首页 > 期刊投稿知识库 > 行列式的计算及应用毕业论文

行列式的计算及应用毕业论文

发布时间:

行列式的计算及应用毕业论文

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

行列式的计算方法及应用毕业论文

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

矩阵是代数特别是线性代数中一个极其重要的概念Matrix algebra is a very important concept in linear algebra而矩阵的分块则是在处理级数较高的矩阵时常用的方法While the block matrix is used in the matrix series method when a high常在分块之后,矩阵间的相互关系会看的更清楚Often in the block after the relationship matrix between, will see more clearly像矩阵一样Like matrices分块矩阵具有广泛的应用Block matrix has a wide range of applications矩阵的分块运算是矩阵运算的一种重要方法Block matrix operation is an important method for matrix operations本文就是利用分块矩阵的特殊性质给出了它在求行列式值中的一些应用This paper is the use of block matrix to solve it in the determinant value of application合起来就是Matrix algebra especially in linear algebra is an extremely important concept and block matrix is the matrix series high commonly used method in block, relationship between matrix will see more clearly, like matrices, block matrix has a wide application, block matrix operation is an important method of matrix operations, this paper is to use block matrix to solve it in the determinant value of application

行列式的计算方法及应用论文答辩

2,3阶行列式的对角线法则, 4阶以上(含4阶)是没有对角线法则的!解高阶行列式的方法 一般有用性质化上(下)三角形,上(下)斜三角形, 箭形按行列展开定理Laplace展开定理加边法递归关系法归纳法特殊行列式(如Vandermonde行列式) 先想到这些...

行列式计算基本公式是:D=A=detA=det(aij)。

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或| A |。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

公式性质:

1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、行列式A中两行(或列)互换,其结果等于-A。

4、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。2、利用行列式的性质计算。3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。①行列式A中某行(或列)用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

三阶行列式计算方法有:

1、降价法(公式法)

2、三角形法,利用行列式的基本性质,将行列式一般的形式转换成上三角(或下三角)的形式

3、例如:

行列式的性质及应用论文范文

1、行列式和它的转置行列式相等。

2、行列式中某一行元素的公因子可以提到行列式符号的外边来,或者说,用一个数来乘行列式,可以把这个数乘到行列式的某一行上。

3、若果行列式中有一行元素全为零,则行列式的值为零。

4、交换行列式两行,行列式仅改变符号。

5、若行列式中有两行完全相同,则这个行列式的值为零。

6、若行列式有两行的对应元素成比例,则这个行列式等于零。

7、把行列式某一行的元素乘以同于个数后加到另一行的对应元素上,行列式不变。

扩展资料:

若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。

化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

性质1:行列式与它的转置行列式相等。性质2:互换行列式的两行(列),行列式变号。性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。性质5:若行列式的某一行(列)的元素都是两数之和,例如第j列的元素都是两数之和。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

性质1:行列式与它的转置行列式的值相等

性质2:互换行列式的两行,行列式变号

性质3  行列式的某一行(列)中所有的元素都乘以同一个数k,等于用k乘以此行列式。

性质4  如果行列式有两行(列)元素成比例,则行列式为0

性质5  行列式中若某行(列)的元素是两组数的和,则该行列式可分解成两个行列式的和,

性质6 把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式的值不变。

行列式的计算毕业论文摘要

1、二阶行列式、三阶行列式的计算,楼主应该学过。但是不能用于四阶、五阶、、、2、四阶或四阶以上的行列式的计算,一般来说有两种方法。 第一是按任意一行或任意一列展开: A、任意一行或任意一列的所有元素乘以删除该元素所在的行和列后的剩余行列式, B、将他们全部加起来; C、在加的过程中,是代数式相加,而非算术式相加,因此有正负号出现; D、从左上角,到右下角,“+”、“-”交替出现。 上面的展开,要一直重复进行,至少到3×3出现。3、如楼上所说,将行列式化成三角式,无论上三角,或下三角式,最后的答案都是 等于三角式的对角线上(diagonal)的元素的乘积。

不可以,只能整行或者整列互换而且互换之后的行列式与原行列式符号相反

1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。2、利用行列式的性质计算。3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。行列式怎么计算1行列式行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。2行列式的性质①行列式A中某行(或列)用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。④行列式A中两行(或列)互换,其结果等于-A。⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。n阶行列式设是由排成n阶方阵形式的n2个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为的项的和,而其中a13a21a34a42相应于k=3,即该项前端的符号应为(-1)3.若n阶方阵A=(aij),则A相应的行列式D记作D=|A|=detA=det(aij)若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵.标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足1≤i1

最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:明烛天南2011行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,行列式的计算是一个重要的问题。本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。关键词:行列式矩阵降阶TheMethodsofDeterminantCalculationAbstract:Solvingmultiplelinearequationsisthemaincontentofthelinearalgebra,determinantsproducedinsolvinglinearequations,determinantcalculationisanimportantissue.Thisarticleisbasedonthecomplexitydegreeofthedeterminant,andthecharacteristicsoflettersandnumbersofthedeterminant,andthengivesseveralcommonlyusedmethodstocalculatethedeterminant:directcalculationusingthedefinitionofdeterminant,intothetriangle,reductionmethod,edgingmethod,recursion,andsummarizesseveralrelativelysimpleandspecificmethods:matrix,linearseparationfactormethod,toborrow"thethirdparty"method,usingVandermondedeterminantmethod,us

  • 索引序列
  • 行列式的计算及应用毕业论文
  • 行列式的计算方法及应用毕业论文
  • 行列式的计算方法及应用论文答辩
  • 行列式的性质及应用论文范文
  • 行列式的计算毕业论文摘要
  • 返回顶部