大数据方向研究生体系研究论文(共2篇)
第1篇:大数据时代下的研究生教育质量评价体系研究
一、引言
随着研究生数量大幅增长,研究生教育质量信息数据也越来越庞大。如何处理这些海量的研究生质量信息也成为教育管理者难以解决的问题。传统的研究生教育质量评价体系只能宏观地描述研究生的教育情况,这种描述不能将研究生教育质量数据的动态特性呈现出来。华东师范大学校长俞立中教授在接受采访时说:“信息化不是一个技术,也不是一个技术的推广,而是一种管理理念。”这句话启示我们信息时代下,可以将信息技术与教育管理理念相结合,提出更好的学生教育质量评价体系。大数据技术就是这些信息技术其中之一。大数据即一般软件工具难以捕捉、管理和分析的海量数据,通过对海量数据的交换、整合、分析,发现新的知识、创造新的价值,带来“大知识”、“大科技”、“大利润”和“大发展”。在大数据时代下,应用于商业领域的大数据技术给了我们启发,如果将大数据技术应用于研究生教育质量评价体系,可动态地跟踪研究生教育的相关信息,对信息进行分析综合,预测学生在培养过程中不同方面的发展趋势。
二、研究生教育信息管理数据
研究生教育数据主要包含教学运行数据、社交活动记录数据、基础条件数据、毕业生质量数据等。这些数据与传统数据相比具有动态、实时、量大的特点,对于如何处理海量数据查询效率的问题已经迫在眉睫。随着研究生人数的大幅度增加,管理这些教育数据的过程也越来越复杂,学生的发展趋势也变得难以预测。为了解决这些问题,我们可以通过利用数据挖掘技术挖掘出研究生教育的相关信息,及时、全面、更加细粒化地关注学生教育质量,并对未来可能发生的情况做出预警。
随着计算机技术的飞速发展,利用数据挖掘技术,可以将学生的教育信息更加及时地反映出来,并利用数据的动态变化可以预测出数据的未来发展趋势。大数据时代的到来,让所有社会科学领域能够借由前沿技术的发展从宏观群体走向微观个体,让跟踪每一个人的数据成为了可能,从而让研究“人性”成为了可能。而对于教育研究者来说,我们将比任何时候都更接近发现真正的学生[5]。这将使教育研究领域从宏观整体走向微观个体,实现“个性化”教育。
例如,我们可以通过采集学生进出门禁系统的数据进行研究生行为模式挖掘,判断学生是否在校内、是否按时进出教学楼、食堂消费消息提示是否经常吃早餐、及时判断学生的学习状态等;另外,通过采集研究生学业数据的分析,可以进行学术成绩的预警和判断,根据不同课程的成绩及阶段性的成果,预测学生在研究期间能获得的学术成果,有针对性地进行科研计划的调整;在研究生就业阶段的数据分析也可以对学生的就业情况进行跟踪和分析,通过在研究生阶段的学习数据及学生就业情况数据,挖掘出研究阶段的成绩与就业发展情况之间的联系,有利于预测在校学生的就业发展情况,便于给出更为适合的就业指导。
三、大数据时代下的研究生教育质量评价体系内容
传统的研究生测评体系只能宏观地整体地诠释研究生教育情况,用于教育政策决策。然而想获得微观、个体的研究生教育情况则需要将大数据技术应用到研究生教育质量评价体系中。在大数据时代下,研究生教育质量体系应当增添其他方面内容。
研究生的教育信息数据是动态的,利用大数据技术可以将这种动态表现出来。如跟踪学生的学业情况,将学生每一时刻的学习及科研成果和该学生的行为模式结合起来,描述出该学生学业方面的动态过程和最后毕业时可能产生的结果。将这二者的联系用于与现在校学生作对比,预测现在校学生未来学业情况。
具体地说,比如现在有一个学生平时不总去实验室、图书馆,考试成绩不理想,他现阶段的学业情况刚好跟一个完不成科研任务而影响毕业的学生的学业情况很相似,那么就可以预测出这个学生也很有可能不能毕业。这样就可以及时地提醒该学生要抓紧学习,以免影响毕业。利用大数据技术跟踪学生的学业情况可以及时有效地在未发生错误的情况下对学生进行提醒或警告。
学生毕业之后,跟踪学生职业的发展数据,不仅仅跟踪学生到哪里就业,还要跟踪学生毕业后十年或是二十年的职业发展数据。这些职业发展数据要包括学生职场生涯中的每一次升职、每一次提薪和每一次跳槽。同样,数据中还应包括学生在职场中遇到的失败,比如降职或是被解雇。将描述出的学生职业发展的动态信息与学生从入学以来整个研究生期间的教育信息联系起来,分析这两者的关系,以此为依据找到在校学生中和就业相挂钩的学生,可以提前有意识地培养这些学生,提高就业质量。对于其他学生可以起到预警的作用,使学生提前了解到自己现阶段的学习和工作方式对今后的就业可能会产生不利的影响,并给予及时的纠正或完善,提高就业率。
四、大数据挖掘技术在学生质量评估体系中的应用
数据挖掘是一个利用各种分析工具在海量数据中发现模型和数据之间关系的过程,这些模型和关系可以被企业用来分析风险、进行预测[6]。数据挖掘是一门交叉性学科。数据挖掘过程经过数据收集、数据处理、数据变换、数据挖掘、模式评估、知识表示一系列的过程。该过程不是一次完成的,其中的一些步骤或整个过程都是经过数次数次或反复进行的。采用的算法非常多,比较常见的有:关联规则方式、决策树方法方式、神经网络方法方式、粗糙集方式、遗传算法、模糊论方法、可视化技术等。
1.关联规则算法在研究生教育质量测评体系中
的应用。关联规则算法可以运用在研究生的学业数据挖掘中。关联规则算法可以分析出不及格课程之间存在的紧密的相关性。具体表现为某几科课程成绩同时不及格的情况下,其他一些课程成绩不及格的机率很大。关联规则算法还可以分析出一些较为基础的课程对其他课程的学习影响很大,学习好这几门课程对于学习好其余课程有很大的帮助。这种分析课程之间的相关性的算法对于降低学生的挂科机率,提高学生的课程成绩有很大帮助。
2.决策树分类算法在研究生教育质量测评体系
中的应用。利用决策树分类理论构建研究生教育质量测评决策树,实现教育质量测评定性分析。从决策树中可以看出,在具有某种优势的群体中,具有另一种优势的人占很大比例。这样可以推断出具有前一种优势的人一般都具有后一种优势。利用决策树分类算法可以分析出不同性质的就业方向的研究生一般具有的优势,以及读博深造的研究生一般具有的优势。这样可以根据分析结果提前对现在校研究生的就业和读博的适合度进行大体上的判断。决策树分类算法为学生规划毕业后的发展方向提供有力的辅助决策作用。
3.采用k-means算法的聚类挖掘在研究生教育质
量测评体系中的应用。采用k-means算法的聚类挖掘能分析出某一群体的特征行为。应用在研究生教育质量测评体系中,可以分析出现学业警告或是就业困难的学生群体的行为特征,以及科研方面有较大成果或是就业质量较好的学生群体的行为特征。利用这些行为特征能够预测现在校学生的未来发展趋势,对于可能会出现学业警告或是就业困难的学生可以起到预警作用,而对于未来发展可能比较好的学生,学校可以提前有意识地培养。
五、结束语
本文探讨了大数据技术在研究生教育质量评价体系中的应用,以此实现对研究生教育信息的动态化、细粒化描述。研究生教育数据每年在成倍地增长,信息的复杂性也在逐年提升,应用大数据技术在这些繁杂的数据信息中提取有价值的信息并对数据信息分析综合得到衍生信息是研究生教育质量评价体系很有前景的一个发展方向。应用大数据技术可以实现对每个学生的教育质量的微观、个体化跟踪和未来发展的预测,对于可能出现问题的学生起到了及时的警告作用。大数据技术为研究生的学业培养及就业指导提供了有力的依据,已成为研究生教育质量评价体系中不可或缺的一部分。
第2篇:大数据背景下基于PBL的非英语专业研究生公共英语教学改革探索
随着大数据在英语教学中的使用,PBL(problem-based?learning)以“问题为导向,以学生为中心”教学方法也日渐流行。但是基于大数据以探索PBL的英语教学改革则较为鲜见。本文拟聚焦北京某艺术类院校研究生公共英语教学,结合实例探索大数据背景下基于PBL的英语教学改革研究与实践。
一、大数据在国内外教育中的应用现状
“大数据”作为一种新技术架构,通过高速捕捉和发现分析,从大容量数据中获取价值,其内涵概括为4个英文字母,即volume(数据量大)、variety(数据种类多)、velocity(数据生成快)和value(数据低密度,大价值)。大数据在英语教学中,为教学资源的共享、自主学习的监控以及教学效果的评估创造了条件,更为满足学生职场需求的PBL英语教学改革提供了技术保障。国外目前针对大数据的研究主要集中在对教育数据挖掘、学习分析、个性化教育、教育方式的改善、学习策略探讨、教育管理方式的改变、大数据对于教育的推动作用、数据驱动以及对图书馆建设、对教与学需求、评价方法的影响等方面。
美国和英国高等教育研究都表明,采用大数据探索性地分析学生在线课程学习、提交作业、同学交流及测试结果等,可以帮助教师针对学生的具体情况,及时提出改进意见,给出干预性指导,从而改进教学。美国的“梦盒学习”(DreamBoxlearning)公司和“纽顿”(Knewton)公司,已经成功创造并发布利用大数据的适应性学习系统,为数百万名学生提供满足职业需求的个性化学习服务,也使学校借助大数据提高学生学习效果,降低教学成本。美国纽约麦格劳·希尔(McGraw-Hill)公司和英国伦敦培生(Person)集团共同开发的“课程精灵”系统,能够跟踪学生的学习进展,并显示学生学习参与度和学习成绩等大量数据信息。相比之下,国内少数学者从理论层面提出了大数据学习分析在考试评价和促进高校教师专业发展等方面的应用。也有部分企业利用大数据从事在线教育,全程追踪学生学习轨迹的梯子网,随时跟踪学生的学习过程,提出有针对性的学习方案。另外,猿题库基于大数据技术推出“智能练习”产品,通过匹配答题情况和考试要求,向学生推荐强化题型,记录答题过程,实时评估能力变化。综上所述,国内外针对研究生英语教学借助大数据实施,以求职为导向探索相对鲜见。
二、大数据背景下基于以导向的PBL非专业研究生英语教学实践
大数据背景下基于PBL的非专业研究生英语教学,旨在教学中充分利用现有的英语教学平台和资源库,借助网络对学生的学习过程进行监控,包括针对学习时间、学习进度以及学习效果的跟踪和记录、整理和统计,反馈和思索。注重将课堂内外的英语学习与未来就业以服务社会的宗旨紧密结合,更新教学理念、充实教学内容、创新教学方法、改变测评体系;最终提升教学效果,实现学以致用,满足就业需求。下面不妨以北京某艺术类院校研究生英语第十单元的教学为例,探索大数据背景下基于PBL的英语教学。
1.教学理念的更新与教学内容的拓展
在研究生英语教学中,教师要时刻以学生为中心,不断更新教学理念,使教学的每个环节都服务于学生未来发展。教师应在第一节课主动向学生介绍自己的学术经历和正在进行的科研课题,加强师生之间的相互了解,启发学生思考英语学习的目的,为今后参与导师课题与求职就业及早准备。同时,教师把本学期英语学习内容(纸质教材和网络自主学习教材)分别介绍给大家,具体解释两种教材并用的原因,鼓励学生借助网络,随时随地自主学习,而教师则通过教学平台收集的大数据,对学生学习情况给予及时反馈。
在明确教学目的与学习内容的前提下,根据教学需要调整课本教授顺序,把第10单元(TheRoleofEducation大学的作用)作为研究生英语学习的第一课,邀请学生以小组为单位登陆国内外高校网站,收集汇总不同专业的课程,对比自己专业课程的设置和培养模式,帮助学生加强课堂知识内化,拓宽国际视野,提升语言学习的时效性。事实上,正如某学生在交谈中提到:“这样的课堂有意思,我在老师的要求下查阅网络资源有很多新收获,我开始认真思考未来的求职就业。”
2.教学方法的创新与测评手段的推进
大数据时代需要变更传统教学模式,打造集线上与线下相结合的教学方法,注重学生理论与实践综合能力的培养。不妨仍以第十单元的教学为例,要求学生对国内外知名大学校长在研究生开学典礼上的讲话搜集整理,学生通过对比国内高校(清华大学、南开大学、北京航空航天大学)与国外高校(哈佛大学、芝加哥大学、普林斯顿大学)校长在开学典礼上讲话内容的不同,教师启发学生结合实际,从不同角度看待国内外教育的差异,理性看待我国研究生教育现状,启发学生认真审度自己的研究生生活,为未来求职就业或专业发展及早打算。教师只有秉承关注人、关注人的发展(认知心理和非认知心理的发展),才能以“不变”的理念智慧去应对“万变”情景,从而灵活地选择运用各种方法。
研究生学习自觉程度相对较好,但是同样也需要一套完整合理的形成性评价体系。网络作业每周至少一课,要求学生在上课前必须完成,并由各小组长将问题汇总给班长,通过QQ直接上传。教师结合学生提出问题的深度和难度对学生给以评价,并在课堂上启发、引导和追问,最终尽可能使问题在同学中得以解决。具体过程包括问题线索的锁定、问题的关键点以及问题的解决办法,甚至字典的查阅与语法知识的巩固和文化差异的解读。同时,充分利用大数据,随时公开学生的学习过程和结果。形成性评估占总成绩的50%,其中网络学习任务占30%,课堂表现占5%、网络写作成绩占10%、小组研究任务展示占5%;终结性评估占50%,在每学期课程结束时统一进行水平考试。令笔者欣喜的是,在抽查过程中发现,无论是凌晨4点,还是晚上12点,无论是在宿舍或采风在外,随时随地都有通过网络自主学习的学生。
3.围绕就业提升学生英语实践能力
基于“问题为导向和自主学习”PBL英语教学,完成第10单元的学习之后,教师启发学生通过搜索校园网上的新闻报道来思考本校教学与科研的融合点,诸如博士项目和艺术类人文社科重点项目的申报成功,联合国教科文组织官员参观学校民族服饰博物馆,学校举办的敦煌艺术展、韩国“母亲的香气”拼布艺术展、以及开设的中华文化传习馆等,所有这些信息都使学生逐步认识到民族服饰博物馆与中关村创新科技园区是学校“产学研”结合的载体,学生应该围绕职业发展促使英语实践能力提升。教师随即结合学生的需求,利用博物馆和创新园区服饰文化资源,组织学生学习展品的英汉对照讲解,义务承担英文讲解员,在理解中华灿烂服饰文化中增强民族自信和社会责任感。实践证明,诸如此类的英语实践,使学生增强了对所学专业的理解,在对比服饰文化差异中增强传统文化自信。外语系中西服饰文化方向的研究生尝试在网络上购买桑蚕丝、香云纱等面料和各色牛皮,自己设计,跨专业合作,完成了扎染丝巾、打制牛皮手包、编制颇具传统特色的精美项圈和手环、缝制改良旗袍等等,所有这些在学校的创新园区以及北京爱琴海等地销售,顾客甚至登门定制。
随着研究生课余时间经常参加各类学术会议和学校的各类展览,笔者启发学生针对首都高校女教师的着装进行调查研究,并适时给以指导帮助,完成的调查报告获北京市教工委社会调查实践成果二等奖。
三、非专业研究生英语教学实践的反思与启示
大数据是未来教育的根基。首先,大数据背景下的研究生英语中,教师通过分析和统计学生群体或个体对不同知识点的掌握情况,及时量化跟踪学生的学习过程,调整教学节奏。其次,教师在组织课堂讨论,启发学生思考的过程中一定要把握好“度”,结合实际灵活处理,适可而止,留给学生足够的面子和思考余地。同时,教师还要将每个教学单元的处理当作一个研究课题,单元的总结要求小组分工合作,共同按成,并通过云平台的使用和对学生学习数据的追踪和汇总,透过现象看本质,挖掘数据背后学生学习中存在的问题,换位思考以帮助学生解决问题,切忌以偏盖全,杜绝“只认数据不认人”。事实上,受益于大数据提供的极具价值的反馈信息,教师也因身兼学习者的角色而不断学习。教育不再被视为主要由教师向学生传递知识的单项过程,而成为一种将为包括学生在内的每一个人提供学习、提高和发展机会的场所。
四、结论
大数据时代,我们既通过日常网络活动成为“大数据”的生产者,也在搜集、处理以及挖掘数据价值的过程中成为“大数据”的消费者。研究生公共英语教学正是基于PBL(以问题为导向,以学生为中心),借助大数据,在教学理念、教学内容、教学方法和评估体系方面不断创新,使研究生教学质量稳步提升。