开封市典型光化学污染过程变化及成因分析
为研究2015年4月23~5月3日开封地区一次光化学事件的变化特征及成因,对O3、NOx、CO、SO2、PM10、PM2.5以及气象要素进行了观测分析。结果表明:O3日变化均呈单峰分布,峰值出现在14:00左右,臭氧峰值最高达到412μg/m3。SO2、CO、NOx、PM2.5为O3主要前体物。O3与温度的相关性极高( 0.772),与相对湿度的相关性略低(-0.729),与风速的相关性不显著。可见,地面温度和相对湿度是影响O3生成的重要因素。此次污染事件是剧烈的光化学反应以及低湿低风速的稳定天气共同作用造成的。
1引言
光化学烟雾污染,是指大气中的氮氧化物(NOx) 和碳氢化合物(HC)等一次污染物在阳光照射下发生一系列光化学反应,生成O3、PAN、高活性自由基、醛、酮、酸等二次污染物,参与光化学反应过程的一次污染物和二次污染物的混合物所形成的烟雾污染现象[1]。
随着国家环保力度的加大,大气污染物的在线监测项目的扩大,臭氧超标污染的报道屡见不鲜。2015年5月起,臭氧取代PM2.5,成为四川夏天空气污染“杀手”。5月、6月、7月、8月,臭氧都居高不下,成为污染祸首。臭氧污染超标的问题同样也发生在南京,2015年南京臭氧超标已达40 d成首要污染物。现实中,臭氧正成为环境污染的重要因素之一。
开封作为中原旅游与文化城市,对环境的要求日渐提高。开封市从2013年开始了空气质量6参数的监测与统计。2013年全年臭氧作为首要污染物天数为54 d,其中达到轻度污染以上的14 d。2014年全年臭氧作为首要污染物天数为20 d,其中达到轻度污染以上的12 d,2015年全年臭氧作为首要污染物天数为23 d,其中达到轻度污染以上的12天。臭氧已成为新的重要污染物。因此,分析臭氧污染的特点与来源,更好的防治臭氧污染已迫在眉睫。
2监测环境及监测方法
选取开封市区内具有代表性的监测点位(河大一附院)进行监测统计。该点位位于开封市龙亭区,人口较为稠密,周边为旅游区与商住居民区。站房位于河大一附院4楼顶,采样口距地面大于1.5 m,距站房内有PM10、PM2.5、SO2、NOx、CO、O3及气象五参数。污染物监测仪均使用美国ThomeFisher公司仪器。
所用监测仪器定期进行标定校准,其中PM10、PM2.5、每周进行流量检查,定期更换纸带,清洗外置采样头及管路。SO2、NOx、CO、 O3分析仪每周进行一次校零和校标,每季度进行一次多点校准,数据审核时剔除异常点,数据均符合国家环境保护局的数据质量控制标准。
研究数据采用河南省环境空气自动监控系统小时值。变化特征分析利用Excel软件处理。利用SPSS17.1软件进行相关性分析。
3结果与分析
3.1污染物浓度的时间变化特征
2015年4月23~5月3日,开封市臭氧污染物连续超标,选取河大一附院站点各项污染物小时均值数据进行分析,可以看出这几天SO2、NOx、CO、O3、PM10、PM2.5的时间变化趋势。详细见图1。
3.1.1污染期间污染物浓度特征
由图1可知,在整个污染期间,SO2平均浓度26.99 μg/m3,最高浓度94 μg/m3, NOx平均浓度35.5 μg/m3,最高浓度106 μg/m3,CO平均值1.61 mg/m3,最高浓度3.7 mg/m3,均未超过国家二级标准。PM10平均值120 μg/m3,PM2.5平均值65.4 μg/m3,4月28日因为出现暂时的大风扬沙天气,PM10为首要污染物,最高浓度743 μg/m3。其余天数首要污染物均为O3,平均浓度183.8 μg/m3,最高值412 μg/m3,超过国家二级标准(160 μg/m3)。这是一次以高浓度O3为突出特征的光化学污染事件。
3.1.2污染物浓度日变化特征
由图1可以看出,污染期间SO2、NOx、CO等污染物日变化呈现双峰型。在0:00~10:00时段逐渐升高,且在7:00~10:00达到一天内的峰值,随后逐渐降低,在18:00~20:00之后逐渐升高,早晨气态污染物的增高可能与上班人车流量增大有关,夜晚SO2、NOx、CO 升高可能由于下班车流人流增加与出现逆温层污染物不易扩散有关。颗粒物PM10和PM2.5多在7:00和23:00左右出现峰值,这主要是白天人类活动增加与夜间边界层的日变化特征造成,夜间出现逆温层,颗粒物容易积聚形成高值。O3呈现单峰型变化。从0:00~6:00逐渐降低,随后迅速升高,在 11:00~15:00到达峰值,随后逐渐下降。臭氧在8:00~12:00的生成速率平均为25.4 μg/(m3·h)。最快可达到76.6 μg/(m3·h)。这与徐鹏的研究接近[2]。徐鹏对于重庆市的大气污染浓度变化特征的研究表明,O3为单峰型的日变化形式,其中O3的日变化峰值出现在午后16: 00,而NOx及SO2的日最大值则出现在08: 00~11: 00; NO2和PM2.5的日变化模态呈双峰型,有早晚两个峰值。
通过分析可以知,SO2、NOx、CO、PM10、PM2.5与O3有一定的负相关关系。SO2、NOx、CO、PM10、PM2.5多在 7:00左右出现峰值,随后降低。而O3则多在7:00左右快速升高,在14:00左右到达峰值,而SO2、NOx、CO、PM10、PM2.5此时多为一天内的谷值,这可能由于臭氧的形成主要由于SO2、NOx、CO、PM10、PM2.5等污染物在阳光的照射下进行光化学反应形成臭氧。说明SO2、 NOx、CO、PM10、PM2.5为O3的前体物。
O3生成积累主要依靠NOx循环[3],化学反应方程式:
NO2+hvNO+O
NO+HC+O2+hvNO2+O3
由于晚间NO氧化的结果,已有少量NO2存在,清晨大量的碳氢化合物和NO由汽车尾气及其他源排入大气。当日出时,NO2光解离提供原子氧,然后NO2光解反应及一系列次级反应发生,-OH开始氧化碳氢化合物,并生成一批自由基,自由基将NO氧化成NO2,NO2光解产生NO并生成O3,这部分NO( 再生的NO) 将再次被自由基氧化成NO2,依次循环往复,完成NOx循环。臭氧的消耗主要用于氧化NO形成NO2,而此次污染期间NO平均注入量不高,仅为2 μg/m3,臭氧难以被消耗。高温强辐射天气使得NMHC氧化生成大量的过氧自由基,NO2的化学生成量较大,更多的再生NO被过氧自由基氧化,NOx循环次数多,导致最终生成的O3浓度极高。当NO2达到一定值时,O3开始积累,而自由基与NO2的反应又使NO2的增长受到限制;当NO向NO2转化速率等于自由基与NO2的反应速率时,NO2浓度达到极大,此时O3仍在积累之中;当NO2下降到一定程度时,就影响O3的生成量;当O3的积累与消耗达成平衡时,O3达到极大。
3.2气象条件的时间变化特征
气象条件也是导致臭氧污染物形成的一个重要原因。将气象数据(气温、气压、相对湿度)及臭氧小时数据进行比对分析。详细见图2。
由图2可知臭氧浓度的变化与风速、温度呈现正相关关系,而与相对湿度有负相关关系。气温平均值22.47 ℃,多数时间低于30 ℃。相对湿度平均值:64.92%,风速平均值1.72 m/s。风速多数时间小于3m/s。可见此次污染发生在一个高温、高湿、静风的气象条件下。臭氧浓度与温度时间轴变化一致,说明臭氧的变化取决于阳光的强度。紫外线是光化学反应一个重要的条件因素[4]。前体物光化学反应加速,加速臭氧增高。稳定的气象条件降低了污染物的消散,而高温、高湿为一次污染物的光化学反应提供了条件。
3.3污染物与气象要素的相关性分析
选取2015年4月23~5月2日的大气污染物六参数及气象要素利用SPSS17.1软件进行相关性分析。结果如表1。
3.3.1污染物之间的相关性分析
由表1可知,O3与其他污染物均呈现负相关关系。O3与NOx相关性最高(-0.601),与PM10的相关性不显著。与CO、SO2、 PM2.5均呈现显著相关性。结合NOx 、CO、SO2、PM2.5与O3的日变化规律。可以看出NOx 、CO、SO2、PM2.5是O3主要的前体物。
O3与CO的相关系数(-0.488)明显低于O3与NOx的相关系数(-0.601),这表明除CO外,NMHC作为大气中重要的还原物种,也是O3生成的关键前体物之一,由于本监测站缺乏NMHC的观测资料,本研究没有进行深入探讨。NOx和CO的相关性较高,相关系数为0. 695,两者两者呈正相关关系,可能由于来源同为汽车尾气。2015年的统计发现,开封地区的NOx /CO 基本维持在0. 03 左右,而美国该值约为0.1[5],而汽车燃油中CO不完全燃烧还是比较严重,也给O3污染提供一定的反应条件。据报道,人类活动排放的CO量增加1倍,臭氧浓度增加12%[6]。
PM2.5与CO、NOx、SO2均呈现较好的正相关性,分别为:0.727、0.475、0.397,PM2.5与O3呈现较显著的负相关性(-0.475),环境空气中的PM2.5主要来自2个方面,一方面是直接排放的PM2.5,包括扬尘、采选矿、金属冶炼、有机化工生产和餐饮业油烟等;另一方面是二次颗粒物,主要是前体物二氧化硫和氮氧化物、挥发性有机物(VOC)等排放到空气中,通过化学反应产生的硝酸盐、硫酸盐、二次有机气溶胶等,造成PM2.5升高。本次研究中PM2.5与CO的相关性高于与NOx的相关性,一次颗粒物对于PM2.5的贡献要大于NOx经光化学反应后产生的二次颗粒物。但NOx是光化学反应前体物之一,也是PM2.5的源头之一。很多研究表明,污染日温度高太阳辐射强烈,大气光化学反应异常活跃,有利于二次粒子如硫酸盐、硝酸盐和铵盐等的生成,这三者总质量在夏季占细粒子质量的1 /3 以上[7,8]。
3.3.2污染物与气象条件之间的相关性分析
由表1中O3与气象要素的相关性分析表明,O3与温度的相关性极高( 0.772),与相对湿度的相关性略低(-0.729),与风速的相关性最低(0.219)。可见,地面温度和相对湿度是影响O3生成的重要因素。持续高温期间,由于日照时间长、总云量和低云量较少、气温高,光化学反应尤其活跃,往往容易出现高臭氧浓度值[9,10]。PM10与温度呈负相关,与相对湿度呈正相关,PM2.5与温度和风速呈负相关,与相对湿度呈正相关。
4结语
(1)2015年4月23~5月3日开封市除4月28日外其余天数主要污染物均为O3。O3超标率多在10% 以上,其中5月1日超标率高达30%,4月23日臭氧峰值最高达到412 μg/m3,这是一次以高浓度O3为主要表征的光化学污染事件。
(2)O3呈现单峰型变化。则从夜间至清晨逐渐降低,随后迅速升高,在11:00~15:00到达峰值,随后逐渐下降。臭氧在上午的生成速率平均为25.4 μg/(m3·h)。最快可达到76.6 μg/(m3·h)。SO2、NOx、CO多在夜晚与上午形成峰值。
(3)天气晴朗,紫外线较强,加速了一次污染物的光化学反应。相对湿度和风速均较小,静稳天气条件减弱了污染物的扩散。
(4)O3与SO2、CO、NOx、PM10、PM2.5均呈现负相关关系。与NOx相关性最高,与PM10的相关性最低。O3与CO的相关系数低于O3与NOx的相关系数。结合污染物的日变化规律,可以看出SO2、CO、NOx、PM2.5是O3主要的前体物。 NOx和CO的呈较显著正相关,说明两者的来源相近,同为汽车尾气的排放。
PM2.5与CO、NOx、SO2均呈现正相关性,与O3呈现负相关性,说明CO、NOx、SO2为PM2.5形成的重要前提物,O3与SO2和NOx的光化学反应也造成大气中二次颗粒物的产生,导致O3消耗降低而PM2.5升高。而PM2.5中VOC的光解析也可导致NOx、自由基的升高,加速臭氧的形成。
(5)O3与温湿度的相关性极高,与风速的相关性最低。可见,地面温度和相对湿度是影响O3生成的重要因素。局地光化学反应为主对O3起增值作用。PM10与温度呈负相关,与相对湿度呈正相关,PM2.5与温度和风速呈负相关,与相对湿度呈正相关。
开封市此次光化学污染过程的主要原因是由于在稳定的气象环境下气态污染物及颗粒物不易扩散,晴稳天气条件下发生光化学反应导致O3浓度急剧升高,而臭氧的升高也造成了PM2.5中二次颗粒物的产生,形成污染。因此,减少汽车尾气、工业生产中的NOX等一次污染物的排放是解决城市光化学污染的当务之急。
作者:陈桢 赵勇 来源:绿色科技 2016年14期
上一篇:化学创造性思维的诊断
下一篇: 化学教学中“难、繁、偏、旧”现象与成因