在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感
1、纳米Fe_3O_4及Fe_3O_4-SrFe_(12)O_(19)吸波复合材料的制备及性能2、纳米Ag颗粒/In-3Ag复合焊料的微观组织演变3、基于宏微观分析的碳纤维增强高分子复合材料强度性能表征4、新型无卤膨胀阻燃聚丙烯的制备及阻燃性能5、热残余应力对内埋光纤光栅传感性能的影响6、独角仙鞘翅微结构及其纳米力学性能7、聚丙烯-钢纤维混杂高强混凝土高温性能研究8、复合材料层合板准静压损伤的数值模拟9、MgO/Li_2O(mol)及烧结温度对结合剂及cBN磨具性能的影响10、复合材料层合板临界屈曲载荷分散性研究11、Si、Mg含量对离心铸造原位颗粒增强Al-xSi-yMg复合材料的组织与耐磨性能的影响12、颗粒增强金属基复合材料涂层的制备及其特性与应用13、三维五向编织复合材料渐进损伤分析的数值方法14、纳米银/环化聚丙烯腈复合物的制备与结构表征15、功能化碳纳米管的制备及功能化碳纳米管/尼龙6复合纤维16、石墨烯/聚苯胺复合材料的电磁屏蔽性能17、二维编织C/SiC复合材料的非线性损伤本构模型与应用18、压电复合材料表面化学镀镍工艺及镀层性能19、微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能20、纳米TiO_2颗粒弱界面增强复合材料宏观力学行为有限元模拟
功能材料在2016年被踢出EI
不好发。复合材料学与工程期刊中的文章含金量都比较高,也就是说文章需要有较强的学术性和实用性才可以,因此并不好发。复合材料学与工程期刊是国内复合材料行业有相当影响力的科技类刊物,是中文核心期刊、全国建材优秀期刊、中国科技核心期刊。
无机材料学报 、复合材料学报 、材料研究学报 、高分子材料科学与工程 、稀有金属材料与工程、 材料热处理学报、 材料科学与工艺等。
期刊,定期出版的刊物。如周刊、旬刊、半月刊、月刊、季刊、半年刊、年刊等。由依法设立的期刊出版单位出版刊物。期刊出版单位出版期刊,必须经新闻出版总署批准,持有国内统一连续出版物号,领取《期刊出版许可证》。
以《中国大百科全书》新闻出版卷为代表,将期刊分为四大类:
(1)一般期刊,强调知识性与趣味性,读者面广,如我国的《人民画报》、《大众电影》,美国的《时代》、《读者文摘》等。
(2)学术期刊,主要刊载学术论文、研究报告、评论等文章,以专业工作者为主要对象。
(3)行业期刊,主要报道各行各业的产品、市场行情、经营管理进展与动态,如中国的《摩托车信息》、《家具》、日本的《办公室设备与产品》等。
(4)检索期刊,如我国的《全国报刊索引》、《全国新书目》,美国的《化学文摘》等。
无机材料学报 复合材料学报 材料研究学报 高分子材料科学与工程 稀有金属材料与工程 功能材料 材料热处理学报 材料科学与工艺 Journal of Materials Science & Technology 材料科学技术(英文版) Journal of Wuhan University of Technology(Materials Science Edition) 武汉理工大学学报-材料科学版(英文版)新型炭材料 建筑材料学报 International Journal of Minerals Metallurgy and Materials矿物冶金与材料学报(英文版) 材料工程 航空材料学报 这些都是 刊物也都非常好
随着建筑工程的发展,建筑工程材料也变得越来越重要,建筑项目的完成质量往往取决于建筑材料质量的好坏。下文是我为大家搜集整理的关于建筑材料论文2000字的内容,欢迎大家阅读参考!
浅析建筑材料检测的相关技术
1、建筑材料的分类与检验项目
房屋建筑材料根据其在建筑物中的部位或使用性能,大体上分为三大类,即建筑结构材料(建筑物受力构件和结构所用的材料)、墙体材料(建筑物内、外及隔墙所用的材料)、建筑功能材料(承担某建筑功能的非承重用的材料)。施工现场所用的建筑材料品种繁多,进场检测、试验材料项目要服从国家、行业及当地建设主管部门(或所属有关部门)的规定,并服从《省建筑工程竣工技术档案编制办法》。
例如配制混凝土用的水泥,需按批检验其安定性、 强度、凝结时间和细度;混凝土用粗骨料按常规进行颗粒级配、密度、含泥量及泥块含量、针片状颗粒含量等检验项目,如若用于≥C35的混凝土须做压碎指标,新采用的质地疏松的骨料还应做坚固性试验,活性骨料做活性试验等。对于合成高分子防水材料,按GB18173.1―2000《高分子防水材料――第一部分片材》,应按批检验其物理性能,例如断裂拉伸强度、胶断伸长率、不透水性和低温弯折。材料检测试验项目的确定应以确保工程质量为前提,只检验其原始合格证明而不按规定抽样试验,或虽抽样试验但检测项目不全,都是不符合要求的。
2、取样的数量和方法
取样要有代表性,一般是以一批材料不同部位随机抽取规定数量的样品(钢材是从规定部位截取),即不仅取样数量要正确,而且取样部位及方法也要按规定进行。试样的数量关系到试验结果的准确性,数量过少、取样部位及方法的偏差,都会使试验误差增大,甚至会得出相反的结果。但是,在实际检测中经常会出现取样不具有代表性、取样的数量不够、取样方法不正确等问题。例如袋装水泥要从该批不少于20袋水泥中任取等量样品,总质量至少12kg。
在实际工作中,多次遇到送检人员一次性提取半袋或整袋水泥作为样品,经检测水泥强度值不符合标准要求的情况,后经现场按标准要求取样后复试,试验结果则完全符合国家标准;又如送检钢筋焊接试件时,有的是用工地的废钢筋头作为模拟试件或者取样方法不正确;再如钢筋气压焊焊件按标准应送检6根,3根做拉伸试验,3根做弯曲试验,而有的只送检3根试件,这样即使3根试件的拉伸试验结果全部合格,仍无法判定该批试件是否合格。
3、常用建筑材料检测技术要点分析
在建筑材料质量控制的实践中,我们深刻地体会到,工程材料的质量监控要采取施工单位自检和监理单位平行检测、跟踪检测、见证取样相结合的办法,检测和试验相结合,完善“企业自检、社会监理、政府监督” 的质量保证体系,牢固树立“百年大计、质量第一” 的方针。 现总结几种建筑材料的检测取样试验方法。
3.1 钢筋的检测
钢筋进场时,应按照现行国家标准《钢筋砼用热轧带肋钢筋》GB1499等的规定抽取试件作力学性能检验,其质量必须符合有关标准规定。1)取样时,从任一钢筋端头,截取500mm2~1000mm的钢筋,再进行取样。2)冷拉钢筋:应进行分批验收,每批重量不大于20t的同等级、 同直径的冷拉钢筋为一个检验批。3)钢筋焊接。钢筋焊接在建筑施工中一般分为:闪光对焊、电阻点焊、电弧焊、电渣压力焊、预埋件T型接头埋弧压力焊、钢筋气压焊。
(1)闪光对焊:其机械性能试验包括拉伸试验和弯曲试验,拉伸试件长度一般≥500mm(500mm~650mm),冷弯试件长度一般250mm(250mm~350mm)。
(2)电阻点焊:热轧钢筋点焊做抗剪试验,试件长度一般≥600mm;拔低碳钢丝焊点,除作抗剪试验外,还应对较小钢丝做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
(3)电弧焊与电渣压力焊:在现场安装条件下都做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
3.2 水泥、砂石的检测
砂石、水泥、外加剂是建筑工程中最基本的、也是用量最大的建筑材料,以往建筑工程在对这些产品检验时,只是检验产品的强度和一些与强度有关的常规性技术指标。而如今对砂、石和水泥甚至包括回填上都要进行放射性的检测。
水泥进场验收:水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。当在使用中对水泥质量有怀疑或水泥出厂日期超过3个月(快硬硅酸盐水泥超过1个月)时,应进行复验,并按复验结果使用。?
砂石取样方法:在料堆水取样时,取样部位应均匀分布。在料堆的顶部、中部、底部各均匀分布的5个不同部位取得,组成一组样品,砂子在各部位抽取大致相等的8份,石子在各部位抽取大致相等的15份。砂石、水泥送检的同时,进行砼配合比、砂浆配比的检验工作,一般是与砂石、水泥检验报告同期出示。在第一次使用配合比搅拌砼或砌筑砂浆时,应至少留置一组标准标养试件(标养条件:温度为20±30℃,相对湿度为90%,试件间距为10mm~20mm)作为验证配合比的依据。同时,根据砂浆配比,对所搅拌的砌筑砂浆用砂的粒径、水泥用量、搅拌时间、砂浆和易性等进行检验试验。
3.3 砼工程
结构混凝土的强度等级必须符合设计要求,用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机抽取,应及时检查施工记录及试件强度实验报告。对有抗渗要求的混凝土结构,其混凝土试件应在浇筑地点随机取样 ,抗渗试验报告也应随时检查以保障施工质量。
检测时环境温度与湿度的控制温度和湿度对一些建筑材料的性能有很大的影响,故在标准中对材料养护、测试时的环境条件有明确的规定,必须严格遵守。如GB/T17671―1999《水泥胶砂强度检验方法》规定,试体成型时的环境温度应稳定保持在20℃±2℃,相对湿度应>50%;试体拆模前的养护温度为20℃±1℃,相对湿度应>90%;试体在水中养护的温度控制在200C±10C。又如弹性体改性沥青防水卷材(SBS)等防水材料,其性能对环境温度较为敏感,进行拉伸试验时要求室温控制在23℃±2℃。
4、结束语
随着我国建筑行业的发展飞速,人们越来越关注建筑材料的质量。建筑材料作为构建建筑工程的基础,其质量好坏对建筑工程的安全性造成直接的影响。在施工之前,一定要高度重视建筑材料的检测工作,严格执行质量标准,并不断地总结经验教训,不断提高实际操作水平,保证检测结果的准确性,从中确保建筑材料的质量和工程的使用安全。
>>>下页带来更多的建筑材料论文2000字
建筑材料对工程造价的影响1.引言建设项目的造价控制贯穿于项目的全过程,即项目决策阶段、项目设计阶段、项目招标阶段、项目实施阶段和竣工阶段都关系到建设项目的造价控制。统计资料显示,在项目决策阶段及设计阶段,影响建设项目造价的可能性为30%~75%,而在实施阶段影响建设项目造价的可能性仅为5%~25%。控制工程造价的关键就在于项目实施之前的项目决策和设计阶段,项目决策是决定因素,而设计则是关键因素。使人力、物力、财力有限的资源得到充分的利用,取得最佳的经济效益和社会效益。在建筑工程中,材料费约占工程总造价的60~70%左右,是整个费用的主体。所以从材料所占比重来看,其成本是对工程造价影响最大的因素。随着市场经济的发展,构成工程成本比重最大的材料价格不断波动起伏,人工费、机械费也在不断变化,工程成本不断增加,一方面是由材料价格的不断上涨,施工费用不断增加造成的;另一方面是由于工程图纸来考虑经济实用的方法或设计不合理及施工中管理不善造成的。材料使用成本高低对有限的投资获取最大的经济效益,是工程技术人员和造价人员的一项重要课题。从工程造价定额的构成来看,材料价格是相对较灵活的因素。工程造价主要是由人工费、材料费、机械费等构成的,其中人工费和机械费的计取和调整都是由定额价格主管部门统一规定的,比较稳定;而材料费是相对较灵活也是对工程造价影响较大的一个重要因素,特别是可调整差价的材料和未计价的材料,如果控制管理不到位,即便是工程量计算和定额套用再准确,费用计取再合理,也会使工程造价失真,严重影响工程造价的有效控制。因此搞好材料的管理工作对于有效控制工程造价具有重要意义。2.当前建筑材料的发展概况及趋势2.1 建筑材料的概念及分类 建筑材料是构成建筑工程结构物的各种材料之总称。建筑工程材料的品种繁多,性质各异,用途也不同,为了便于应用,工程中常从不同角度对其做出分类。2.1.1 按基本成分分类(1)有机材料以有机物构成的材料,包括:天然有机材料(如木材等),人工合成有机材料(如塑料等)。(2)无机材料以无机物构成的材料,包括:金属材料(如钢材等),非金属材料(如水泥等)。(3)复合材料有机一无机复合材料(如玻璃钢等),金属一非金属复合材料(如钢纤维混凝土)。复合材料得以发展及大量应用,其原因在于它能够克服单一材料的弱点,发挥复合后材料的综合优点,满足了当代土木建筑工程对材料的要求。2.1.2 按功能分类(1)结构材料:承受荷载作用的材料,如构筑物的基础、柱、梁所用的材料(2)功能材料具有其他功能的材料,如起围护作用的材料;起防水作用的材料;起装饰作用的材料;起保温隔热作用的材料等。2.1.3 按用途分类包括:建筑结构材料;桥梁结构材料;建筑装饰材料;建筑防水材料,建筑保温材料等2.2 建筑材料的地位 建筑材料是建筑事业不可缺少的物质基础。建筑工程关系到非常广泛的人类活动的领域,涉及生活、生产、教育、医疗、宗教等诸多方面。而所有建筑物或构筑物都是由建筑材料构成,建筑材料的数量、质量、品种、规格、性能、经济性以及纹理、色彩等,都在很大程度上直接影响甚至决定着建筑物的结构形式、功能、适用性、坚固性、耐久性、经济性和艺术性,并在一定程度上影响着建筑材料的运输、存放及使用方式和施工方法。 建筑材料与建筑、结构、施工之间存在着相互促进、相互依存的密切关系。建筑工程中许多技术问题的突破和创新,往往依赖于建筑材料性能的改进与提高。而新的建筑材料的出现,又促进了建筑设计、结构设计和施工技术的发展,也使建筑物的功能、适用性、艺术性、坚固性和耐久性等得到进一步的改善。 为了使建筑物满足适用、坚固、美观等基本要求,材料在建筑的各个部位,充分发挥着各自的功能作用,分别满足各种不同的要求。如钢材和混凝土的出现产生了钢结构和钢筋混凝土结构,使得高层建筑和大跨度建筑成为可能;轻质材料和保温材料的出现对减轻建筑物的自重、提高建筑物的抗震能力、改善工作与居住环境条件等起到了十分有益的作用,并推动了建筑节能的发展;新型环保装饰材料的出现使得建筑物的造型与建筑物的内外装饰焕然一新,生机勃勃。因此,建筑材料是加速建筑革新的一个重要因素。 2.3 建筑材料的发展概况 从建筑材料发展史可以看出,建筑材料的发展是随着人类社会生产力和科技水平的提高而逐步发展起来的。建筑材料的发展经历了一个很长的历史时期。建筑材料的发展是随着人类社会生产力的发展而发展的。在当今的社会,建筑材料犹如那令人目不暇接的商品一般,款款色色,不胜枚举。随着人类文明的进步,生产工具得到极大改善, 又由于长期的自然生活以及石材本身给人的坚实安全感,人类开始利用大块石材建造房屋或构筑物。石材具有坚硬耐用等性质,在相当的一段时间里成就可观。如被称为世界七奇观之一的埃及吉萨金字塔,历经了5000余年沧桑仍然挺立,其结构就是石材结构,由250万重达2.5吨的石料砌成。公元前400-前500年古希腊雅典卫城主要建筑材料也是石料。中国万里长城有些残段构筑材料是石块。这段时间内的石材应用,给人类留下了宝贵而丰富的文化遗产。在今天砌体结构发展成熟,各类砖体层出不穷,功能各异。砖瓦一直以来颜色形状各异的砖瓦构建成视觉美感强烈的建筑,典雅非凡,因而直到今天砖瓦依然是重要的建筑材料。伴随漫漫发展过程,建筑材料日益丰富。在这个过程中除了石材外还有一种建筑材料贯穿历史,堪称经典——木材。例如一千多年前建成的杭州六合塔,始建于1056年的山西应县木塔,最大木结构建筑群北京故宫等。经历了漫长的石材砖瓦的砌体建筑史以及木结构建筑史,到18世纪工业革命之后,建材的发展成果更是令人瞩目,材料的多样性更令人眼花缭乱。其中里程碑式的发展是水泥的出现。它与传统胶凝材料石灰胶相比,具有高强度以及硬行等特点,如果与砂石等骨料水拌形成混凝土,可使墙体更加坚固。混凝土自此后广泛应用,使土木工程活动范围和规模都得到了进一步发展。工业革命以后,钢材的建筑用途被世界重视,建筑材料家庭里于是加入了重要角色——钢材。从此钢筋混凝土地建筑主导地位被确立。此时,高层建筑如雨后春笋纷纷拔地而起。1940年以后,钢材、钢筋混凝土、预应力混凝土、钢骨钢筋混凝土令建筑物的规模产生飞跃性发展。与此同时,玻璃等采光材料也得以广泛应用,出现了玻璃墙体。合成工艺的发展又促使了根据功能需要而生产合成建筑材料,如木纤维水泥板、集成木材、化学塑胶材料等。传统建筑材料也大为改善,空(实)心砌替、配筋砌体、木材、石材应用多样化。一时间性能更加多样化的建筑材料纷纷出现。形成了百花齐放的局面。20世纪以后,人们要求建筑物功能多样化,对建筑物安全性要求也增高,高分子有机材料、新型金属材料、智能化材料和各种复合材料迎来了建筑物的功能外观根本性的变革。例如纤维材料与混凝土混合弥补了混凝土材料的脆性缺陷。建筑材料的发展适应着社会发展以及社会要求,自此之后新型材料不断产生。现代世界人口急剧增长,建筑用地日益紧张,高耸入云的摩天大楼不再是幻想,而是实实在在的要求,而仍不断要求建筑物向更高更深方向发展。人类渴望的不仅仅是舒适美观,更有渴望居住环境能和谐自然。质轻高强材料、高耐久材料等的产生以及性能深化已经刻不容缓,“绿色环保建材”的要求也应运而生。树立可持续发展的生态建材观,研究环保美观材料、耐火防火材料以及材料智能化,将材料的优良性能与环境协调,构建和谐自然的居住环境,是现代建筑工程工作者的努力方向和责任,也是建材发展的必然趋势。4. 工程设计中材料选择对工程造价的影响设计阶段是建设项目工程造价控制的龙头。在投资计划得以合理确定以后,进入设计阶段,它是把技术与经济有机结合在一起的过程。有效控制工程造价要求在施工图设计中严密、全面。当前我国的工程设计也实行招投标制、公平竞争,把对设计阶段有效控制工程造价作为选择中标单位的主要标准之一,对全过程造价进行控制的管理。但目前我国大部分设计单位对工程项目的技术与经济进行深入分析不够、在设计中大多重技术轻经济,设计人员似乎只对设计工程的质量负责,对工程造价的高低不太关心。以致无法通过优化设计方案,编制初步设计、概算起到控制总造价的作用。工程设计图的质量和深度等也不够,工程量清单中的工程量错算、漏算,也引起暂估项目的增多,使招投标工作的质量难以保证,因而也无法有效控制工程造价。设计阶段是建设项目成本控制的关键与重点。尽管设计费在建设工程全过程费用中比例不大,一般只占建设成本的1.5%~2%,但材料对工程造价的影响可达75%以上,由此可见,设计中材料选择的价格直接影响建设费用的多少,直接决定人力、物力和财力投入的多少。合理科学的设计选材,可降低工程造价10%。但在工程设计中,不少设计人员重技术、轻经济,任意提高安全系数或设计标准,而对经济上的合理性考虑得较少,从根本上影响了项目成本的有效控制。掌握各种工程材料的特性,正确地选择和使用材料是对从事工程设计人员的基本要求,因为建筑工程的设计不只是结构设计,还应该包括材料的选用。因此,材料选择是工程设计必不可少的重要环节,其对工程质量及工程造价有着至关重要的影响。选材工作影响整个设计过程。但是就目前国内的状况而言,不少设计人员有一种倾向,只重视结构设计与计算,而把选材看成是一种简单而不太重要的任务,认为只要翻翻手头材料手册,找出一种通用材料,便可万无一失。材料选择与应用直接关系到工程的质量与造价。所谓选材,就是在众多材料中,寻找既能满足工程上的要求,又能降低工程成本获得最大经济利益,同时还能符合使用环境条件和环保与资源供应情况的材料。选材不是一件容易的事情,困难之一是如何正确地选用材料,使其既满足工程的设计功能(如强度和耐久性要求),又符合技术、经济和美观的要求,以达到产品结构耐久与价廉物美的完美统一;困难之二是材料的类型和品种繁多,如何去确定可供选择的范围以及最终选定某一种最佳或最合适的材料;困难之三是材料选择与科学研究不同,科学研究对于所有的问题一般都具有惟一正确的答案,而材料选择则要求考虑候选材料各自的优点和缺点,再做必要的折衷和判断,因此,材料选择可能有不同的解决办法,每一种选材对造价都采生很大的因响。例采用大面积玻璃门窗(幕墙)是现代建筑的一种潮流。目前采用的几种节能玻璃材料主要有镀膜玻璃、中空玻璃和带薄膜型热反射材料玻璃。玻璃材料在建筑设计中具有重要的作用,除了满足建筑结构设计如强度,刚度,风压,抗震和温度变形等要求外,在节能设计时应满足节能围护结构功能要求。在建筑设计上要求建筑师能根据建筑的使用功能以及我国不同地区的气候特点,正确选用各种节能玻璃材料,创造出新型建筑节能技术和设计方法。做到减少能耗又控制造价,是建筑师注意的问题。严格控制设计变更,以保证投资限额不轻易突破。建设单位的工程造价管理人员应与设计部门积极配合,及时提供可靠的工程基础资料。优化选择设计方案,认真会审图纸,积极提出修改意见设计方案的优化选择,对工程造价起着举足轻重的作用。7.结语 建筑工程造价预算管理是集专门性、知识性、政策性于一体的工作,是一门多学科、综合性的工作。建筑工程造价预算管理对造价预算管理人员提出了较高的要求,它要求造价预算管理人员不但要掌握工程预算的专业知识及其相关的法律、法规和政策,还要了解设计、材料设备采购、施工工艺、工程基本结构、投资控制等相关的基础知识。同时,建筑工程造价预算管理又是一项艰苦、细致的工作,工程造价预算管理人员经常要深入工程第一线,从事资料收集(特别是构成实体的建筑材料的市场价格))工作,因此,工程造价预算管理人员不但要有过硬的专业基本功,还要具备良好的职业道德,要养成实事求是的工作作风,具有爱岗敬业、无私奉献的精神。
有关复合材料类的论文可以投稿的期刊有很多,如:《复合材料学报》、《材料科学与工程学报》、《材料开发与应用》等等,还有更多的期刊,你想了解更多的 这方面的期刊信息和这类论文发表的注意事项原则,都可以来中国鸣网学术站看看。
LDZ1994 - 助理 二级 连自己的身份都敢暴露真是胆子大啊,复合材料在军事上的应用非常广泛,如坦克的复合装甲应用前景非常的好,上面的资料已经非常的充分了
文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如A.Bensousson,J.L.Lion、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;O.A.Oleinik等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;T.Hou和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。
战友!你真是遇见好人了!我是第二炮兵某部中尉连长!我也写过像你这样的论文!像底下那个是复制的,我给你点自己的意见吧!注:我是用U盘给你复制的凹,是我自己收集的材料!复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。分类:复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。[编辑本段]性能 复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。[编辑本段]成型方法 复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。[编辑本段]应用 复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。 复合材料的发展和应用 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维 超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料 热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。 1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。 热塑性树脂基复合材料 热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。 高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。 滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。 云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。 我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。 我国复合材料的发展潜力和热点 我国复合材料发展潜力很大,但须处理好以下热点问题。 1、复合材料创新 复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。 2、聚丙烯腈基纤维发展 我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。 3、玻璃纤维结构调整 我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。 4、开发能源、交通用复合材料市场 一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 5、纤维复合材料基础设施应用 国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。 6、复合材料综合处理与再生 重点发展物理回收(粉碎回收)、化学回收(热裂解)和能量回收,加强技术路线、综合处理技术研究,示范生产线建设,再生利用研究,大力拓展再生利用材料在石膏中的应用、在拉挤制品中的应用以及在SMC/BMC模压制品中的应用和典型产品中的应用。 21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度、高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟和集团化,这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。
★ ★ dfq0730(金币+2,VIP+0):资源不少,可以分享一下吗?也省得老是发邮件的 1-4 13:48高吸水性树脂(英文名为Super Absorbent Resin, 简写为SAR),或者称为高吸水性聚合物(英文名为Super Absorbent Polymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。 高吸水性树脂的开发与研究只有几十年的历史。是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。 高吸水性树脂与水有很强的亲和力使它在个人卫生用品方面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。由此可见进一步开发高吸水性树脂仍然有很重大的意义。 1.国外状况 高吸水树脂的研究开发始于20世纪60年代后期。1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。Fanta等在论文中提出:淀粉衍生物的吸水性树脂具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至还具有吸湿放湿性,这些材料的吸水性能都超过以往的高分子材料。该树脂最初在Henkel Corporation工业化成功,其商品名为SGP(Starch Graft Polymer)。1971年Grain Processing公司以硝酸铈盐作引发剂,采用丙烯腈接枝在淀粉或纤维素上的方法合成出高吸水树脂。在这一时期,美国Hercules、National Starch、General MillsChemical,日本住友化学、花王石碱、三洋化成工业等公司相继成功开发出了高吸水树脂,德国、法国等世界各国对高吸水树脂的制备、性能和应用等领域也进行了广泛的研究,并取得大量成果。其中成效最大的是美国和日本。此后,国外对SAP的研制、生产和应用便以惊人的速度发展起来。1978年日本实现了SAP工业化生产。 高吸水树脂的生产与消费增长很快,1980年,世界高吸水性树脂生产能力约为5 kt/a,1990年增加到207 kt/a,1999年猛增到1292 kt/a。目前,世界SAP的最大生产商是日本触媒化学公司,其次是Deggusa/Huels集团的Stockhausen公司,第三位是美国Amcol公司的全资子公司Chemdal公司,这3家公司合计能力约占世界总能力的47.2%。欧洲高吸水性树脂的主要生产厂家有法国Atofina公司和SNF Floerger公司,比利时的BASF公司和Nippon Shokubai公司,德国BASF公司、Stockhausen公司和Dow化学公司、英国Industrial Zeolite公司等。 美国是世界上最大的高吸水性树脂消费国,消费量约为280 kt,约占世界总消费量的35.0%。欧洲高吸水性树脂的消费量约为200 kt,约占总消费量的25.0%;日本高吸水性树脂的消费量约为80 kt,约占世界总消费量的10.0%;其他地区的消费量约占30.0%。根据预测,2005年世界高吸水性树脂的消费量将达到1000~1100kt,消费量年均增长速度为3.8%~5.5%。 随着其产品多样化及性能的提高,高吸水树脂的应用领域也必将不断扩大。1973年美国UCC公司开始将高吸水树脂应用于农业方面,接着又扩展到农林园艺的土壤保水、苗木培育及输送、育种方面。接着日本、法国等也展开了吸水性树脂的应用研究。现在,高吸水树脂已经广泛应用于农林园艺、医疗卫生、建筑材料、石油工业、食品行业、日用品行业、人工智能材料等各个领域。 2 国内状况 国内高吸水性树脂的研究工作起步较晚,始于20世纪80年代初,与国外相比,我国高吸水性树脂的研究开发与应用相对比较缓慢,2004年我国高吸水性树脂的生产能力也只在30kt/a左右,生产企业近30家,但规模都不大,生产能力在1kt以上的仅7家。 国内有三十多家单位在从事高吸水性树脂的研究。例如上海大学、吉林石油化工研究所、中国科学院化学所、中国科学院兰州化学物理研究所、广州化学所、天津大学、北京化工大学、广东工业大学化工研究所等,这些单位的工作大都着重于水性树脂的合成研究。在应用方面,吉林、黑龙江、新疆、河南等省把高吸水性树脂应用于农业生产中取得了较为可喜的成就。目前,国内高吸水剂的研究工作绝大部分仍处于实验室阶段,有的已转入中试阶段,但工业化的很少,主要还是依靠进口。 目前,在我国高吸水性树脂大部分为进口产品,进口价为1.5-l.8万元/t。国内高吸水性树脂生产成本在1.2-1.5万元/t,售价为1.8-2.2万元/t。预计到 2010年国内高吸水性树脂的需求量将达到100kt。 在我国吸水树脂的消费主要以卫生用品应用为主。在今后我国吸水树脂应用方面卫生材料仍是主流,其需求量还将不断增大。由于我国水资源十分贫乏,水土流失严重,荒漠化土地日趋扩展;并且我国正处于工业化、城市化的加速发展阶段,城市草坪业和花卉业将有巨大的发展空间。吸水树脂作为土壤改良剂,保水保肥剂,种子及苗木移植涂覆剂在农业、林业、园林绿化、改造沙漠等方面将起着重要的作用,有关专家认为,再经过七八年的努力作为保水剂的吸水树脂有可能成为继化肥、农药、地膜之后最受广大农民欢迎的农用化学品之一,其市场前景十分广阔。高吸水性树脂是一种发展迅速的新材料,在我国极具市场潜力。随着人们对SAP研究的深入,具有耐盐、保水、保肥等多功能SAP的研究已经取得了巨大的进展,但是我国SAP的生产及应用均落后于发达国家,迫切需要快速发展。我国地大物博,土壤沙漠化严重, SAP在农业上的应用具有巨大的潜力,加强对具有抗旱保墒,且具有缓释肥功能的绿色环保型SAP的研究,建立以多功能新型SAP为中心的完整化学抗旱、节水、保水技术体系,并开展大面积的示范推广也是今后研究的重点。此外,目前应用于工业化生产的SAP大多是丙烯酸盐类,原料成本高,不利于大范围应用。加强对非金属矿物/保水复合材料的研究,同时研究简化生产工艺,减少聚合后半成品水分含量从而减少产成品干燥时间和干燥能耗,对于降低SAP成本,扩大SAP应用范围具有重要意义。另外,应该尽快利用原料和市场需求两个优势,引进国外先进技术,并依托国内科研力量进行开发,建设经济规模工业化装置,以便迅速占领这一高增长的市场。
在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感