首页 > 期刊投稿知识库 > 论热力学的第二定律论文参考文献

论热力学的第二定律论文参考文献

发布时间:

论热力学的第二定律论文参考文献

热力学第二定律有多种表述方式,常用的是以下两种 。①开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其他影响。或第二类永动机是不可能造成的。第二类永动机是能从单一热源吸取热量并使之完全变为有用的功而不产生其他影响的机器。虽然,它并不违反第一定律。②克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其他影响。这两种表述分别揭示了热功转换过程和热传导过程的不可逆性。可以证明两种表述完全等价 。这表明,各种不可逆过程具有深刻的内在联系。因此,可以选用任何一种特殊的不可逆过程来表述普遍的规律。无论采用何种表述,热力学第二定律的实质是指明,在一切涉及热现象的实际宏观过程中,能量转换或传递的方向、条件和限度。1850年克劳修斯发表《论热的动力以及由此推出的关于热学本身的诸定律》的论文.论文的第二部分,在卡诺定理的基础上研究了能量的转换和传递方向问题,提出了热力学第二定律的最著名的表述形式(克劳修斯表述).《熵:一种新的世界观(节选)》普通高校教材《物理化学》里也有。

热力学第二定律(1)概述 ①热量总是从高温物体(系统)传到低温物体,但不能不带有其他的变化,把热量从低温物体传到高温物体。 ②功可以全部转化为热,但任何热机不能全部地、连续不断地把所获得的热量转变为功。 (2)说明 ①热力学第二定律是热力学的基本定律之一。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。 上述(1)中①的讲法是克劳修斯在1850年提出的。②的讲法是开尔文于1851年提出的。这些表述都是等效的。 在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 在②的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。热机能连续不断地将热变为机械功,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。 . ②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。它并不违反热力学第一定律,但却违反热力学第二定律。有人曾计算过,地球表面有10亿立方千米的海水, 以海水作单一热源,若把海水的温度哪怕只降低O.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。 ③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。 ④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。 ⑤根据热力学第零定律,确定了态函数—--一温度; 根据热力学第一定律,确定了态函数——内能和焓; 根据热力学第二定律,也可以确定一个新的态函数——熵。.可以用熵来对第二定律作定量的表述。 第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明: 可逆绝热过程Sf=Si, 不可逆绝热过程Sf>Si,式中Sf和Si分别为系统的最终和最初的熵。 也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质.

经典与时代的批判----------经典力学的成就与局限性摘要:论述经典力学的成就,批判经典力学的绝对时间、绝对空间、引力本质、质量不变等观点,说明其应用范围及其与经典物理学的矛盾。关键词:空间 时间 引力的本质 质量 速度 能量 矛盾一、经典力学的成就经典力学的理论体系是以牛顿运动三定律为基础的。牛顿系统地总结了伽利略、开普勒和惠更斯等人的工作,得到了万有引力定律和牛顿运动三定律,于 1687年出版了《自然哲学数学原理》。这是牛顿的一部代表作,也是力学的一部经典著作。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力等)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,建立了经典力学的完整而严密的体系,把天体力学和地面上的物体的力学统一起来,这是物理学史上第一次大的综合。所以,牛顿的《自然哲学数学原理》的出版,标志着经典力学体系的建立。这对科学发展的进程以及后代科学家们的思维方式产生了极其深刻的影响。牛顿力学的建立标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范。二、经典力学的局限性创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿创立的经典力学的基本概念和基本原理存在着固有的局限性,主要表现在以下几个方面:第一,引入了绝对时间、绝对空间等基本概念。按照牛顿的说法,绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地、与任何其他外界事物无关地流逝着。绝对空间就其本性而言,是与任何外界事物无关而永远是相同的和不动的。绝对运动是一个物体从某一绝对的处所向另一绝对的处所的移动。莱布尼兹、贝克莱、马赫等先后都对绝对空间、时间观念提出过有价值的异议,指出过,没有证据能表明牛顿绝对空间的存在。爱因斯坦推广了上述的相对性原理,提出狭义相对论。在狭义相对论中,长度和时间间隔也变成相对量,运动的尺相对于静止的尺变短,运动的钟相对于静止的钟变慢。在广义相对论中,时空的性质不是与物体运动无关的:一方面,物体运动的性质要决定于用怎样的空间时间参照系来描写它另一方面时空的性质也决定于物体及其运动本身。量子论的发展,对时间概念提出了更根本的问题。量子论的结论之一就是:对于一个体系在过去可能存在于什么状态的判断结果,要决定于在现今的测量中做怎样的选择。这种现在与过去之间的相互关系,是与因果顺序概念十分不同的,暗含于时间概念中的因果序列要求过去的存在应是不依赖现在的。因此,用时间来描述事件发生的顺序,可能并不总是合用的。空间与时间是事物之间的一种次序,但并不一定是最基本的次序,它可能是更基本的次序的一种近似。第二,牛顿虽然对引力的本质持审慎态度,但最终还是对它作了抽象的、纯粹数学形式的概括,把它实际看作是一种直接的、即时传递的超距作用力。爱因斯坦的广义相对论对万有引力做出一种解释,就是时空本身是有弹性的,可以弯曲、伸展。当一个有质量的物体置于某一空间时,空间就会弯曲变形,质量越大,空间弯曲变形就越严重。那么,空间为什么会在有质量的物体周围弯曲呢?爱因斯坦也没能给出答案。所以,爱因斯坦的弯曲空间理论也没有说明引力的本质是什么。量子力学关于电荷间的电磁力和强子间的强相互作用力的传递原理的解释也没有说明引力的本质是什么。认为引力是通过引力场或引力子来传递的观点也未得到肯定,因为,至今科学家也没有找到传递万有引力作用的引力子。第三、 在经典力学中物体的质量是恒定不变的,它与物体的速度或能量无关。在相对论中质量这一概念的外延就被大大地扩展了。.爱因斯坦著名的质能方程E=mc2使到原来在经典力学中彼此独立的质量守恒和能量守恒定律结合起来,成了统一的“质能守恒定律”,它充分反映了物质和运动的统一性。质能方程说明,质量和能量是不可分割而联系着的.一方面,任何物质系统既可用质量m来标志它的数量,也可用能量E来标志它的数量;另一方面,一个系统的能量减少时,其质量也相应减少,另一个系统接受而增加了能量时,其质量也相应地增加.爱因斯坦从力学的观点出发,考虑两个球体的弹性碰撞,利用动量守恒定理和相对论速度相加定理能够导出著名的质速度公式该式说明,物体的质量不再是与其运动状态无关的量,它依赖于物体的运动速度。运动物体速度为v时的质量为 ,式中m0为物体的静质量,当物体的速度趋于光速时,物体的质量趋于无穷大。第四,经典力学定律只适用于宏观低速世界,对于可与光速相比的高速情况和微观世界的适用问题,当时没有涉及也不可能涉及。第五,经典物理学与经典力学的潜在矛盾在经典物理学中,最难使人满意之处恐怕莫过于对光的描述了。如果微粒说是正确的,那么人们不禁要问,当光被吸收的时候,组成光的粒子变成了什么呢?而且为了既表示可称量物质又表示光,必须在讨论中引入不同的实体,这无论如何也不能使人心安理得。同样,纳入力学框架中的光的波动论也难以自圆其说。按照波动论,光被解释为充满宇宙空间的以太的振动。由于光是横波,因此以太必须具有承受切应力而不承受压应力的能力,又由于以太对可称量物质并不产生可观察到的阻力,它又必须具有极小的密度。为此,人们绞尽脑汁,臆想出种种以太模型。这种无所不能、无奇不有的以太反倒使人如堕五里雾中。经典力学的基本概念和基本原理在热力学中也遇到了一些麻烦。1865年,克劳修斯确立了热力学第二定律,该定律揭示出与热现象有关的物理过程具有不可逆性。在经典力学中,从来也未发现类似的情况,力学过程的可逆性是由普遍的力学原理做保证的。可是热力学第二定律也是普遍成立的,因此,这个矛盾是无法用力学的基本观念予以解释的。三、总结牛顿用自己毕生的精力,建起了一座科学丰碑,他的研究推动了人类文明的进程,它在宏观物理学的各方面所取得的成就就是极其广泛和辉煌的。然而创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿在否定亚里士多德以来有关错误论述和含糊概念、创立牛顿力学的同时,也在其中隐含了自我否定的潜在因素。诚如恩格斯所说的:“凡在人类历史领域中是现实的,随着时间的推移,都会成为不合理的;因而按其本性来说已经是不合理的,一开始就包含着不合理性”。(《马克思恩格斯选集》第四卷)由于牛顿尽力把他的体系表现为由经验必然性所决定的,特别是由于经典力学在实践上的巨大成就,足以阻碍后人去思考那些基本概念和基本原理的先验特征,以至于在相当长的时期内,无论谁也没有想到,整个物理学的基础可能需要从根本上加以改造。事实上,物理学在每一个历史时期都有它自己的基本概念和基本原理,而继后的时期人们又往往夸大它们的作用,不适当地把它们误用到其所能及的范围之外。为了消除这种误用,每—个历史时期都需要一种新的启蒙,正是这种永不止息的启蒙精神,才使科学不致变为僵化的教条。参考文献:[1]经典场论 张启仁著 北京:科学出版社,2003[2]量子力学 井孝功著 哈尔滨:哈尔滨工业大学出版社,2004[3]空间:从相对论到M理论的历史 关洪著 北京:清华大学出版社,2004[4]时间 保罗•贝内特著;苏福忠译 上海:上海人民美术出版社,2003[5]狭义相对论 G.司蒂文逊;C.W.凯尔密司特 上海:上海科学技术出版社,1963[6]相对论导引 赵展岳著 北京:清华大学出版社,2002[7]热力学 王竹溪著 北京:北京大学出版社,2005[8]物理学史 郭奕玲,沈慧君编著 北京:清华大学出版社,1993[9]大学物理.下 钟江帆主编 北京:高等教育出版社,2004

热力学第二定律是什么

研究热力学第二定律的论文

热力学第二定律有多种表述方式,常用的是以下两种 。①开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其他影响。或第二类永动机是不可能造成的。第二类永动机是能从单一热源吸取热量并使之完全变为有用的功而不产生其他影响的机器。虽然,它并不违反第一定律。②克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其他影响。这两种表述分别揭示了热功转换过程和热传导过程的不可逆性。可以证明两种表述完全等价 。这表明,各种不可逆过程具有深刻的内在联系。因此,可以选用任何一种特殊的不可逆过程来表述普遍的规律。无论采用何种表述,热力学第二定律的实质是指明,在一切涉及热现象的实际宏观过程中,能量转换或传递的方向、条件和限度。1850年克劳修斯发表《论热的动力以及由此推出的关于热学本身的诸定律》的论文.论文的第二部分,在卡诺定理的基础上研究了能量的转换和传递方向问题,提出了热力学第二定律的最著名的表述形式(克劳修斯表述).《熵:一种新的世界观(节选)》普通高校教材《物理化学》里也有。

普朗克普朗克(MaxKarl ErnstLudwig Planck,1858~1947)德国理论物理学家。量子论的奠基人之一。1858年4月23日生于基尔,少年时代在慕尼黑度过。在中学时他热爱劳动。责任心强,聪慧勤奋,成绩单上的评语是“尽管在班里年龄最小,但头脑非常清醒而又逻辑性强”。有条不紊一丝不苟是他的作风。1874年人慕尼黑大学,1878年毕业,次年获该校哲学博士学位。1880~1885年在慕尼黑大学任教。1885~1888年任基尔大学理论物理教授。1888年基尔霍夫逝世后,柏林大学任命他为基尔霍夫的继任人,先任副教授,1892年后任教授。由于1900年他在黑体辐射研究中引人能量量子,荣获1918年诺贝尔物理学奖。普朗克早年的科学研究领域主要是热力学。他以热力学的观点对物质聚集态的变化、气体和溶液理论等进行了研究。可是不久,他了解到美国物理学家吉布斯早已做过这方面工作。于是,便把注意力转向黑体辐射问题。1893~1896年维恩发表了他的对黑体辐射的研究成果,提出一个辐射密度P的分布公式,即维恩公式。这结果为当时实验所证实,但只有波长较短、温度较低时才适合,而且立论的根据是通过与麦克斯韦分子速率几率分布律类比而得的,不能完全令人信服。普朗克从1896年开始研究热辐射的能量分布问题。普朗克想到一个特别有意义的问题:为什么理想黑体的光谱竟像万有引力一样与物质成份的化学性质无关?这里是否隐藏着更普遍的规律?他说:“这个所谓的正常能量分布代表着某种绝对的东西,既然在我看来,对绝对的东西所作的探求是研究的最高形式,因此我就劲头十足地致力于解决这个问题了。”他独创性地将熵这个基本概念引入振子、电磁波能量分布等问题中,认为黑体辐射的能量分布是最稳定即熵值最大的分布。1900年6月,瑞利根据黑体空腔内形成驻波及能量均分原理导出另一黑体辐射公式,其中的系数经金斯修正,在长波部分与实验很符合,即瑞利-金斯公式。普朗克由此受到启发,利用内插法得出他的新公式,并于1900年10月19日在柏林德国物理学会提出报告《维恩辐射定律的改进》,第二天一早鲁本斯(H.Rulens,1865~1922)就告诉他,这一公式与自己已作的实验数据十分相符。普朗克没有满足于“侥幸揣测出来的内插公式”,而是“致力于找出这个等式的真正的物理意义”。最后他终于接受了玻耳兹曼关于熵的统计诠释,找到了S=klnW这一重要的普适公式,它代表了宏观态与微观态的结合,即所有微观态的总组合是分立的集合,即必须假定物质辐射的能量E是不连续的,是一份份出现的,只能是某一最小能量单位e的整数倍。这样就可以解释他推导出来的绝对黑体辐射的能量分布公式。而且他首先推出,其中h是普朗克常量并首先给出h和k的数值。s只比近代值约高3.5%。他认为h、光速C和万有引力常量G是三个重要的普适常量,作为定义质量、长度、时间的自然单位制的基本量。1900年12月14日,他在德国物理学会宣读了《关于正常光谱的能量分布定律的理论》,总结了上述理论。这一天成了量子论的诞生日。当时普朗克对能量子e=hy的作用还重视不够,他后来谈到“企图使基本作用量子与经典理论调和起来的这种徒劳无功的打算,我持续了很多年(直到1915年)”。普朗克关于辐射系统与辐射场间不连续的量子交换概念,打破了经典物理学的框架,掀起了本世纪物理学革命的风暴,从而开辟了一个新纪元。在相对论方面,普朗克也作出了贡献,他是最先理解和支持相对论的物理学家之一。1906年,他导出了相对论动力学方程,得出电子能量和动量的表达式,从而完成了经典力学的相对论化。1906年他引入了“相对论”这个术语。1907年在狭义相对论的框架内推广了热力学1887年他还给出气体和稀薄溶液中化学平衡定律的普遍推导。自20世纪20年代以来,普朗克成了德国科学界的中心人物,与当时国际上的知名物理学家都有着密切联系。1894年当选为柏林科学院院士。1912~1938年任常任秘书。1918年当选为英国皇家学会会员。1926年当选为苏联科学院外籍院士。1930~1935年任威廉皇帝科学促进协会会长。为了表示对普朗克的崇敬,1945年以后,协会改名为马克斯普朗克科学促进协会。普朗克一生著述甚多,有《普通热化学概论》(1893)、《热力学讲义》(1897)、《能量守恒原理》(第二版1908)、《热辐射理论》(1914)、《理论物理学导论》(共5卷1916~1930)、《热学理论》(1932)、《物理学论文与讲演集》(共3卷,1958)、《物理学的哲学》(1959)等。普朗克一生除物理学外还喜好音乐和爬山运动。80岁和84岁高龄时还登上3000多米的高山大威尼迭格峰。二次大战期间他为受迫害的犹太籍科学家提供过尽可能的支持与帮助。选自:《物理教师手册》

先明确一下“可逆”的明确意义:它是指一个过程发生后,体系和环境能同时回到该过程发生前的状态,而不引起任何变化。自由膨胀的定义也尤其需要明确:“自由”二字是指膨胀时气体不受外界阻碍,所以气体不对环境做功,即-W=0。在理想气体的自由膨胀过程中。△U=0,W=0,Q=0(由理想气体的概念决定)。现在的问题就是是体系(理想气体)和环境能否同时复原,而不引起任何变化。当体系复原时,环境必对体系做功,即W>0,但△U=0,所以Q<0。也就是说,欲使体系复原,环境必然付出了一定的功,换来了等量的热。但是由热二律的Kelvin版本:“热不能完全转化为功,而不引起任何变化。”可知环境是无法在体系复原的同时复原而不引起任何变化了。也就是说,理气的自由膨胀是不可逆的。

才看到此题,不知能否对楼主有用。 楼上的基本思路是对的,但求解过程中,有些值得商榷。 首先,热力学第二定律是不能证明的,这个定律同第一定律一样,都是通过对永动机制造的失败,即通过大量的失败教训总结出来的。“第二类永动机是不可能制造成功的”是第二定律的另一种表述方法,是指对热机而言,热效率为100%的永动机是不可能制造成功的,它同克劳修斯、开尔文等的表述是等价的,但他们之间各种表述的“等价”关系是可以证明的。如克劳修斯说法成立,则开尔文说法必成立,反之亦然。 第二,对真空自由膨胀的证明。(1)系统在真空中膨胀,因不受外力,故有 W=0,即外界未能获得系统膨胀功;(2)工质(系统)按原路径返回原状态,即工质必将被压缩到原状态,但要消耗外界功 W<0(对系统而言),也即真空是不可能压缩系统返回原状态的;(3)根据可逆定义可知,工质按原路径返回原状态,外界损失了功,即外界有了变化(尽管系统没有变化)。 综合上述的分析,可知真空膨胀是不可逆过程。 ——(补充,严格按照熵增原理证明)——————(1)基本情况分析:真空无物质,因而不可能获得任何形式的能量,包括功和热,因此,可以将自由膨胀的系统看作是一个孤立系;(2)孤立系初终状态:p1、v1、T1为初始状态参数,p2、v2、T2为终态状态参数;(3)根据(1),孤立系在真空中膨胀,则做功为零,故有 W=0,且Q=0(无物质进行热交换);(4)孤立系的温度变化:根据热力学第一定律,有 Q=W+△U得 △U=0,即真空中的膨胀是一个等温过程,则T2=T1;(5)孤立系工质熵变为 △S=Cv ln(T2/T1)+Rg ln(v2/v1)= Rgln(v2/v1)>0(6)孤立系统的总熵变为 △Siso=△S=Rgln(v2/v1)>0(因孤立系就是单一的理想气体工质)(7)熵产 Sg=△Siso=Rgln(v2/v1)有熵产,就说明在真空中的膨胀是不可逆的。 ——(再补充)—————— 非常感谢楼上的评述。那篇文章,我已经把它拷下来了,我会慢慢看的。但是关于直接将真空膨胀视为等温过程,进而求得q=0的思路还是值得考虑的(因果顺序不当)。当然,你提出的位移为零,我还是不明白,因为系统的体积毕竟是增大了,说它没有位移,这个如何理解? ——(补充3)———————————— 这个问题的探讨远超出回答问题本身的价值,所以,希望楼主先不要关闭此题(先不忙选择),我因有事,等我稍娴静时,再深入探讨。再次拜托楼主。 ——(补充4)————(一)二个基本概念的问题:(1)关于“真空”。真空是人们高度抽象出来的,虽与“太空”有许多类似,但与“太空”有本质的区别。“真空”无物质,而“太空”是有物质的,只是其密度极其小(稀薄至趋于无物质),以至于不能用宏观状态量来表示其状态,也就是说,太空基本上无宏观特征,而真空根本没有。热力学中的“功”和“热”,则是宏观的表现,是可以用宏观状态参数来确定,如可以用温度来确定物质的内能高低。再者,热力学定义的功,是系统通过边界作用在物体(有质量)上的,并使其产生位移。同理,“热”也是如此,也是系统通过边界传递的热量。真空没有物质,因此,系统就不可能对其做功或传热,也即真空无法获得功和热。许多教科书在论述理想气体在真空中膨胀时,都指出该过程是绝热的,但均未能解释为什么是绝热的,我认为这非常欠妥。(2)关于“孤立系统”。按照热力学定义:系统与外界既无质量的交换,也无能量的交换,就称之“孤立系统”,简称孤立系。由此看来,系统加环境构成的孤立系,只是特例而已。(二)高中生能理解的证明 要想让高中生理解理想气体真空自由膨胀是不可逆过程的问题,的确有些难度。但楼上提供的资料,倒启发了我。所以,我想用“概率”的方法证明。 我们都知道,如果抛一枚硬币(不可预测的一种现象,或成为随机现象),如果抛得次数足够多的话,那么,两面出现的机会基本上是相等的,这种出现的机会就是概率。一般而言,对于无序运动(布朗热运动)的分子而言,也可以用这个办法预示其运动趋向。也即无序运动的倾向都是向着概率大(即可能性大)的方向进行。假定,原体积为Va,气体分子个数为n,膨胀后的体积为Va+Vb,为便于计算,假设Vb=Va,即膨胀一倍。那么,就可以计算n个气体分子在Va和Vb中分布的概率了。全部分子都在Va(即Vb中无分子)中的概率为1/2^n,而Va与Vb几乎均等时概率最大,显然,事态一般都是向概率大的方面进行。又因为,1mol的气体具有分子数是6.023×10^23个,所以,n实际上是个非常大的数(n太小就不能体现气体的宏观状态,如太空),故1/2^n几乎为0,即出现Vb是0个分子的宏观态的机会几乎不可能实现,也即气体不能自动压缩而腾出一个空间。因此,理想气体的绝热自由膨胀过程是不可逆的。 同样的道理,也可以用“无序性”证明这个问题。所有自发过程,都是向无序性大的方向进行。(1)气体先占据的空间小,膨胀后气体占据的空间大;(2)在空间小时,整体上气体分子活动的空间小,气体分子的位置比较确定,即气体分子位置不确定性小,也即气体无序性小;(3)在空间较大时,气体分子活动的范围更大,其位置不确定性比空间小时要大了,故分子的运动状态更加无序了,无序性相对地比较大;(4)因此,从微观看,气体的绝热自由膨胀过程中,自然过程也是大量分子从无序程度小的运动状态向无序程度大的运动状态转化的过程。其逆过程也不能自动进行。(证毕) 希望你能懂了,并祝你好好学习。

关于热学第一定律的学术学位论文

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

第十二夜论文的参考文献

具体有以下几种类型:M——专著C——论文集N——报纸文章J——期刊文章D——学位论文R——报告,采用字母“Z”标识。对于英文参考文献,还应注意以下两点:1、作者姓名采用“姓在前名在后”原则,具体格式是:姓,名字的首字母。2、书名、报刊名使用斜体字。

论文中参考文献引用的是国家颁布的文件或纲领政策,要用字母S表示。

例如:引用的是国家标准,“汉语拼音正词法基本规则”则,在参考文献中格式为:

GB/T16159-1996,汉语拼音正词法基本规则[S]。

参考标准格式是指写论文参考发表的文献格式,按资源类型可分为书[M],会议论文集报纸文章[N],[J],期刊文章[D]报告[R],标准[S],专利[P],[a]文献论文集,杂志,[G]。

电子文献类型:数据库[DB]、计算机[CP]、电子公报[EB]

电子文献载体类型:Internet[OL]、CD[CD]、磁带[MT]、磁盘[DK]。

扩展资料:

引用按照它们在文本中出现的顺序用阿拉伯数字顺序编码,序号放在方括号中。重复引用的文献,在正文中以相同的编号标明。一般来说,第一次引用的页码(或页码范围)会在后续的参考书目中列出。

格式为作品的“出版年份”或期刊的“年份、卷(期)”+“:页码(或页码范围)”。为多个引用页码或每个引用的页码范围(一些出版物方面的信息,也可以显示的位置引用文档的页码)上市的序列号分别每个引用的标志,并放置在方括号(只列出的号码是,没有单词和字符,如“P”或“页面”;页码范围中间的一行为半行),并在其上标。

如果页码或页码范围是附加在文本中出现的参考文献的序号之后的,则页码或页码范围也应加超标记。作者和编辑需要仔细检查顺序编码系统中的参考文献编号,以便它们与他们所指示的参考文献列表一致。此外,参考页码或页码范围应准确。

参考资料来源:百度百科-参考文献格式

论文中参考文献引用的是国家颁布的文件或纲领政策,要用字母S表示。

例如:引用的是国家标准,“汉语拼音正词法基本规则”则,在参考文献中格式为:

GB/T16159-1996,汉语拼音正词法基本规则[S]。

参考标准格式指的是写论文的引用已经发表的文献格式,根据资源的类型可分为这本书[M],[C]学报》发布会上,报纸文章[N],[J],期刊文章论文[D]报告[R],标准[S],专利[P],[一]学报文献、杂志[G]。

电子文献类型:数据库[DB]、计算机[CP]、电子公报[EB]

电子文献载体类型:Internet[OL]、CD[CD]、磁带[MT]、磁盘[DK]。

扩展资料

参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。

格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符;页码范围中间的连线为半字线)并作上标。

作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

参考资料来源:百度百科-参考文献格式

论文的参考文献是按照论文引用参考文献的顺序排列的,这一点很重要。因为论文中的引文需要标注,标注的时候需要和参考文献联系起来,所以参考文献一定要按顺序排列,因为如果不标注引文,就会被计入整个论文的重复率,严重影响论文的重复率。参考文献在我们的毕业论文当中是占有相当重要成分的组成部分,它不仅能为我们论文中的论点提供强有力的论据,同时也可以精练文字节约篇幅,增加论文的信息量,而且还具有很高的信息价值。 参考文献的格式是什么样的?论文中的参考文献有一定的格式,但要明确列出序号、作者姓名、期刊名称、出版年份和字号、专著序号等。有些参考文献是论文,有些参考文献是书籍,有些参考文献是期刊。所以对不同格式的参考文献有不同的要求,你需要根据论文写作提纲中参考文献格式设置的要求来设置。参考文献设置好后,此时将整篇论文的引用部分插入到注释中,整篇论文此时完成。最后一步是检查引用部分是否全部插入评论,然后再次检查整篇文章的格式。如果没有问题,那么你的论文就完成了。

论文中第二次引用的参考文献

二次引用文献的意思是在一篇论文中多次运用到一个参考文献。参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。

扩展资料:

参考文献的类型:

1、参考文献类型:专著[M],论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A]

2、电子文献类型:数据库[DB],计算机[CP],电子公告[EB]

3、电子文献的载体类型:互联网[OL],光盘[CD],磁带[MT],磁盘[DK]

参考资料来源:百度百科—参考文献

打开WORD文档,移动鼠标到文字处,进入菜单栏上引用视图,点击交叉引用,选择脚注内容和脚注编号格式。点击引用

打开WORD文档,移动鼠标到需要二次引用的文字处,点击菜单栏上“引用”。点击交叉引用

点击菜单栏上“交叉引用”,弹出窗口单击引用类型,下拉选择“脚注”,单击引用内容,选择“脚注编号”,下方选择引用的脚查看效果

光标位置处插入了相同的脚注编号。

文献二次引用标注:正文中注释序号不能重复且从小到大依次排列,尾注内容与文中序号一一对应。就是如此,或者重复尾注要超级链接,或者不重复而无超链,自己选择。尾注和脚注一样,是一种对文本的补充说明。

脚注一般位于页面的底部,可以作为文档某处内容的注释;尾注一般位于文档的末尾,列出引文的出处等。尾注由两个关联的部分组成,包括注释引用标记和其对应的注释文本。用户可让Word自动为标记编号或创建自定义的标记。

在添加、删除或移动自动编号的注释时,Word将对注释引用标记重新编号。

两处引用同一篇文献标注方法如下:

操作设备:联想笔记本G40-30。

设备系统:微软Windows 7旗舰版。

操作软件:Microsoft OfficeWord 2010。

1、首先,打开需要引用文献的文档,这里一定要将参考文献按照指定格式书写。

2、接下来,参考文献输入到正文之后,还需要统一进行编号,点击“开始”菜单,然后在编号库中选择中括号的编号。

3、接下来就可以进行文献引用了,点击菜单栏中的“引用”菜单,然后点击“交叉引用”。

4、随后便会弹出“交叉引用”窗口,将光标放置在需要引用的地方,引用类型和内容选择默认的编号项和段落编号即可,选择需要引用的文献,点击“插入”即可。

5、第一次引用结束之后,不需要关闭“交叉引用”窗口,继续选择需要第二次引用的文献,再次点击“插入”就可以了,编号是重复的没有关系。

我已也不知道,你从A 经常很难入睡网上找吧

  • 索引序列
  • 论热力学的第二定律论文参考文献
  • 研究热力学第二定律的论文
  • 关于热学第一定律的学术学位论文
  • 第十二夜论文的参考文献
  • 论文中第二次引用的参考文献
  • 返回顶部