这个,额,全文我是帮你写不出来哈。介绍给你几个思路哈。1,结构风工程,高耸建筑物一般都要做风洞试验的。而大跨度柔性桥梁的抗风性能就是空气动力学的一个典型应用。从而有了CFD的蓬勃发展哈。2,处于近海和江河中的建筑物,尤其是桥墩基础啦,都要考虑水文的,因此就有河流动力学这一方向啦。3,基坑施工时一般要考虑地下水的,降水怎么计算也要用到流体力学啦。4,隧道中的通风效应,如何计算隧道施工 运营中的通风问题,风机如何安置,采用哪种通风方式都是很典型的应用。5,高速铁路隧道的空气动力学效应。这个越来越重视啦。由于高铁的速度高,进出隧道时都会产生活塞效应,搞不好还有“空气炮”,所以也要用到流体力学来解决这些问题,也是当前的一个热点。6,修明渠和城市管网设计(市政工程)用到的基本上都是经典的流体力学,呵呵,我记得好像谢才公式用的最多了,可以好好做做文章哈。 不知道以上的有没有帮到你,有不妥的地方还请多多指点哈。
去万方或者维普里面去找啊,搜索“流体力学”“土木”关键词,相关的论文一堆一堆的。。。参考下就好了
只要是学流体力学的都知道JFM是最顶级的。偏实验的实际上也就你说的这三个。JFM本身就特别注重实验,没有实验数据的文章想发JFM是很难的。你要有实验条件,就投JFM,不用犹豫。很多做计算的还苦于没有实验条件呢。 POF跟JFM比差一个档次,POF上有一些水文章。但是JFM的文章读了上百篇,还没遇到过水的文章。Experiments in fluids相对好发一些,对实验和结果的原创性要求不高。还有一点,你可以看你所引用的参考文献发在哪个杂志的最多,基本上这个杂志就最适合你。
非牛顿力学产生于第二次世界大战结束后。
非牛顿流体力学的研究始于1867年J.C.麦克斯韦提出线性粘弹性模型,由于粘弹性流体问题复杂以及当时流体力学大量的研究工作主要集中在牛顿流体方面,所以进展十分缓慢。第二次世界大战结束后,化学纤维、塑料、石油等工业的迅速发展,向非牛顿流体力学提出了社会需求。
应用数学、流体力学等学科的不断提高,为非牛顿流体力学提供理论基础。1950年J.G.奥尔德罗伊德提出建立非牛顿流体本构方程的基本原理,把线性粘弹性理论推广到非线性范围。以后,W.诺尔、J.L.埃里克森、R.S.里夫林、C.特鲁斯德尔等人对非线性粘弹性理论的发展也作出贡献。
1976年K.沃尔特斯等人创办国际性专门刊物《非牛顿流体力学杂志》。70年代后期出版了非牛顿流体力学、聚合物加工、流变技术等非牛顿流体力学的专门著作。非牛顿流体力学已发展成为一个独立的学科。
非牛顿流体的应用:
非牛顿流体是剪应力和剪切变形速率之间不满足线性关系的流体。自然界中存在着大量非牛顿流体,例如油脂、油漆、牛奶、牙膏、动物血液、泥浆等。非牛顿流体力学在化学纤维工业、塑料工业、石油工业、化学工业、轻工业、食品工业等许多部门有广泛的应用。
JFM是流体里最顶级的,做流体有很多不错的杂志啊,PhysicsofFluids,PRE,PRL,APL,SoftMatter都是很好的。相对PRE喜欢篇幅比较长的,PRL一般4-5页不过中的概率比较低,至少两个Reviewer都得过。PhysicsofFluids东西比较杂,不过还不错啦。此外,多孔杂质应该有一些类似于J.Multiphaseflow的专业期刊,也不错。
这一领域,排第一位的应该是Journal of Computational Physics(不才在上面发过两篇),几乎所有CFD领域的数值离散方法的原创性、实质改进性的文章都发表在这一期刊上,譬如激波捕捉方法中的TVD、ENO、WENO格式,迎风格式通量计算方法中的Roe,van Leer,AUSM系列格式,非结构网格上的高精度算法DG、SV、SD等,以及两相流中VOF(volume of fluid,Hirt与Nicholes的原始文献已经被引8K+次了), level set(Osher的原始文献(JCP,1988)已经被引14K+次了)的方法。两相流上的论文被引用次数高的一个主要原因是这方面的算法不仅仅可用于CFD计算,也可用于图像处理等其它领域。Osher因为在Level Set,TVD/ENO/WENO等方面开创性的工作,是被国际数学家大会邀请做过一小时报告的人物。此外,采用偏微分方程进行网格生成的开创性工作(Thompson等,1974,JCP)也发表在这上面。还有许多就不一一列举了。2016年之前,中科院分区里面将JCP分为大类物理三区,小类二区,今年已经改为大类二区,小类一区了。此外,还有Computer Method in Applied Machnics and Enginering(CMAME),这一期刊也是计算力学领域的顶级期刊,不过主要发表的计算固体/结构力学领域的工作,也有一部分工作是关于计算流体力学的,比如不可压流计算中经典的QUICK格式于1979年发表于该期刊。另外还有Journal of Scientific Computing,最近这一期刊在算法上的影响力已经接近JCP了。SIAM Journal of Scientific Computing.这一期刊上的许多文章是关于算法在数学方面的深入分析,我因为理论数学功底的欠缺,里面许多文章并不是很懂。次一档次的期刊有International Journal for Numerical Methods in Fluids,以及Computers & Fluids.一般被JCP拒搞的改投这两份期刊。如果在算法上做出了一定的改进,如果投JCP希望不大的话,可以考虑投这两份期刊。
计算流体力学(Computational Fluid Dynamics)20世纪50年代以来,随着计算机的发展而产生的一个介于数学、流体力学和计算机之间的交叉学科,主要研究内容是通过计算机和数值方法来求解流体力学的控制方程,对流体力学问题进行模拟和分析。流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验液体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。
《空气动力学学报》,1980年创刊,1983年国内外公开发行,是中国空气动力学会主办的国家综合性一级学术刊物。多年来,刊物在学会的领导下,在中国空气动力研究与发展中心的支持下,在编委会和编辑部的共同努力下,遵循“理论上有创新、学术上有新思想、理论与实际结合上有新特色、新方法、应用上有较大价值”的办刊宗旨,在编辑出版工作中取得了很好的成绩,使刊物成为国内外公认的代表中国空气动力研究和发展水平的高科技学术期刊,成为航空航天类核心期刊的佼佼者。是我国比较好的计算流体力刊物。
推荐《力学与实践》,核心期刊,简介如下:
《力学与实践》创刊于1979年,是由中国科学院主管,中国力学学会与中国科学院力学研究所共同主办的综合性学术期刊。它是力学学科发行量最大、读者面最广的学术刊物。它刊登力学及其交叉学科的进展;报道力学应用的成果和力学教育的进展;介绍古今中外力学家及其成就、力学史、学术活动、力学趣话、新书评介等。在国内力学刊物中独具特色。它以工程技术人员、科研人员和院校师生为对象,帮助他们丰富力学知识,开阔视野,活跃学术思想。刊登的文章力争做到深入浅出,形式多样,文字简练,生动活泼。创刊30多年来刊物深受广大读者的喜爱,堪称“读者之友”。《力学与实践》封面上5个有力的字是书法家范曾为之题写的。
国内的有空气动力学学报和航空学报;国外的有JCP(Journal of Computational Physics),Computers and Fluids。流体力学的期刊一般都分类在物理类,分区相对比较靠后,实际上本来就是一个小学科。
Open Journal of Fluid Dynamics,科研出版社的
周围的对象的流被分成两个部分:摩擦阻力和压差阻力(形式阻力)的总电阻。的摩擦阻力:表面摩擦剪切应力的流动方向上的投影的结果的总和,流体粘度的直接影响。的形状阻力:传入的流的方向中的投影表面的压力的总和,由于引起压力不平衡之前和之后的对象的粘性,流体粘度的间接影响的结果。对象绕流流线型的,如果边界层分离仍然存在形式阻力,只是钝体绕流比同迎风面积小的电阻。 边界层,也被称为边界层的流速为0(靠近表面的分子的非滑)边界层,最外部的部分中的剪切应力,表面因为在相同的速度相的主流0() 你有一个质的认识是看大学工程流体力学。 。
鲜保安 王宪花 高颖
(中国石油勘探开发研究院廊坊分院煤层气项目经理部 河北廊坊 065007)
作者简介:鲜保安,1966年生,男,陕西户县人,博士学位,1991年毕业于石油大学(华东)开发系钻井工程专业,长期从事石油、天然气、煤层气钻井完井技术研究工作。通讯地址:河北省廊坊市44信箱,邮编:065007,Email:xbalffy 。
摘要 煤层气是一种以吸附态储集在煤层中的天然气资源,煤层裂缝系统由众多不同类型的裂纹组成,原始裂纹与应力变化产生的新裂纹形成网状结构,煤层气多分支井增产机理在于实现了广域面的效应,可以大范围沟通煤层裂隙系统,扩大煤层降压范围,降低煤层水排出时的摩阻,大幅度提高单井产量和采收率。根据流体串联和并联管路设计原理,推导出多分支井身结构协调方程,并依此设计出2类紊流型和5类层流型的多分支井身结构。
关键词 煤层气 多分支井 井身结构 设计模型
Application Study of Hydrodynamics in Well Bore Structure Design of Multi-Lateral Wells of CBM
Xian Bao'an,Wang Yaohua,Gao Ying
(Langfang Branch of PetroChina Research Institute of Petroleum Exploration & DeveloPment,Langfang 065007)
Abstract:CBMis a kind of natural gas stored in coal seams in absorption states.Facture system of coal seams consists of many different types of cleats.The original and stress-induced cleats formed network of fracture system of coal seams.The reasons why multilateral well of CBM can enhance production of CBM are that it establishes better communication and connection channels within a larger radius among coal cleats,expands the scope of pressure dropping of coal seams,reduces the frictional force of flow-out of coal seam water and consequently greatly enhances CBM production and recovery of single well.Based on the theory of series-parallel circuit design,the author designed a coordination equation for wellbore structure of multilateral well and subsequently designed two sorts of turbulent flow and five sorts of laminar flow of wellbore structures of multilateral wells.
Keywords:CBM;multi-lateral wells;wellbore structure;design models
引言
煤层气是指储集在煤层中的天然气,主要指吸附在煤岩基质内的甲烷,即煤层中以吸附状态存在的天然气[1]。多分支井可定义为提高泄油(气)面积,把主水平井或直井侧钻多次,从主水平井或直井井筒钻出多个分支井眼。煤层气多分支井技术正是针对煤层气储层的低压、低渗、低流体动能和低产特性而提出来的,集煤层气钻井、完井与增产措施于一体。
多分支井按曲率半径划分为四类,即长半径分支井、中半径分支井、短半径分支井、超短半径分支井,其中中曲率半径分支井应用最广泛。分支井按井眼轨迹划分为四类,即主井筒为直井的双分支井、主井筒为直井的三分支井、主井筒为水平井的三分支井、主井筒为水平井的梳齿状分支井。主井筒为直井的双分支,分别开发两个不同的产层,两个井筒分别是直井和定向井。主井筒为直井的三分支井,主井筒以下有两个分支。主井筒为水平井的三分支井,三个分支井在主井筒同侧,分别开发三个层位。主井筒为水平井的梳齿状分支井,主井筒为水平井,各分支呈梳齿状或逆斜分布[2]。
1 多分支井主要增产机理与优点
多分支井技术适合于开采低渗透储层的煤层气,主要原因在于分支井眼能够改善低渗透储层流体的流动状态。煤层裂缝系统由众多不同类型的裂纹组成,产状各异的裂纹将煤层分割成形状不同的晶体,即煤岩基质。煤层段分支或水平井眼以张性与剪切变形形成的裂纹为主,并且由于钻采过程中煤层应力状态的变化,导致原始闭合的裂纹重新开启,原始裂纹与应力变化产生的新裂纹形成网状结构,所以煤层气多分支井的增产机理在于突破了原来直井点的范围与单一水平井的线或窄面的局限,实现了广域面的效应,可以大范围沟通煤层裂隙系统,扩大煤层降压范围,降低煤层水排出时的摩阻,大幅度提高单井产量和采收率[3]。多分支水平井技术的优点主要有以下几方面:
(1)增加有效供给范围。水平钻进400~600m是比较容易的,然而要压裂这么长的裂缝几乎是不可能的,而且造就一条较长的支撑裂缝要求使用大型的压裂设备。多分支水平井在煤层中呈网状分布,将煤层分割成很多连续的狭长条带,从而大大增加煤层气的供给范围。
(2)提高煤层导流能力。压裂的裂缝无论长度多长,流动的阻力都是相当大的,而水平井内流体的流动阻力相对于割理系统要小得多。分支井眼与煤层割理的相互交错,煤层割理与裂隙更畅通,就提高了裂隙的导流能力。
(3)减少对煤层的伤害。常规直井钻井完钻后要固井,完井后还要进行水力压裂改造,每个环节都会对煤层造成不同程度的伤害,而且煤层伤害很难恢复。采用多分支水平井钻井完井方法,就避免了固井和水力压裂作业,这样只要在钻井时设法降低钻井液对煤层的伤害,就能满足工程要求。
(4)单井产量高,经济效益好。采用多分支水平井开发煤层气,单井成本比直井高,但在一个相对较大的区块开发,可大大减少钻井数量,降低钻井工程、采气工程及地面集输与处理费用,从而降低综合成本,而且产量是常规直井的2~10倍,采出程度比常规直井平均高出近2倍,既提高经济效益,更为重要的是充分地开发了煤层气资源。
(5)具有广阔的应用前景。多分支水平井不仅可用于开发煤层气资源,还能应用于开发稠油或低渗渗透油藏、地下水资源和地下储油储气库工程。
2 多分支井眼摩阻计算与结构设计模型
2.1 多分支井眼管路与摩阻计算模型
这里只计算分支水平井的摩阻,可将分支水平井的水平投影简化成并联管路,钻进煤层的主井眼可简化成主管路,分支段管路为部分主管路和并联管路再串联(图1),利用并联管路的水力计算模型计算水平井眼的摩阻。
1.2.…….i.i+1.……n表示分支井眼与主井眼连接处节点序号,A、B为主井眼流体起始与终止节点。
图1 多分支井管路模型
主管路末端的总摩阻Hf应由两部分的矢量和,一是主管路与分支管路重叠的摩阻HMi的部分,二是各个分支井眼的分管路摩阻Hfi的矢量和[4]:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
主管路末端的总流量应该是个分支管路流量的代数和:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
2.2 多分支井眼摩阻计算
以武M1-1井为例,水平段进尺6141m,最大日产水量400m3/d(0.255m/s),单位长度水流量qw/d为0.065m3/(d·m)。设各分支平均流速为 ,m/s;各分支井眼长度Li,直径di,m,水的运动粘度γ为1×10-6m2/s,井径扩大率为10%,井径为152mm的井眼绝对粗糙度为15.2mm。即有以下各计算公式:
相对粗糙度系数:ks/d=0.01
各分支流速:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
各分支雷诺数:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
通过计算出分支井眼的摩阻系数入i,可得各分支井眼的摩阻:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
紊流流动有利于排出井筒内的岩屑,进而提高分支井筒的水产量,达到整个多分支井眼系统的整体排水效率。
2.3 分支井眼临界长度和井眼直径计算模型
分支井眼系统设计首先要考虑充分尽快排水和煤屑为目的,可按两相流计算。但因为控制钻速,煤屑量很少,可忽略煤屑的影响。
2.3.1 紊流与近似紊流计算模型
(1)紊流条件临界长度模式
由于层流与紊流区的临界条件是雷诺数大于2300,即
Re>2300,故有
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
将式(3)代入(6)整理后即得,
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
令f(Li,di)= ,即
f(Li,di)>3.38×108即
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
式(8)就是计算各分支井眼在满足紊流排水条件的临界长度公式。这是理想的计算模式,依此计算的分支段长和井眼直径更有利于煤层排水和后期采气。
(2)近似紊流条件长度模式
对于低产水煤层,井眼直径不能无止境地减小,这时以接近紊流模式设计,适当减小分支井眼半径
井眼直径计算:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
井眼直径长度:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
约束条件:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
其中Pi为煤层的储层压力。
采用近似层流条件模式计算分支长度和井眼直径时选择更小井眼为宜,而主井眼的直径影响不大,即整个分支井眼系统中也采用变直径井眼组合模式。
2.3.2层流计算模型
由于大部分煤层气多分支井眼的水产量较低,通过式(4)很容易判断出流态为层流,所以用层流模式设计煤层气多分支井眼的长度和井眼直径更具现实意义。
在图1b中,设Li为第i分支长度,Loi,i+1为主井眼节点i到节点i+1的长度,Hfi为第i个分支井眼的摩阻,Hfi,A为第i个节点处的总摩阻,即主井眼节点i到A点的摩阻,Hofi,(i+1)为主井眼第i个节点i至第i+1个节点的摩阻,入i为第i个分支井眼的摩阻系数,入oi,(i+1)为主井眼第i个节点到(i+1)节点的摩阻系数,vi为第i个分支井眼流体的平均流速,voi,(i+1)为流体在主井眼第i个节点到(i+1)节点段的平均流速,故各节点处的总摩阻Hfi,A有以下关系式:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
由式(5)有Hfi=入i
对主井眼且有:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
则节点i的总摩阻又有式:Hfi,A=Hf(i-1)+Hof(i-1),i(14)
上式第一项为从第(i-1)分支井眼流体在节点(i-1)的摩阻,第二项为第(i 1)节点至节点i主井眼流体的摩阻。
通过将(12)、(13)代入(14),并利用(11)关系式,经整理后有:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
这就是多分支井眼结构协调方程,即分支井眼等摩阻设计模型。通过迭代就可设计主井眼和分支井的直径和长度。这里的各种流速要根据井眼的流量及式(3)、(4)计算。
如果煤层含水量很少,水产量很低,即各井眼流速极低,对摩阻系数影响很小,可忽略摩阻系数的影响,即(15)可简化成:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
如果把主井眼和分支井眼直径设计为同一直径尺寸的井眼,上式还可进一步简化成:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
如果水产量极小,换算成流速就更小,达到可以忽略不计的程度,即干煤层或极低产水煤层,上式还可简化:
Li=Li-1+Lo(i-1),i(18)
3 多分支井眼井身结构模型设计
多分支井井身结构首先取决于煤层的储层条件,包括储层深度、厚度、渗透率、含气量、含气饱和度、储层压力及含水性,在满足了地质条件下,含水性决定了井身结构的类型。
3.1 近似紊流流态下的多分支井身结构模型
对于相对高的渗透率和高含水区,排水井眼以满足紊流为宜,有利于快速排水,又能排出储层出砂及煤屑,为后期的采气创造条件。
3.1.1 高产水、高压、相对高渗煤区。其中主井眼的直井段还可以是垂直的,但要影响钻分支段的造斜和后期排水采气泵的安置。主井眼完钻井段采用φ215.9mm钻头,下入φ177.8mm生产套管,分支井段全部裸眼完井(图2)。
图2 高产水高渗区多分支井身结构
3.1.2 高产水、低压、中渗区煤区。对于低压、低渗的煤层气开发必然要采用欠平衡钻井,实施欠平衡钻井作业对井身结构又提出了更高要求,分支井眼数应适当增加(图3)。
图3 高产水、低压、中渗区煤层多分支井身结构
3.2层流流态下的多分支井身结构模型
中国煤层大多属于低渗、低压储层,产水量有时区别较大,但产水量绝大多数只能在层流区,所以层流区煤层还是主要以压力、渗透率和产水量设计多分支井眼结构模式。
3.2.1 第一类:低产水、高压、中渗煤区。低产水、高压、中渗区煤层钻井可不考虑欠平衡钻井(图4)。
图4 低产水、高压、相对中渗区多分支井身结构
3.2.2 第二类:高产水、低压、低渗煤区。高产水、低压、低渗区煤层钻井要考虑欠平衡钻井,即在钻分支井时,从洞穴直井注入空气。完井后洞穴直井可转化为采气生产井(图5)。
图5 高产水、低压、低渗区多分支井身结构
3.2.3 第三类:产水较高、低压、低渗的特厚煤层区。这类煤层厚度一般要达到10m以上,有时还会有泥岩夹层,需要井眼同时穿过夹层上下的煤层,并在水平井和直井的煤层段造不同类型的洞穴,以扩大水、气供给范围。图中的D-Cavity指动力洞穴,即靠应力释放法形成的洞穴,M-Cavity指机械洞穴,即仅靠扩孔工具形成的洞穴,不进行应力释放。钻井时同样需要考虑欠平衡。同时面割理的方位或最大水平主应力的方向直接决定了主水平井眼的方位,另外对主井眼的井壁稳定也有影响(图6)。
图6 低压、低渗的巨厚煤层区多分支井身结构
3.2.4 第四类:多层中低含水、低压、低渗煤区。多层中低含水、低压、低渗煤层一般以两个主力煤层为目的层,见图7。可在两层同时钻多分支井以增加产量,也可弥补单层厚度不足的缺陷,但对下部煤层不能实行有效地封隔,产量也不能按层位区分。
图7 多层低压、低渗煤层多分支井身结构
3.2.5 第五类:高陡构造、低压、低渗煤区。高陡构造、低压、低渗煤区,可以是单煤层,也可以多煤层,只要把第一类结构改进即可(图8)。
4 结论与建议
(1)多分支井集钻井、完井与增产措施于一体,适合于低渗透煤层气开发,能够更大限度地沟通煤层中的天然裂缝系统,扩大煤层降压范围,降低煤层水排出时的摩阻,大幅度提高单井产量和采收率,应用前景广阔。
(2)根据流体“管路”串联、并联原理与流态特征,推导了多分支井眼结构协调方程,即分支井眼等摩阻设计模型,从而建立了多分支井身结构设计的基本原理。改变约束条件可设计出满足不同煤层条件的井身结构,即满足近似紊流流态的两种井身结构模型和层流流态的5种模型,能够满足现场生产需求。
图8 高陡构造、低压、低渗煤区多分支井身结构
(3)加强煤层井壁稳定与煤层保护技术的统一性研究。通常情况下解决井壁稳定问题是以提高钻井液密度并改善其流变性能,但出于防止煤层污染的考虑,又不能实行过平衡钻井,应将欠平衡与保持煤层井壁稳定统一起来研究。
(4)加快多分支井小井眼技术研发,配套相应的钻完井工具。煤层气多分支井技术目前发展较快,但由于配套的小井眼(主要指152mm和120mm井径)井下钻井工具与配套工具严重不足,如动力钻具、MWD、减阻器等,都限制了这项技术试验与推广的力度。
参考文献
[1]黄景城等.1990.煤层气译文集.郑州:河南科学技术出版杜,P.1~64
[2]王亚伟等著.2000.分支井钻井完井技术.北京:石油工业出版杜,1~8
[3]鲜保安等.2005.多分支水平井在煤层气开发中的控制因素及增产机理分析.中国煤层气,2(1):14~17
[4]祁德庆著.1995.工程流体力学.上海:同济大学出版杜,133~145