高职数学模块式教学研究与探索
摘要:高职数学教学应体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,应进行相关的模块教学,以更好地提高教学效率,加强应用,更好地服务于专业。
关键词:高职数学;模块式教学;职业能力
高职数学教学现状分析
高职数学对学生后续专业课的学习和综合数学能力的培养至关重要。然而,由于高职教育在我国起步较晚,而同时又发展迅猛,在教学方面还未形成完整的教学体系,大多沿用传统的教学模式,即:教师讲→学生听→做题→复习→考试,教学内容都是一些老面孔,与专业结合不密切。这与当前高职数学教育的培养目标严重不符,主要表现在以下几方面。
教育观念落后,难以适应时代发展传统数学教育观以“知识本位”为中心,重理论轻实践,忽视专业需要。高职教育的人才培养模式不同于普通高等教育,要求教学内容体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求。因此,教育观念应由“知识本位”转变为“能力本位”。
教学内容陈旧,难以满足专业需要随着高职教育改革的推进,各院校都加强了专业教学建设,增加了大量专业实训,压缩了基础课教学时数,这就造成了数学课教学内容多、课时少的矛盾。同时,在课程体系上过多考虑数学学科的完整性,在教学内容上满足于逻辑上的严谨、计算上的精确,面面俱到,脱离高职各专业人才培养目标,服务性功能不足。因此研究各专业对数学的需求,更好地与专业相衔接,进行工科、经管类、信息类等专业模块教学势在必行,创新高职数学教学模式刻不容缓,为此应进行必要的探索研究,以更好地适应高职教学,更全面提升学生的专业能力、社会能力及综合职业能力。
学生学习积极性不高,学习效率不容乐观随着高校扩招,学生质量急剧下降,特别是高职院校学生的数学基础更是薄弱,很大一部分学。觉得学数学就是为了考试,是没得选择的无奈之举,以后根本用不上。基础本身就不好再加上这种消极的态度,导致学生学习积极性不高,另外,大学的学习毕竟不同于高中,使得很多学生不会学习,学习效率可想而知。
建立合理的教学内容体系
优化教学内容,进行专业模块教学高等职业教育的目的是提高国民科学文化素质,为经济建设和社会发展培养第一线技术应用型的高等职业技术人才。所以,高职数学教学内容要体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,为学生打下较为扎实的数学基础,为未来发展提供有力的知识支撑。为此,应将高职数学分为公共基础模块、专业基础模块以及应用拓展模块,其中公共基础模块由一元微积分和数学实验组成;专业基础模块包括多元微积分、常微分方程、向量和空间几何、级数、布尔代数以及线性代数和概率;应用拓展模块主要是用数学建模案例来反映数学来源于生活,又回归于生活,强调应用性。工科、经管类、信息类三大类结合调研进行合理选块。工科教学的专业模块为多元微积分、常微分方程、级数以及线性代数等;经济管理类专业模块为二元微积分、线性代数、概率等;信息类的专业模块为布尔代数、矩阵行列式、概率、图论基础等。
加强高职数学与专业课的联系 实施模块式教学对教师的能力和素质提出了更高的要求。由于数学教师对高职各专业知识了解有限,与专业教师缺乏沟通,且不同专业又有着不同的问题,为此数学教师必须去面对专业知识问题,认真听取专业教师对数学课程、内容、范围的要求和建议,针对不同专业搜集相关典型案例,为提高数学教学质量提供有力依据。例如,经济类专业的学生,在今后的工作中很少接触到曲线的凹凸性及函数图形的描绘、变力作功、液体静压力等问题,完全没有必要花很多时间来学习这些内容,而要把重点放在今后工作中经常接触的单利、复利、税收、最小投入、最大收益、最佳方案等知识点上,这样更实用、更有价值。而线性代数与计算机原理有直接的联系,计算机专业的学生应把这方面的知识作为重点。同时,直接选取专业课程的相关内容作为例题、习题讲解和练习,对内容拓宽和深化,强调知识应用可起到积极的作用。通过反复学习,学生得以反复记忆,进而熟练掌握,这更有利于所培养的人才能够胜任其岗位职责,为用人单位创造良好效益。让学生看到学习数学能够应用于实际,更有利于激发学生的学习兴趣。当然,在具体操作时,要做到:
1.由传统的“面向定义”转变为“面向问题”的新型教学模式,进行问题驱动教学。删去那些繁琐的计算与复杂的推理过程,遵循实践——认识——再实践—再认识的过程,加强对数学本质的理解,自觉应用数学解决实际问题,提高学生的数学能力和职业能力。例如,函数作为过渡性衔接内容可少讲,只需重点介绍分段函数、复合函数等,空间解析几何是多元函数微分学的预备知识,加之学生在中学已接触过,可略讲;导数与微分中重点介绍导数,微分则利用导数即微商这一关键点略讲。
2.教师应有意识地收集与各专业教学内容相关的案例,尽可能多地将数学与工程学、经济学、生态学、社会学、军事学等领域联系起来,展现高等数学的巨大魅力。例如,在生活实际中建立微分方程模型是比较难的,在介绍微分方程时可以举抵押贷款买车买房问题、人口增长等多个例子。这些不但让学生了解了数学的巨大作用,而且能大大提高学生的学习兴趣。此外,教师还应介绍与教学内容相关的数学知识和最新前沿动态,帮助学生更好地学习。
3.重视思想方法的教学。在高等数学教学过程中,教师应当对课程中蕴含的一些数学方法加以阐述,例如类比、演绎、递推、构造、换元、化归、建模等方法,这对深化学生知识,提高学生分析问题、解决问题的能力,增强学生的整体素质有着重要作用。就拿建模来说,一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模思想进行教学是理论与应用相结合的重要手段。传统的高等数学教学也强调从实际问题出发,建立模型,再引入概念和方法。笔者认为,数学教学中贯彻建模思想,应强调量的差异,应举更多有实际意义的例子,贯彻数学建模思想,是将解决问题思想贯彻到每个环节,而不只是用做某些部分的引入手段。
教学方法和手段的改进
充分利用网络资源利用网络教学平台,可以实现信息资源和设备资源的共享,为学生提供多层次、多方位的学习资源。例如使用讲义课件、网上答疑、题库、数学软件、数学文化、数学论坛等,对教师和学生之间的交流会有很大的促进。而且网络教学可随时进行,每个学生都可以根据自己的实际情况来确定学习时间、内容和进度,避免选修课与必修课在上课时间上可能出现的冲突,还可以根据学生个人的实际情况提优补弱。网络技术促进了教学的自主化、互动化,使数学教学更现代化,更适应信息时代的要求。
合理运用网络教学多媒体教学是一种先进的教学手段,一种崭新的教学元素,这种教学信息量大,形象直观,特别是涉及图形教学,它富有动感。像定积分的概念教学时,用多媒体可以清晰地观察出分割、取近似等每一步过程,使学生一目了然,易于接受。但有了多媒体,我们不能不加选择地应用,像求导、积分等计算用传统的“黑板+粉笔”,学生更能明白解题的思路、过程。总而言之,要合理选择,两者结合,以更好地提高教学效率。
充分利用数学软件 高职现有的教学模式大多是以教师讲授为主,学生被动学习。在教师讲解后学生反复练习、训练,对学生而言其实是一种浪费。一是学生就业后用到纯数学的知识很少,用到的只是数学的精神、思维方法等;二是在信息时代,大量的数学计算、画图等用手工操作太费时费力,而用数学软件可以达到事半功倍的效果。为此,要详细介绍教学所使用的软件mathematica和matlab,把运用数学软件包求解数学问题能力的培养融入教学中,使学生学会利用数学软件求导数、积分、解微分方程等复杂的运算。通过数学实验教学,可以达到使学生由“学数学”向“用数学”的转变,更新计算技术,减少大量的繁琐计算,有利于激发学生的学习兴趣,提升应用能力。
全面改革考试评价方式
高职数学除了提高学生综合数学能力外,主要是为专业服务,传统考核方式已不适应现代职业教育的发展。通常的限时考试使学生机械地套用定义、定理和公式,不利于培养学生的创新意识和实际应用能力,也不能真正地检查和训练学生对知识的理解程度,会使较多的学生越来越对数学产生恐惧、厌烦心理,为考试而考试,与我们的教学出发点相违背。目前我校学生的数学成绩由平时25%、期中闭卷考25%、期末50%三部分组成。平时成绩,包括平时作业、提出问题、上课发言、上课出勤率等,另外两块都打出具体分数。笔者认为,考试评价制度应进行改革,高职教育的考核方式应灵活多样。由平时成绩、数学实验(数学软件应用)和闭卷考试三块组成比较合理。平时除了作业情况、学习态度等之外,还可结合小论文的形式,数学论文由教师事先设计好题目。例如对经济管理类专业可设置与单利、复利、税收、边际成本、边际收益、最小投入与最大收益、最佳方案、概率、统计等有关的问题,要求写出调查报告或论文,学生可根据需要查找相关资料,并对计算结果进行数据分析,结合实际给出可行性建议,最后以论文的形式上交评分。数学实验主要就是上机情况,看学生对数学软件掌握得如何,便于今后进一步的应用。期末闭卷考试这部分以考核学生基本概念、基本计算能力为主。这种考核方式有利于帮助学生端正数学学习态度;有利于培养学生运用所学知识解决现实问题的主动性和创造性;有利于培养学生的自学能力、创新能力,能比较全面地反映学生的综合数学能力,同时又能为后续的专业学习打下基础。
数学既是一种思维方式,也是一种重要工具;数学不仅是一门科学,也是一种文化;数学不仅是一些知识,也是一种素质。在高职数学教学中引入模块式教学是职业教育教学的一种创新,体现以能力为核心,具有较强的实用性、针对性和灵活性。与专业结合的模块式教学改革是大势所趋,当然,如何更好地进行高等数学的模块式教学改革仍然任重而道远。
参考文献:
[1]许景彦,吴素敏,王风莉.试谈高职数学教学模式的创新[j].教育探索,2007,(6).
[2]陶金瑞,霍凤芹.对高职数学教学改革的探索[j].成都大学学报,2007,(6).
[3]云连英.高等数学课程设置研究[m].杭州:浙江大学出版社,2008,(6).
上一篇:车刀角度教学难点的巧妙突破
下一篇: 7S 管理模式在技校烹饪实训中的应用