行列式是研究《线性方程组》和《高次多项式》(即高等代数)的【基本工具】;因为线性方程组的研究,派生出 线性规划、最佳调度、。。。等等实际领域的应用。
行列式在数学中,是由解线性方程组产生的一种算式。[1]其定义域为nxn的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
行列式在解矩阵相关问题(例如大型工程问题求解)时,非常有用。
中国期刊网,搜索一下相关课题的综述 你直接上当然要钱了。不过你们学校图书馆肯定买了,在你们学校图书馆的电子资源里面找找,肯定有账号或者可以用的镜像站点的。
什么专业什么题目啊?如果跟我论文差不多,可以把开题给你参考一下
4. 行列式的性质:
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
5. 注意区分行列式与矩阵
矩阵定义:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。
矩阵样式:
主要书写区别便是行列式使用竖线,矩阵使用括号(通常使用中括号)。同时行列式一个数,而矩阵是数的集合。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
现状调查反映你所作研究的立足基础,好比“到什么山唱什么歌”的那座山的情况,先搞清自己的站位和前提。现状概述也为你后面的对策性研究提供有针对性的铺垫,没有针对性就是空对空,自说自话,怎么知道这些对策是否切实?怎么识别抄搬来的东西?
论文中对于获得的大量的直接和间接资料,要做艰苦细致的辨别真伪的工作,从中找出事物的内在规律性,这是不容易的事。
现状调查就是在第一手材料中,筛选出最典型、最能说明问题的材料,对其进行分析,从中揭示出事物的本质或找出事物的内在规律,得出正确的结论,总结出有价值的东西,这是写论文时应特别注意的。我要调查网,让调查更简单方便!
问题一:文学类论文的研究意义该怎么写? 两个方面: 理论意义――即该文学给我们的社会、生活、思想等等带来的影响与意义【比如莎士比亚的戏剧对文艺复兴的影响】; 实践意义――即该文学对我们现在的指导意义在哪里【比如莎士比亚戏剧对英文词语的扩充影响,更是现在很多应用广泛的名言的来源之类的】。 问题二:论文的研究背景和研究意义有什么区别 大致的解释 回顾:是对这一领域的研究成果文章进行综述,介绍现阶段的研究进展 背景就是:此项研究的目的和意义,现阶段主要的问题等等 问题三:写论文的研究意义可以分成哪些地方 开题报告主要包括以下几个方面: (一)论文名称 论文名称就是课题的名字 第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。 第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。 (二) 论文研究的目的、意义 研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。 (三) 本论文国内外研究的历史和现状(文献综述)。 规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。 (四)论文研究的指导思想 指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是 *** 的教育发展规划,也可以是有关研究问题的指导性意见等。 (五) 论文写作的目标 论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。 常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确; 目标定得过高, 对预定的目标没有进行研究或无法进行研究。 确定论文写作目标时,一方面要考虑课题本身的要求,另一方面要考率实际的工作条件与工作水平。 (六)论文的基本内容 研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把写作的目的、意义当作研究内容。 基本内容一般包括:⑴对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。⑵本论文写作有关的理论、名词、术语、概念的界说。 (七)论文写作的方法 具体的写作方法可从下面选定: 观察法、调查法、实验法、经验总结法、 个案法、比较研究法、文献资料法等。 (八)论文写作的步骤 论文写作的步骤,也就是论文写作在时间和顺序上的安排。论文写作的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。课题研究的主要步骤和时间安排包括:整个研究拟分为哪几个阶段;各阶段的起止时间 希望我们可以帮你。硕士本科开题报告以及论文写作是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。 1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键......>> 问题四:写毕业论文的目的与意义是什么? 撰写毕业论文的目的大学生撰写毕业论文的目的,主要有两个方面;一是对学生的知识相能力进行一次全面的考核。二是对学生进行科学研究基本功的训练,培养学生综合运用所学知识独立地分析问题和解决问题的能力,为以后撰写专业学术论文打下良好的基础。撰写毕业论文是在校大学生最后一次知识的全面检验,是对学生基本知识、基本理论和基本技能掌握与提高程度的一次总测试,这是撰写毕业论文的第一个目的。大学生在学习期间,已经按照教学计划的规定,学完了公共课、基础课、专业课以及选修课等,每门课程也都经过了考试或考查。学习期间的这种考核是单科进行,主要是考查学生对本门学科所学知识的记忆程度和理解程度。但毕业论文则不同,它不是单一地对学生进行某一学科已学知识的考核,而是着重考查学生运用所学知识对某一问题进行探讨和研究的能力。写好一篇毕业论文,既要系统地掌握和运用专业知识,还要有较宽的知识面并有搐定的逻辑思维能力和写作功底。这就要求学生既要具备良好的专业知识,又要有深厚的基础课和公共课知识。由于目前学校的考试方法大都偏重于记忆,限于书本知识的一般理解,致使对学生掌握理论的深度和实际运用的能力,难以全面了解。有的学生平时学习马马虎虎,满足于应付考试,很少作课堂笔记和读书札记,对写作知识了解不多,很少进行写作练习,结果,。防到写毕业论文时才临阵磨枪,回头补习各种知识,其写出来的论文连最基本的格式要求都不懂,逻辑上颠三倒四。还有一类学生平时学习死记硬背,缺乏能力的培养,缺少动手动笔和实际操作的能力。对于这些问题,学生在撰写毕业论文时,都会暴露出来。通过毕业论文的写作,使学生发现自己的长处和短处,以便在今后的工作中有针对性地克服缺点,也便于学校和毕业生录用单位全面地了解和考察每个学生的业务水平和工作态度,便于发现人才。同时还可以使学校全面考察了解教学质量,总结经验改进工作。撰写毕业论文的第二目的是培养大学生的科学研究能力,使他们初步掌握进行科学研究的基本程序和方法。大学生毕业后,不论从事何种工作,都必须具有一定的研究和写作能力。在党政部门和企事业单位从事管理工作,就要学会搞调查研究,学会起草工作计划、总结、报告等,为此就要学会收集和整理材料,能提出问题、分析问题和解决问题,并将其结果以文字的形式表达出来。至于将来从事教学和科研工作的人,他们的一项重要任务就是科学研究。大学是高层次的教育,其培养的人才应该具有开拓精神,既有较扎实的基础知识和专业知识,又能发挥无限的创造力,不断解决实际工作中出现的新问题;既能运用已有的知识熟练地从事一般性的专业工作,又能对人类未知的领域大胆探索,不断向科学的高峰攀登。撰写毕业论文的过程是训练学生独立进行科学研究的过程。通过撰写毕业论文,可以使学生了解科学研究的过程,掌握如何收集、整理和利用材料;如何观察、如何调查、作样本分析;如何利用图书馆,检索文献资料;如何操作仪器等方法。撰写毕业论文是学习如何进行科学研究的一个极好的机会,因为它不仅有教师的指导与传授,可以减少摸索中的一些失误,少走弯路,而且直接参与和亲身体验了科学研究工作的全过程及其各环节,是一次系统的、全面的实践机会。撰写毕业论文的过程,同时也是专业知识的学习过程,而且是更生动、更切实、更深入的专业知识的学习。首先,撰写论文是结合科研课题,把学过的专业知识运用于实际,在理论和实际结合过程中进一步消化、加深和巩固所学的专业知识,并把所学的专业知识转化为分析和解决问题的能力。其次,在搜集材料、调查研究、接触实际的过程中,既可以印证学过的书本知识,又可以学到许多课堂和书本里学不到的活......>> 问题五:研究目的和意义 目地:就是写你们为什么要研究或探讨、想要得出什么结论!;意义:就憨研究完以后得出的结论以及你们做完研究有什么收获。感想之类!总之最重要的是结论啦 问题六:研究生论文中的研究背景和研究意义有什么不同 研究背景,主要是你的研究内容的发展脉络,现在发展的情况,别人研究了哪些内容,哪些内容还没有涉及;类似已有成果和现状; 研究意义,是指你的研究内容有什么理论和现实意义,体现你的研究价值; 二者有非常大的不同。但是因为这个研究背景,加上你的研究内容,才可以循序渐进的展示你的研究意义。 望采纳 问题七:毕业论文中的研究目的与意义该怎么写? 20分 为了明确认识和加埂福建省国际物流业发展的重要性和实施措施及其对对外贸易增长的重要性而展开了本调查研究课题(这样一句话概括了本课题的研究目的与意义,具体细节可以按照这个目的意义去调查数据统计或比较,例如采取历史对比或城乡对比或大小城市的物流对比及其相应的贸易数量对比,揭示二者的紧密关系,物流是贸易发展的瓶颈或关键)
行列式的定义就是每一项都是取不同行不同列的元素乘积再乘以元素行顺序排列后(-1)^列的逆序数然后你观察就发现每一项都要不能有取到0的元素才有意义,所以也就显然了,只能是第一行取第二个元素,第三行取第二个元素……以此类推。
行列式的性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。
5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
一、答辩陈述:
在答辩的陈述中,我从四个方面介绍了我的论文:
1、文章中需要用到的有关二次型、正定二次型等概念;
2、正定二次型的性质及判定方法;
3、半正定二次型的性质及判定方法;
二、答辩分析:
第一部分主要介绍了论文中需要用到的有关二次型、正定二次型等概念。
第二部分介绍了正定二次型的4中判定方法。
第三部分是文章的重点部分,我通过查找资料以及与正定二次型性质判定方法作对比,从而总结了4中主要的判定方法。
最后一部分根据正定二次型的性质判定方法归纳了其9方面的应用。
三、答辩中提出的问题及回答要点:
1、正定二次型的矩阵的行列式值有什么特点?
答:正定二次型的矩阵为正定矩阵,它的行列式值大于零。
四、判断方法:
主要介绍了4种判定方法,分别为:
1、二次型半正定的充分必要条件是它的标准型的所有系数都是非负的;
2、二次型半正定的充分必要条件是它的正惯性指数与秩相等;
3、二次型半正定的充分必要条件是它的矩阵的特征值均为非负数;
4、二次型半正定的充分必要条件是它的矩阵的各阶主子式均为非负数。其次,还可以用半正定二次型的定义进行判定。
五、论文虽未论及,较密切相关的问题:
1、本文主要介绍了正定、半正定二次型的性质及判定方法,然而在实际应用中,更多的会用到正定矩阵相关概念。
2、如(正定二次型在线性最小二乘法问题的解中的应用),对于此部分知识文中没有论及。因此,需要进一步归纳总结正定矩阵的性质,并将其与本文内容相结合,使本部分内容系统化。
1、二阶行列式、三阶行列式的计算,楼主应该学过。但是不能用于四阶、五阶、、、2、四阶或四阶以上的行列式的计算,一般来说有两种方法。 第一是按任意一行或任意一列展开: A、任意一行或任意一列的所有元素乘以删除该元素所在的行和列后的剩余行列式, B、将他们全部加起来; C、在加的过程中,是代数式相加,而非算术式相加,因此有正负号出现; D、从左上角,到右下角,“+”、“-”交替出现。 上面的展开,要一直重复进行,至少到3×3出现。3、如楼上所说,将行列式化成三角式,无论上三角,或下三角式,最后的答案都是 等于三角式的对角线上(diagonal)的元素的乘积。
首先你要把行列式的某行(列)的数化简到只有一个是非零的,然后按行列式的余阶子式将n*n的行列式化简成(n-1)*(n-1)的行列式化到3*3就可以算了
第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)。
第三、行列式的计算最重要的两个性质:
1、对换行列式中两行(列)位置,行列式反号。
2、把行列式的某一行(列)的倍数加到另一行(列),行列式不变。
行列式的性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)
第三、行列式的计算最重要的两个性质:
(1)对换行列式中两行(列)位置,行列式反号
(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变
对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。
矩阵的加法与减法运算将接收两个矩阵作为输入,并输出一个新的矩阵。矩阵的加法和减法都是在分量级别上进行的,因此要进行加减的矩阵必须有着相同的维数。
为了避免重复编写加减法的代码,先创建一个可以接收运算函数的方法,这个方法将对两个矩阵的分量分别执行传入的某种运算。