分太少,没有动力
论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:
图像可以由下式获得:
论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。
论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。
论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。
论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)
论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。
论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。
论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。
论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。
论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。
论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。
论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。
论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。
论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。
论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。
论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。
论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。
论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。
论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。
论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。
论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。
参考:
游泳,喜欢并坚持着…… 学习游泳已经有两年了,自从第一次下水开始,我就深深的喜欢上了这个运动,喜欢在水中放松的漂浮的感觉,喜欢水珠滑过身体的感觉,喜欢游泳完后在岸上暖暖的晒太阳.游泳,让我更加喜欢运动,更加热爱生活和生命.第一次接触游泳是抱着锻炼身体的想法,以前体质不好,而且身上经常起青春痘,听说游泳对全身锻炼都有帮助,而且还可以加强全身的协调,查了些资料,再加上自己的体会,确实发现游泳对人体有非常好的锻炼价值.首先它对心血管有很好作用,游泳对心血管系统的改善有相当重要的作用。冷水的刺激通过热量调节作用与新陈代谢能促进血液循环;此外游泳时水的压力和阻力还对心脏和血液的循环起到特殊的作用,在水面游泳时,身体所承受的水压就已达到每平方厘米0.02— 0.05kg,潜水时随着深度的加大,物理条件的变化,压力还会增大,游泳速度的加快也会加大压力负荷,心房和心室的肌肉组织能得到加强,心腔的容量也能逐渐有所加大,心脏的跳动次数减少,这样心脏的活动就能节省化,整个血液循环系统却能得到改善,静止状态下缩张压有所上升,收缩压有所下降,因此血压值变得更为有利;血管的弹性也有所提高。根据有关专家统计,一般人在安静状态下每分钟心脏跳动约66—72次,每博输出量约为60—80毫升,而长期参加游泳锻炼的人,在同样情况下秩序收缩50次左右,每博输出量却达到90—120毫升。其次对呼吸系统有好的作用.在游泳练习时,新陈代谢过程和心血管系统工作的节省化,都离不开大量的供氧,然而由于水压迫着胸腔和腹部,给吸气增加了困难,曾有人做过专门的试验,游泳时人的胸廓要受到12—15kg水的压力,那么要想使身体获得足够的氧气,呼吸肌就必须不断的克服这种压力;另外游泳时呼气一般都是在水下完成,而水的密度要比空气的密度要大得多,因此要想呼气就必须用力,这样不管是吸气还是呼气都能增加呼吸肌的收缩力,从而能增强呼吸系统的功能,加大肺活量。一般健康男子的肺活量为3000—4000毫升,而经常从事游泳者,可以达到5000—6000毫升。而自己在游泳以后,确实感觉到肺活量增加了许多,从3500增到4300左右.对人体皮肤有改善作用:游泳过程中,由于水温的刺激,机体为了保证足够的温度。皮肤血管参与了重要的调节作用,冷水的刺激能时皮肤血管收缩,以防热量扩散到体外。同时身体又加紧产生热量,使皮肤血管扩张,改善对皮肤血管的供血,这样长期的坚持锻炼能使皮肤的血液循环得到加强。另外,水是十分柔软的液体,而由于水波浪的作用,不断对人体表皮进行摸擦,从而是皮肤得到更好的放松和休息,所以经常参加游泳锻炼的人,都有一身光洁、柔软的皮肤.但是游泳也有许多注意事项,如果不小心,也可能产生不好的后果,或者危害人的生命.每次游泳时都应该注意好时间,因为在水中有时不会感觉很累,但是上了岸经常会感觉很疲劳,这样就应该注意下自己的体力,而且每次下水也要控制好时间, 当人浸在水里的时候,就会有凉快的感觉。可是,若果浸的时间太久,或者水的温度过低,人就会因为体温降得太低而出现嘴唇发青、皮肤苍白、浑身起了鸡皮,甚至是打寒颤的现象。因此,初练习游泳的人,每次在水里逗留的时间不要过久,一般来说,以10至15分钟为宜。习惯了游泳训练的人,在水中逗留的时间可以延长,但离开水以后,特别在大风的日子,必须要立刻用干毛巾擦干身体,以免着凉.在游泳中我曾经抽过几次筋,相当的痛苦而且危险,其实游泳时腿部抽筋多数发生在脚趾、脚弓及小腿后面的部位,而都主要是 游泳前的准备活动不足造成的的,如没有做足够的热身运动就突然跳到水里,过冷的水温就会刺激并使皮肤、肌肉的血管大量收缩,血流因而减少减慢,不能满足肌肉活动的需要,就会引起抽筋。 有时在水中的停留时间过长:体内能量的不断消耗,乳酸在肌肉内大量累积起来,导致肌肉疲劳,也能引起抽筋。游泳时抽筋是可以很危险的,所以在下水前应先做好热身运动,然后再用冷水淋淋身体,让其适应水温后才下水去。万一在水中抽筋时亦不要慌张,可以先吸一口气,然后站在水底用手按摩抽筋的部位,并且尽量把脚掌向上翘,逐渐就可以恢复正常了。若然还未有好转,则可以尝试仰浮水面,用臂划水慢慢游返岸边。如果自己亦没有把握游回岸边的话,就应及早呼救.游泳对人体的健康维护作用确实比较大,而且游泳也有相当长的历史.现代游泳运动起源于英国。17世纪60年代,英国不少地区的游泳活动就开展得相当活跃。 1828年,英国在利物浦乔治码头修造了第一个室内游泳池,这种泳池到19世纪30年代,在英国各大市城相继出现。 1869年1月,在伦敦成立了大城市游泳俱乐部联合会(现英国业余游泳协会前身)并把游泳作为一个专门的运动项目正式固定下来。并随之传入各英殖民地,继而传遍全世界。 随着游泳运动的发展,游泳被分为实用游泳和竞技游泳两大类。实用游泳又分为侧泳、潜泳、反蛙泳、踩水、救护、武装泅渡;竞技游泳分为蛙泳、爬泳、仰泳、蝶泳。竞技游泳,从第一届奥运会(1896年)就列入了奥运会正式项目。发展到现在,各种锦标赛,国际大型比赛不断推动着竞技游泳的发展,使它的技术动作更完善,创造了一个又一个优异的成绩。不过以前好多项目都是欧美选手获奖,随着中国游泳事业的发展,我们也在游泳领域取得了许多好的成绩,创造了许多水中芙蓉.希望自己能够继续坚持下去,在水中感受那份自由和惬意,让游泳成为生活的一部分
测绘工程论文题目
测绘工程在整个工程建设过程中所起的作用很大,测绘工程论文题目大家想好了吗?下面是我整理的测绘工程论文题目,欢迎阅读参考!
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的'应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:
图像可以由下式获得:
论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。
论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。
论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。
论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)
论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。
论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。
论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。
论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。
论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。
论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。
论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。
论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。
论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。
论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。
论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。
论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。
论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。
论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。
论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。
论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。
参考:
居室设计装修啊…… 现在大家都注意健康。写一下这方面的。不是说你,都要毕业了,连个参考资料都自己找不好,有点“茶几”了
视觉传达毕业论文题目
视觉传达毕业论文题目具体有哪些呢,大家有了解过吗?下面是我为大家介绍的视觉传达毕业论文题目,欢迎参考和阅读,希望能帮到大家!
视觉传达毕业论文题目
1.浅谈计算机图形图像设计与视觉传达设计
2.基于视觉传达设计中视觉思维模式创新的研究
3.新媒体艺术语言在视觉传达中的应用
4.基于视觉传达艺术发展的民族传统设计创新探讨
5.数字广告中数字媒体的视觉传达设计
6.视觉传达设计视角下的科技图像创作研究
7.动态构成在视觉传达设计中的运用与研究
8.跨界与融合--数字信息时代背景下视觉传达设计的新思考
9.色彩符号与企业形象的视觉传达
10.汉字象形造字法在视觉传达中的设计应用
11.中国传统元素在视觉传达设计中的应用研究
12.“视觉传达设计专业”在现实中的应用探究
13.新媒体语境下的视觉传达设计探讨
14.移动互联网背景下视觉传达设计专业人才培养模式研究
15.视觉传达设计中的图形创意表现研究
16.从空无、自然、融合三个角度谈视觉传达设计中的艺术美
17.“私人定制”视觉传达中的定制式设计理念
18.数码技术在视觉传达设计中的应用研究
19.基于视觉传达要素的制造装备人机优化设计方法研究
20.敦煌联珠纹的形态特征与其在视觉传达设计中的应用
21.基于可持续发展理论下的视觉传达设计
22.浅析视觉传达设计与品牌形象的有效整合
23.现代视觉传达的多维感官设计运用探析
24.探究UI设计的视觉传达艺术
25.旅游纪念品视觉传达设计与开发
26.色彩的视觉传达在广告设计中的运用
27.基于视觉传达设计领域的互补设计方法研究
28.信息时代的视觉传达设计特征与发展研究综述
29.动态视觉传达设计在数字媒体中的应用及发展方向
30.视觉传达的灵境语言
31.本土文化视域下的视觉传达设计及拓展重构
32.探讨视觉传达设计发展趋势的分析
33.独特的视觉传达系统研究
34.订制婚礼中视觉传达设计的应用研究
35.视觉传达设计中图形创意的应用与商业价值研究
36.基于观者位移产生的动态错觉在视觉传达设计中的应用
37.关于多媒体设计与视觉传达的完美结合研究
38.视觉传达设计中民族文化符号的应用
39.浅谈视觉传达设计中图形创意的表现
40.视觉传达设计专业学生的实践能力培养探析
41.视觉传达设计中的色彩应用分析
42.视觉传达设计在空间设计中的新发展
43.视觉传达设计中的视觉疲劳现象研究
44.基于信息设计的视觉传达领域新应用
45.文化产业背景下视觉传达设计的转型
46.江汉大学视觉传达设计专业创新型人才培养探析
47.视觉传达设计创新性思维模式初探
48.浅析视觉传达设计创新思维的内涵及原则
49.展示空间中的视觉传达设计元素分析
50.女性身体元素在竞技体育中的视觉传达
51.谈信息时代下视觉传达设计的发展
52.视觉传达设计中笔墨艺术元素的应用
53.D数字化广告的视觉传达效应探析
54.论包装色彩视觉传达的话语意义
55.浅析现代婚庆视觉传达设计
56.数字时代的视觉传达专业的内涵与外延
57.视觉传达设计中抽象图形的针对性提炼与表现
58.探讨视觉传达艺术设计的创新设计理念
59.数字媒体对视觉传达设计的影响分析
60.浅谈视觉传达设计的多元化发展
61.对视觉传达设计中情感理念的表现研究
62.视觉传达设计中视觉思维模式的创新
63.网页设计之视觉传达研究
64.虚拟现实环境下计算机图形图像设计与视觉传达设计
65.数字媒体时代视觉传达专业图形创意课程改革研究
66.景颇族服饰视觉呈现中的社会情境表述
67.视觉传达技术在茶叶包装设计上的运用
68.从视觉心理角度解读自由版式中的视觉游戏
69.基于视觉信息传达的网页界面设计研究
70.“东方葵”的图像叙事与视觉传达
71.网络广告中的视觉传达设计艺术探究
72.浅析视觉营销在商品E化过程中的应用
73.广告视觉传达设计的研究与探讨
74.从标志设计的演变谈视觉简化心理
75.视觉传达设计中传统装饰艺术符号的融入
76.节约型包装视觉传达设计研究
77.数字时代视觉传达设计的新观念探索
78.图表设计与可视化分析
79.技术推动观念 VR技术引发的视觉传达新观念
80.视觉传达设计中的多媒体艺术的表现形式
81.基于数字媒体语境下的视觉传达设计
82.虚拟现实环境下计算机图形图像设计与视觉传达设计
83.视错觉表现在视觉传达设计中的应用
84.论互联网时代视觉传达设计的方法和表现特性
85.视觉传达设计中的多媒体艺术表现形式研究
86.考虑视觉传达效果的夜视环境视觉定位方法研究
87.当代中国设计活动中审美形态的来源--以视觉传达设计为例
88.中国传统文化元素在视觉传达设计中的应用
89.数字时代视觉传达设计的新观念
90.交通标示颜色的视觉传达作用仿真分析
91.视觉传达设计中的传统文化符号探究
92.中国传统家具元素在视觉传达设计中的应用探析
93.视觉传达设计对地方经济发展的实效性研究
94.当代视觉传达设计中的适老性问题研究
95.黑暗中颜色刺激作用的视觉传达分析研究
96.视觉传达设计的交互动画特效制作手法探析
97.学习类网页设计中视觉传达理论的应用研究
98.字体创意设计是加深视觉传达记忆的根蒂
99.对中国甲骨文文字符号视觉传达的属性研究
100.广告视觉传达设计艺术在信息网络时代的传播研究
101.中国禅道文化中的神、意、形、色在视觉传达设计中的应用研究
102.视觉传达设计中的多媒体艺术表现形式分析
103.公共艺术形态下的视觉传达设计研究
104.浅谈数字图像时代视觉传达设计的几个要素
105.浅析视觉传达设计的情感效应
106.如何做到视觉传达艺术设计的与时俱进
107.试论传播学在视觉传达设计中的应用
108.隐喻图形在视觉传达设计中的应用研究
109.视觉传达设计中视觉思维模式的创新
110.Motion Graphic在视觉传达中的应用研究
111.数字媒体时代视觉传达设计的特征与发展
112.当代视觉传达下汉字图形化设汁的形、意研究
113.网络媒体的视觉艺术传达设计研究
114.数字时代视觉传达设计的新思维探讨
115.中国传统元素在视觉传达设计中的应用
116.浅析视觉传达在室内设计中的应用
117.“新古琴双行谱”中的视觉传达设计
118.视觉传达图形创意在服装设计中的应用
119.从视觉传达的角度对新媒体时代地产广告的探究
120.分析创新设计理念在视觉传达艺术设计中的具体实施
121.视觉传达设计专业的基础课程改革探索
拓展:测绘工程论文题目
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的'检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
海洋科学前沿这本期刊上肯定有你想看的文献
方法如下:
基于回归的算法借鉴通用物体检测算法,通过设定anchor回归检测框,或者直接做像素回归,这类方法对规则形状文本检测效果较好,但是对不规则形状的文本检测效果会相对差一些,比如CTPN对水平文本的检测效果较好,但对倾斜、弯曲文本的检测效果较差,SegLink对长文本比较好,但对分布稀疏的文本效果较差。
其他检测方法介绍
基于回归的文本检测(Regression-based text detectors):TextBoxes、DMPNet .etc,运用通用目标检测方法到文本检测中。
基于分割的文本检测(Segmentation-based text detectors):Multi-scale FCN、SSTD .etc,即将文本检测视为语义分割任务来分析。
端到端的文本检测(End-to-end text detectors):FOTS、EAA .etc,将文本检测和识别一起处理。
字符级别的文本检测(Character-level text detectors):MSER、Mask TextSpotter .etc,相对经典的方法。
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为0.88(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}=0.5 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为0.9,学习速率延迟为0.0005。Learning schedule为:第一轮,学习速率从0.001缓慢增加到0.01(因为如果初始为高学习速率,会导致模型发散);保持0.01速率到75轮;然后在后30轮中,下降到0.001;最后30轮,学习速率为0.0001。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为0.5;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 0.3来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为0.5。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为0.5 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有0.2个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为0.5的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化45.3%的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是0.29,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。
目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。
Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。
SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。
SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:
用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。
用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。
设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:
下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。
图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。
未完待续
参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)
作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位
鱼塘水质监测系统是指通过对鱼塘水质参数进行实时监测和分析,以实现对鱼塘水质的自动化管理和控制。相关论文问题可能包括以下几个方面:1. 鱼塘水质监测系统的设计和实现:如何设计和实现一套高效、稳定、可靠的鱼塘水质监测系统,包括硬件和软件方面的设计和实现。2. 鱼塘水质参数的监测和分析:如何选择合适的水质参数进行监测和分析,如何采集和处理水质数据,以实现对鱼塘水质的实时监测和分析。3. 鱼塘水质管理和控制:如何通过鱼塘水质监测系统实现对鱼塘水质的自动化管理和控制,包括对水质参数的实时监测、预警和调控等方面。4. 鱼塘水质监测系统的应用效果评价:如何评价鱼塘水质监测系统的应用效果,包括对鱼塘水质的改善效果、经济效益和社会效益等方面的评价。5. 鱼塘水质监测系统的发展趋势和前景:如何分析鱼塘水质监测系统的发展趋势和前景,包括技术、市场和政策等方面的分析和预测。以上是可能涉及到的一些问题,具体问题还需要根据具体的研究内容和研究目的进行进一步的确定。
我国自来水水质现状改革开放近三十年来,我国经济发展迅速,但环境污染日益严重,尤其是饮用水污染尤为突出。目前自来水的不安全性主要体现在两个方面:1、 水源污染:2004年12月22日水利部部长汪恕诚表示,目前全国70%以上的河流湖泊遭受不同程度污染,水污染不仅加剧了水资源的短缺,水质的恶化严重威胁着人民群众的身心健康。目前全国有3亿多人饮水不安全,其中有1.9亿人饮用水有害物质含量超标。2、 自来水输水镀锌管网二次污染:自来水厂输出自来水时,一般是合格的。当经过漫长的输水管网及水塔、水箱等设施后,导致自来水质严重污染。我国在60年代起,城市内自来水输水管材质采用的是镀锌管,其存在严重的污染隐患,如:生锈、结垢、腐蚀等。在自来水停水后又来水时,通过水龙头可以看到很多铁锈。这是由于自来水停水后又来水时,自来水冲击镀锌管上的铁锈,脱落后进入自来水中的。因此可以确定的是输送自来水的镀锌管在自来水中是长期生锈的,平时这些铁锈是溶解到自来水中,并且人的肉眼一般是无法直接看见的。通过净来牌的水质演示器可以清楚地观察到自来水中的铁锈。多数的高楼水箱、水塔等二次供水设施长期无专人护理,密封条件差,风沙吹落到水箱或水塔。致使各种沉积物越来越多,长出青苔;滋生细菌、病毒等,甚至出现腐烂的动物尸体,并且得不到及时清洗,严重污染了自来水水质。2004年10月,建设部对全国36个大中城市城镇饮用水抽检中,仅有9个城市全面合格。水质污染的危害水,人类赖以生存和发展的珍贵资源。没有水就没有生命,就没有人类的文明进步,就没有社会经济的稳定和发展。然而,由于人口激增和社会经济的快速发展,水资源遭受的污染也越来越严重,人类日常生活用水安全受到越来越严重的威胁。生活饮用水质的好坏与人们的身体健康密切相关。据世界卫生组织(WHO)调查表明,全世界80%的疾病和50%的儿童死亡都与水质不良有关。由于水质不良导致的消化疾病、传染病、各种皮肤病、糖尿病、癌症、结石病、心血管病等多达50多种;由于水质污染,全世界每年有5000万儿童死亡,3500万人患心血管病,7000万人患结石病,9000万人患肝炎,3000万人死于肝癌和胃癌。在我国,因为水质不良而引发的地方病也时有报道,如深圳商报的《淮河支流出现癌症村》,南方都市报的《清远“短命村”肇因水污染 全国四分之一人口饮用不洁水》及新京报的《浙江水危机,催生“水难民”》,06年松花江水污染等水污染问题也不断出现,解决水质污染问题已经是迫在眉睫。解决水质污染的途径改善水质的途径一般有:1、水源水保护;2、自来水厂工艺设备改造;3、管道分质供水;4、家庭管网终端水质净化。为控制水源污染,应禁止在水源地流域范围内发展污染严重的产业,以减少污染物的排放。但是从目前经济发展的势头和国家相关法律法规及执行力度的实际情况看,要在短期内使水源水质得到改善是一个非常严峻的课题,必将有一个漫长的过程。自来水厂的改造可从一定程度上提高自来水的质量,但不能从根本上解决问题,尤其是管道的二次污染问题。而且改造费用巨大,从我国目前的国情来看,可以预见自来水厂设备与技术的更新和自来水管网的整体改造在10-20年内是难以实现。即使是采用管道分质供水,其工程造价、设计施工、管理维护、水费收取、卫生指标及安全程度等方面都存在诸多问题。另外,管道分质供水只能针对新建楼盘,对于我们现有的大量住宅小区,由于牵涉到管道的重新铺设问题,水污染问题还是无法解决。国际卫生组织研究表明,享受健康用水最为有效的办法是在市政供水的管网末端即家庭用水终端加装一个水质净化器。
针对鱼塘水质监测系统的论文主要有以下几个问题需要解决:(1)如何选择适合的传感器和监测设备,以确保系统的数据采集和处理的准确性和可靠性;(2)如何确定监测参数的合理范围和阈值,并根据监测数据及时采取相应的调节和控制措施;(3)如何设计水质数据的采集、存储、处理和分析方法,以提高数据的利用价值和系统的效率;(4)如何考虑系统的实际应用场景和操作要求,并进行合理的界面设计和功能优化,以提高用户的体验和可操作性;(5)如何进行系统的功能模块化和模块重用,以降低开发成本和提高系统的可维护性。