首页 > 期刊投稿知识库 > 观察物体论文文献综述

观察物体论文文献综述

发布时间:

观察物体论文文献综述

高分辨率光学显微术在生命科学中的应用【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。1 传统光学显微镜的分辨率光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:横向分辨率(x-y平面):dx,y=■轴向分辨率(沿z光轴):dz=■可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径N.A等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。2 高分辨率三维显微术在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。2.1 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。2.2 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。2.3 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达0.01nm,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上Kir2.1离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。2.4 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。3 表面高分辨率显微术表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。3.1 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。3.2 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。3.3 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。【参考文献】[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.[2] Kam Z, Hanser B, Gustafsson MGL, et al.Computational adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.[4] Goldman RD,Spector DL.Live cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.[5] Monvel JB,Scarfone E,Calvez SL,et al.Image-adaptive deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷

大肠杆菌...网上搜...最教科书式的细菌..怎么都能和你的论文联系上...关键就是不可能出采...最多是应付一下

给你提供2个链接,希望你能找到自己所需

我给你找,但我现在只告诉你摘要,你若感兴趣,请给我的百度帐号发信息并告诉我你的电子邮箱,保证发送到!文献一:微生物在中水治理中的应用【作者中文名】 王双佳;【作者单位】 山大生命科学学院微生物实验室;【文献出处】 山东环境, Shandong Environment, 编辑部邮箱 2002年 06期 期刊荣誉:CJFD收录刊【摘要】 <正>随着现代工业的迅速发展,城市规模的不断扩大城市用水量和废水量不断增加,造成城市水源水量不足,水质日趋污劣,已成为当今世界各大城市普遍存在的问题。为了解这个问题,世界上许多国家相继开展了污水资源化的研究工作。在研究的基础上,也有不同规模的生产性装置投入使用,有的还将污水处理后的中水,回用于城市自来水的补充水源。城市污水再生回用已显现出开源和控制水污染的双重功能。文献二:水体重金属污染的微生物治理研究与应用 【英文篇名】 Study on the microbial treating heavy-metal-containing water【作者中文名】 陶成; 邓天龙; 李泽琴;【作者英文名】 TAO Cheng; DENG Tian-Long; LI Ze-qin(School of material and biological; Chengdu University of Technology; Chengdu 610059; China);【作者单位】 成都理工大学材料与生物工程学院; 成都理工大学材料与生物工程学院 四川成都; 四川成都;【文献出处】 化学工程师, Chemical Engineer, 编辑部邮箱 2003年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊【关键词】 重金属; 微生物治理; 水污染;【英文关键词】 heavy metal; mictobial treating; wastewater;【摘要】 本文分析了重金属污染水体的微生物治理的原理及微生物技术在水体重金属污染治理中的应用 ,概述了该领域中基因工程、酶和细胞的固定化技术以及生物吸附剂的研究进展 ,提出了污染水体的微生物治理研究方向。【英文摘要】 This paper analyses theory and application of microbial treating heavy-metal-containing wastewater.Sums up development of genic engineering,enzyme and cell fixed technology and bioloical sorbent in this field,bring forward the research direction of treating the heavy-metal-containing wastewater.

四年级观察物体数学小论文

利用除法来比较分数的大小今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

今天,数学竞赛成绩揭晓了,平时总屈居二三名的我竞考了98分。我得到这个消息后,高兴地想:“哈哈,这下第一名非我莫属了!对了,把这个消息告诉妈妈,让她也高兴高兴!” 于是,我怀着喜悦的心情,迈着轻快的步子来到了家,把这个好消息告诉了妈妈。妈妈起先夸奖了我几句,谁知突然语调一转,对我说:“你可别高兴得太早。据我所知,还有人比你考得更好!”听了妈妈的话,我不禁有点失落:毕竟第一的位置没了。但是我又忍不住反问了一句:“啊?是谁啊?他考了几分?”妈妈笑嘻嘻地说:“谁,我就不清楚了,我只知道他的年龄、成绩、名次相乘等于2574,自己慢慢去想吧!” 我听了不以为然,不就是区区一道题目,难不倒我这个数学高材生!我边想边回到房间,思考起来: 把2574分解质因数:2574=3×3×11×13×2。这2肯定是名次,那么就是第二名。如果是9岁,那么分数就是143了,不对。那就只能是年龄为13,分数为99啦!哈!算出来了,答案就是名次2,年龄13,分数99! 我算出答案后,急忙告诉妈妈。妈妈高兴地搂着我说:“我的天天就是棒!”这下,我被搞得云里来雾里去的。弄了半天才明白,原来妈妈是我的,我确确实实考了第一名。刚才是妈妈想检验我的数学本领,给我出的难题呀。 为了表彰我,妈妈决定做顿庆功宴。我可是好久没有打牙祭了。听了妈妈的话,我仿佛已经看见了香喷喷的烤鸭和香气四溢的红烧肉了。我高兴得在妈妈的脸上左亲右亲,连连欢呼:“感谢数学,妈妈万岁!”

生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于 们身边。奇妙的“黄金数”取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。数 0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618 处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500 次试验的效果!“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待 们去探寻,使它能更好地为 们服务,为 们解决更多问题。美妙的轴对称如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使 们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使 们看物体更准确。可见 们的生活离不开轴对称。数学离 们很近,它体现在生活中的方方面面, 们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。 认为,生活中的数学能给人带来更多地发现。这个答案不多不少初一应该可以吧

多动脑筋好好想想,生活中数学很多啊,琢磨琢磨能想出来的 1、如何做一个尽可能大的无盖长方体盒子2、黄金比3、圆周率这些都可以啊

观察性研究论文属于综述论文吗

综述性论文和研究性论文的区别:

综述性论文是对某一领域,某一专题咨料和主要观点进行归纳整理,分析提炼而写成的论文,是在原有的论文内容再进行二次整理,研究性论文是针对自己专业或者某一课题进行研究的,属于一手盗料,所以两者是有区别的。

1、性质不同

综述论文是研究性论文的一部分,是作者研究成果的一种体现,而研究性论文是作者研究的一个过程,所以是不一样的。

2、写作要求不同

综述包括题目、署名、摘要、关键词以外,一般还包括前言、主体、总结和参考文献四部分,每个部分都是很关键的,研究性论文与综述论文是不同的,综述的参考文献是原论文的参考文献,研究性的论文是另外的文献。

而且综述论文字数上没有绝对要求,一般在3000字左右就可以,而研究性论文是有要求的,根据期刊级别的不同,一般在3000到6000字不等。

3、作者署名不同

研究性论文一般是单独性原创,当然也会有团队合作,而综述性论文一般的就需要一个团队共同来完成。

综述论文(包括元分析) 通过对已发表材料的组织、综合和评价,以及对当前研究进展的考察来澄清问题。在某种意义上,综述论文具有一定的指导性;

包括以下内容: 对问题进行定义; 总结以前的研究,使读者了解研究的现状; 辨明文献中各种关系、矛盾、差距及不一致之处; 建议解决问题的后续步骤。 综述论文的组织形式是按逻辑关系而不是按研究进程来组织的。

综述包括“综”与“述”两个方面。所谓综就是指作者必须对现有的大量素材进行归纳整理、综合分析,而使材料更加精炼、更加明确、更加层次分明、更有逻辑性。

所谓述就是评述,是对所写专题的比较全面、深入、系统的论述。因而,综述是对某一专题、某一领域的历史背景、前人工作、争论焦点、研究现状与发展前景等方面,以作者自己的观点写成的严谨而系统的评论性、资料性科技论文

由于综述论文论述的是比较复杂的理论问题,篇幅又较长,所以常常使用直线推论与并列分论两者相结合的方法。

而且往往是直线推论中包含有并列分论,而并列分论下又有直线推论,有时下面还有更下位的并列分论。综述论文中的直线推论与并列分论是多重结合的;

然而,在对各阶级分析的那一层次中,又逐一分析了地主买办阶级、中产阶级、小资产阶级、半无产阶级和无产阶级,用的是并列分论。

论文类型从研究方式来划分,可以分为描述性论文、综述型论文和应用型论文。而从论文形式角度来分,可划分为学期或学年论文、学科论文、学位论文、调查报告、实习报告和研究论文等。但如果从学科专业领域来看,有可分为哲学、经济学、文学、政治学、行政学、数学和物理学等学科专业论文。

观察动物科学小论文

小狗的警惕性非同寻常,它有一个特别灵敏的鼻子,能闻到3里以外东西的气息,吃食物时,它总要低下头闻一闻。它还有一双耳朵,每当听到特别的声音,它的耳朵总会竖起来,认真地倾听着外面的动静!因而,人们养它来看大门,它是人类的忠实的朋友。 小狗有一张宽而大的嘴巴,嘴里有一排洁白而又锋利的牙齿,它一口就可以将一只大老鼠咬死! 小狗的眼睛不很好,大约只能看一里的距离。那么,它为什么能看准东西呢?它主要靠得是它的鼻子。 小狗的爪子很锋利,不用多长时间,它就可以挖一个很大的圆形的坑。 小狗刚生下来的时候,毛是棕色的,可是它长大以后就不再是棕色的了,而变成了深黄色。 小狗的性格非常温和。如果你对它好,它就会用头顶你的腿,好像是在向你撒娇;可是如果是陌生人来到它的家里,它仍会“汪汪”地叫个不停,甚至会扑到你身上咬伤你的。 夏天到了,大热天,我们常常可以看见狗总是在吐舌头,而不见狗出汗呢?原因很简单,那是因为狗的汗孔长在舌头上。 小狗真不愧为人们所喜爱,这是它用自己真正的本领换来的

有一天,爸爸带我去山庄吃饭,我看见酒店门口有一个铁笼子,里面有一只活泼可爱的小猴子。我很喜欢小猴子,因为它在动物中恐怕是最聪明的。我们来到它面前,它用明亮的眼睛盯着我们。它的长相很奇特:一个很小的鼻子向里凹着,一张凸起的小嘴发出“吱吱”的叫声,浑身的毛不但亮而且黑里透黄,小耳朵竖着,两只小爪子不时地挠着头皮,做出怪模样,使人发笑。我拿了一块西瓜皮给它吃,不料,它没有接,只是先用眼睛看看我。过了一会儿,它抓起西瓜皮,狼吞虎咽地吃起来了,吃完后又用央求的目光看着我,伸出爪子向我要吃的,于是我又扔了几颗瓜子给它,看着它吃得津津有味的样子,我笑着走了。名师点评:小场景白描化描写。有时候我们写文章,不一定要传达出很深刻的主题,但我们所写到的地方,一定要表现出它的特点。这是一种观察和思考,是我们对环境的阅读,通过我们的眼睛发现出来,然后成为文字。

研究性论文观察动物

从20世纪70年代中期开始,就有人尝试用各种办法向动物体内转移外源基因。如将牛奶成分中特有的基因转移到白鼠体内,这些外来基因在白鼠体内重组后,白鼠分泌的乳汁便含有牛奶成分。这种通过人工方法获得外来基因的白鼠,称为转基因鼠。 转基因动物技术的核心,是把遗传的功能单位——基因转移到动物体内,使它成为动物体内的一部分。被转移的基因可以来自同种或异种动物,也可以来自植物或微生物。这样一来,就打破了物种之间的界线,也可以说动物能与植物、微生物杂交了。不过目前的杂交是低水平的,只限于主管一两个性状的一两个基因。随着科学技术的发展,一次可以转移的遗传信息将越来越多,那时就可以实现真正意义上的动植物之间的杂交。从科学上讲,这将是一个大突破。 目前,世界上已报道了多种生产转基因动物的方法,但真正成熟并可以稳定生产转基因动物的方法只有两种,即显微注射DNA的方法和精子介导的基因转移法。 显微注射DNA的方法是对单细胞的胚胎进行基因操作,涉及复杂的操作步骤。首先是要准确掌握母畜的性周期,在此基础上加以人工调节,使母畜在预先确定的时间排卵,保证获得大量的刚刚受精的单细胞胚胎。第二步是用手术或非手术的方法收集单细胞胚胎,经短暂的离心处理后,放在显微镜下用口径1 μm玻璃微管向细胞核注射500~600拷贝基因。然后把经过DNA注射的胚胎移植到另外一头处于相同性周期的母畜的体内。经过这样处理后,在后代中就会出现1%~3%的转基因动物。效率虽然不高,但结果相当稳定。全世界已在各种动物身上进行了上万次的试验,都能生产出转基因动物。 精子介导的基因转移是把精子作适当处理后,使其具有携带外源基因的能力。然后,用携带有外源基因的精子给发情母畜授精。在母畜所生的后代中,就有一定比例的动物是整合了外源基因的转基因动物。同显微注射方法相比,精子介导的基因转移有两个优点:首先是它的成本很低,只有显微注射法成本的1/10。其次,由于它不涉及对动物进行手术处理,因此,可以用生产牛群或羊群进行试验,以保证每次试验都能够获得成功。 生产转基因动物的研究自20世纪90年代以来日趋活跃,转基因动物技术的实用意义是:①生产出性状优良的家畜家禽,如长得快的,繁殖力高的,能抗病的等;②利用动物体作为反应器,生产珍贵的蛋白质,如一些只能从人体内提取的蛋白质;③利用动物作研究模型,比如,知道高血压症是由某种原因造成,可以生产一些高血压小鼠,让医生在小鼠身上试用各种疗法;④生产玩赏动物,如同猫一样大的小马,如同鼠一样大的兔子,以及各种不同毛色和花纹的观赏动物。 在转基因动物方面,我国也取得了许多可喜的成果,目前已获得了转基因鱼、兔、鸡等多种转基因动物。1998年2月中国科学家又获得了在所分泌的乳汁中含有蛋白凝血因子X的转基因山羊。

有一天,爸爸带我去山庄吃饭,我看见酒店门口有一个铁笼子,里面有一只活泼可爱的小猴子。我很喜欢小猴子,因为它在动物中恐怕是最聪明的。我们来到它面前,它用明亮的眼睛盯着我们。它的长相很奇特:一个很小的鼻子向里凹着,一张凸起的小嘴发出“吱吱”的叫声,浑身的毛不但亮而且黑里透黄,小耳朵竖着,两只小爪子不时地挠着头皮,做出怪模样,使人发笑。我拿了一块西瓜皮给它吃,不料,它没有接,只是先用眼睛看看我。过了一会儿,它抓起西瓜皮,狼吞虎咽地吃起来了,吃完后又用央求的目光看着我,伸出爪子向我要吃的,于是我又扔了几颗瓜子给它,看着它吃得津津有味的样子,我笑着走了。名师点评:小场景白描化描写。有时候我们写文章,不一定要传达出很深刻的主题,但我们所写到的地方,一定要表现出它的特点。这是一种观察和思考,是我们对环境的阅读,通过我们的眼睛发现出来,然后成为文字。

小狗的警惕性非同寻常,它有一个特别灵敏的鼻子,能闻到3里以外东西的气息,吃食物时,它总要低下头闻一闻。它还有一双耳朵,每当听到特别的声音,它的耳朵总会竖起来,认真地倾听着外面的动静!因而,人们养它来看大门,它是人类的忠实的朋友。 小狗有一张宽而大的嘴巴,嘴里有一排洁白而又锋利的牙齿,它一口就可以将一只大老鼠咬死! 小狗的眼睛不很好,大约只能看一里的距离。那么,它为什么能看准东西呢?它主要靠得是它的鼻子。 小狗的爪子很锋利,不用多长时间,它就可以挖一个很大的圆形的坑。 小狗刚生下来的时候,毛是棕色的,可是它长大以后就不再是棕色的了,而变成了深黄色。 小狗的性格非常温和。如果你对它好,它就会用头顶你的腿,好像是在向你撒娇;可是如果是陌生人来到它的家里,它仍会“汪汪”地叫个不停,甚至会扑到你身上咬伤你的。 夏天到了,大热天,我们常常可以看见狗总是在吐舌头,而不见狗出汗呢?原因很简单,那是因为狗的汗孔长在舌头上。 小狗真不愧为人们所喜爱,这是它用自己真正的本领换来的

  • 索引序列
  • 观察物体论文文献综述
  • 四年级观察物体数学小论文
  • 观察性研究论文属于综述论文吗
  • 观察动物科学小论文
  • 研究性论文观察动物
  • 返回顶部