息。如“硫的化合物”的学习,要求学生设计火力发电厂将二氧化硫转化为石膏的过程,学生只有准确提取到二氧化硫的性质及其与硫酸钙的结构关系信息,才能清晰地表述:“二氧化硫-石膏的转化涉及化合价和物质类别转化,所以转化过程要用到氧化剂和碱……”。在应用环节中,学生逐渐理解二维物质关系图中代表物在图中所处位置所包含的知识信息,理解物质间连线的内涵,从而使零散的知识形成结构清晰的整体。


  三、体现化学观念的“铝的化合物”的教学设计及其分析


  化学观念具有体验性和内隐性,只能建立在对化学知识深层次挖掘的基础上,不能通过机械记忆获得。所以,基于化学观念的教学需要学习者亲历知识的探索发现过程,对具体知识进行深入理解,并在不断的应用与修改中获得逐渐接近学科本质的认识。教师如何通过课堂教学切实落实学生的化学观念的发展任务?笔者以“铝的化合物”的教学为例进行探讨。


  依据化学观念的发展需求分析,铝的化合物教学中需要考虑:其一,应尽可能涉及各类核心元素为铝的物质,包括铝、氧化铝、氢氧化铝、偏铝酸钠、氯化铝;其二,两性氧化物、两性氢氧化物的概念,是物质分类的新知识,是教学重点,相关结论最好由学生思考得出;其三,氧化铝、氢氧化铝与碱反应生成偏铝酸钠这一物质转化关系是学生认同、理解上的难点,应设计探究活动让学生反复感受、解释、应用;其四,鉴于铝的化合物在物质分类角度上的特殊性,让学生“一步到位”地构建出如图3所示的铝元素的二维物质关系图有一定的困难,需要分阶段构建。基于以上分析,教师可在“铝的化合物”的教学中,以“如何从铝土矿冶炼得到金属铝”为问题主线,以解决实际问题为明线,通过逐步解决工业流程图中包含的物质性质、制备、转化等问题,实现对铝的氧化物、氢氧化物、盐的分类及性质问题的预测、探究、理解、应用,使学生形成以铝元素为核心的物质关系结构化知识。


  环节1:基于事实发现问题,初步构建铝及其化合物的转化关系,形成引领学习过程的思维主线


  问题1:生活中经常用到各种铝制品,自然界存在大量铝单质吗?金属铝是如何冶炼得到的?阅读资料,了解铝土矿的成分及金属铝的冶炼工艺,找到冶炼流程中所有含铝元素的物质,并将流程图简化。


  学生活动:结果如图5所示。


  设计意图:激发学生的探究热情,引出问题主线“如何从铝土矿冶炼得到金属铝”。这个问题指明了学生的思维方向为如何从铝土矿得到单质铝;包含了铝单质、氧化物、氢氧化物、盐之间转化关系的大量物质性质信息;也可分解为很多


  

blob.png

  生思维持续深入。通过简化工业流程图,构建物质关系图,为学生之后构建合理完善的二维物质关系图提供思维台阶;同时使学生感受到金属铝的冶炼过程,就是含铝元素物质发生反应、相互转化的过程,经此过程达到除杂、冶炼等目的,为学生的后续学习提供思维依据和方向。


  环节2:基于推理和实验验证,实现铝及其化合物的转化,学习氧化铝与氢氧化铝的性质,发展元素观、分类观和转化观


  问题2:如果你是工程师,你能实现流程图中的各步转化吗?预测发生的化学变化并写出化学方程式。


  问题的分析与讨论:学生可应用物质分类观点,通过物质的通性预测氧化铝与盐酸反应生成氯化铝、氯化铝与氢氧化钠反应生成氢氧化铝、氢氧化铝受热分解生成氧化铝。学生在学习铝的性质时知道了氧化铝和铝一样能与酸或碱反应,学生提出假设:是不是氧化铝与氢氧化钠反应也生成偏铝酸钠。


  问题3:观察氧化铝与酸与碱反应、氢氧化铝


  (3)受热分解两个演示实验,你的预测准确吗?


  问题4:从物质分类角度来看,氧化铝是否属于碱性氧化物?


  问题的分析与讨论:学生很容易从氧化物的分类标准判断出氧化铝同时具有酸性氧化物和碱性氧化物的性质,所以它应该属于新的物质类别。由此,教师引出两性氧化物的概念。


  学生实验1:氯化铝与氢氧化钠反应生成氢氧化铝的预测是否正确?


  学生实验的分析与讨论:教师提供的药品为1mol/L氯化铝和6mol/L氢氧化钠,学生在交流实验操作和结果时,会意识到氢氧化钠的用量导致了不同实验现象的发生,氢氧化铝可能与氢氧化钠反应。


  学生实验2:制取氢氧化铝并完成其与氢氧化钠、盐酸的反应。


  问题5:从物质分类的角度来看,把氢氧化铝看成碱合适吗?


  设计意图:在整个环节的起始部分,学生会觉得利用物质通性去推测一些化学反应是很容易操作且成功率很高的,氧化铝属于两性氧化物这一新知识的学习也水到渠成。直到探究进行到如何将氯化铝转化为氢氧化铝这一步,学生开始面临一连串的问题:为什么刚刚得到的氢氧化铝沉淀溶解了?为什么别的小组得到了沉淀,他们的实验怎么做的?操作有什么不同?氢氧化钠用量是实验失败的原因吗?铝和氧化铝都能和碱反应,氢氧化铝能和碱反应吗?……与熟悉的反应规律相矛盾的实验现象可以激发学生探究的热情,同时学生也可以体验到实验对于化学学习的重要作用。氢氧化铝的两性、铝盐与氢氧化钠反应时碱的用量影响实验现象这些教学中的重点和难点问题,不需要教师生硬地告诉学生,学生都可以自己思考分析得到。从铝和氧化铝的性质理解氢氧化铝的两性,是学生在元素观指导下进行学习活动的成果;铝元素的化合物在两性方面的性质可以丰富学生的元素观。这个环节学生以物质转化为目的进行探究活动,利用分类观自主学习并获得成功。


  环节3:基于预测和实验验证,完善铝及其化合物转化关系,应用分类观对陌生物质的性质进行探究


  问题6:实现图5中的Q和③转化要应用偏铝酸钠的性质,预测偏铝酸钠的性质?


  问题的分析与讨论:对于偏铝酸钠,学生感到非常陌生,思维的方向只能是:偏铝酸钠属于盐,能发生复分解反应。


  学生实验3:分别向偏铝酸钠溶液中滴加盐酸,或吹入二氧化碳。观察实验现象,推测生成物。


  设计意图:学生通过物质通性进行预测,完成实验,根据复分解反应规律分析现象,推测产物。学生的思维内容包括:向偏铝酸钠溶液中滴加盐酸,先生成沉淀,然后沉淀溶解。盐与酸反应时离子互换生成新盐和新酸,新盐是氯化钠,新酸是含铝元素的不溶性酸,这种酸还能继续和盐酸反应而溶解,所以新的酸具有两性,可能是氢氧化铝;向偏铝酸钠溶液中吹入二氧化碳也生成沉淀,该沉淀为氢氧化铝,沉淀不能继续和二氧化碳反应。由此可见,偏铝酸钠这一新物质的学习,是学生较深入应用分类观和反应规律研究陌生物质性质的一次尝试,比环节2中利用分类观和反应规律学习氧化铝、氢氧化铝的性质在思维深度和应用水平上,高出一个档次。在教师的引导和提示下,学生深入思考相关问题,分类观得到进一步发展。


  环节4:在更广阔的环境中应用元素观、分类观和转化观


  问题7:回顾铝的工业冶炼流程,在铝的化合物发生转化的同时,氧化铁和二氧化硅也在发生转化。关注第一次过滤操作,预测氧化铁和二氧化硅的性质?


  设计意图:经过前面的学习,学生很容易就能通过物质转化的结果,从酸性氧化物和碱性氧化物的角度对氧化铁和二氧化硅的性质进行预测。这一环节可向学生充分展现元素观、分类观、转化观超越具体元素化合物知识的广泛适应性和持久性价值。


  四、体现化学观念的化学1模块元素化合物教学策略分析


  基于化学观念发展的元素化合物教学要解决如何通过具体元素化合物知识的教学增进学生对化学核心知识和规律的认识,激发学生高水平的思维活动这一问题。教师在教学过程中采取的每项措施都要以此为目的。


  (一建立具体知识与化学观念间的联系元素化合物内容是化学观念发展的载体,具体知识对“元素观”“分类观”“转化观”承载的契合度是不同的。合理地建立具体知识与化学观念间的联系,可以最大限度地发挥元素化合物知识的作用,也利于学生对核心知识的理解。由于学生化学观念的发展过程是循序渐进的,教师要考虑的问题是:不同教学阶段应该着重发展哪些化学观念?哪些具体知识能够承载该项发展任务?不同的具体知识分别承担化学观念巩固、深化、扩展的发展任务。如前文对“金属的化学性质”内容的分析,让学生掌握以分类观为指导的学习元素化合物知识的基本方法,形成具有化学学科特点的思维方式,是最重要的教学目标,因此分类观是整节课的统领。


  (二构建对指导具体知识学习有作用的图示二维物质关系图是化学观念的工具化呈现方式,合理构建物质关系图是学生知识结构化及化学观念发展的具体表现,教师应预先设定物质关系图示构建目标。由于二维物质关系图是多种化学观念发展的集中体现,只能逐步构建以趋于完善,所以教师需要将物质关系图构建的目标拆解,通常分为建构图式、理解图式、应用图式、巩固图式四个环节。如前文对“铝的重要化合物”一节的物质关系图构建过程:教学起始环节,学生初步构建物质关系图;之后逐步实现物质间的转化,理解关系图中包含的氧化铝、氢氧化铝的性质和转化信息;之后学生应用图中信息推测陌生物质的化学性质;课后学生重构关系图,通过交流、对比得到最佳的关系图构建结果。


  三转化为贯穿学习过程的驱动性问题线索


  基于化学观念的元素化合物教学本身就是用观念解决问题的过程:问题线索的设计解答了“在什么情况下,遇到什么问题时需要用哪些知识”的问题,丰富了学生运用知识的经验;在运用观念解决问题的教学中,二维物质关系图将问题解决的思路和方法显性化,回答了学生“用什么方法解决,如何解决”的问题。驱动性问题要具有鲜明的指向性,使学生易于找到思维的起点和方向;驱动性问题要具有一定的思维深度和容量,使学生长久处于积极的深入思维的状态。比如,学习氮的氧化物相关内容时,可以设计“‘雷雨肥庄稼’这句农谚包含怎样的科学道理”这一问题线索,模拟雷电和降雨过程中发生的氮气与氧气、一氧化氮与氧气、二氧化氮与水的反应,使学生通过对实验现象的细致观察和分析,自主学习氮气和一氧化氮、二氧化氮的化学性质,了解氮气、一氧化氮、二氧化氮、硝酸几种物质间的转化关系,为构建氮元素的二维物质关系图打下良好的基础。


  四依据二维物质关系图理顺教学单元内多课时的关系


  二维物质关系图的构建往往需要几节课的教学时间,进行教学设计时,教师可以按照建构图式、理解图式、应用图式、巩固图式的顺序组织教学内容,对多课时的教学作出统筹安排。如“硫的转化”单元中,可以对三课时的教学作如下分析和安排。第一课时“自然界中的硫”要求学生掌握硫单质的物理性质、化学性质及用途;承担建构物质体系


  以及S2-°S-S转化关系的功能。第二课时“实验室里研究不同价态硫元素间的转化”,学生通过实验探究解决选择哪些物质作为+4价、+6价硫元素的代表物,选择怎样的氧化剂、还原剂实现转化等问题,认识二氧化硫、浓硫酸的性质;承担研究S-S4^^S6的转化,建构完整的s2-SS-S1转化关系,以及应用物质关系解决实际问题的功能。第三课时《酸雨及其防治》设置开放性的问题:酸雨的产生包含怎样的化学原理?工业生产过程中产生的二氧化硫如何除去等;承担完善物质类别转化关系,并对规律进行全面分析和总结的功能。在三课时的教学中,学生经历建构图式-完善图式-依据图示学习代表物性质-应用图式设计工业制硫酸的反应过程-应用图式解决酸雨问题-整合二维物质关系图的过程,先后六次围绕物质关系图进行学习,达到知识结构化。


  以化学观念为指导提高元素化合物教学效果,能够帮助学生建构结构化的元素化合物知识,提高学生应用知识分析和解决问题的能力,进而促进学生化学观念的发展。如果学生经过化学1模块的元素化合物学习后,能够形成元素观、分类观和转化观,自觉地用化学视角观察、理解社会及生活中发生的化学事件,就说明本阶段的教学内容实现了它的较大教育教学价值。

上一篇:浅论大学化学教学中的创新教育

下一篇:中学生化学反应三重表征的困难及原因分析