首页 > 期刊投稿知识库 > 减速机真空泵机封轴承机械类论文

减速机真空泵机封轴承机械类论文

发布时间:

减速机真空泵机封轴承机械类论文

机械专业毕业论文开题报告范文(精选6篇)

在生活中,报告与我们愈发关系密切,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面是我整理的机械专业毕业论文开题报告范文,欢迎阅读,希望大家能够喜欢。

论文题目:

MC无机械手换刀刀库毕业设计开题报告

本课题的研究内容

本论文是开发设计出一种体积小、结构紧凑、价格较低、生产周期短的小型立式加工中心无机械手换刀刀库。主要完成以下工作:

1、调研一个加工中心,了解其无机械手换刀刀装置和结构。

2、参照调研的加工中心,进行刀库布局总体设计。画出机床总体布置图和刀库总装配图,要有方案分析,不能照抄现有机床。

3、设计该刀库的一个重要部分,如刀库的转位机构(包括定位装置,刀具的夹紧装置等),画出该部件的装配图和主要零件(如壳体、蜗轮、蜗杆等3张以上工作图。

4、撰写设计说明书。

本课题研究的实施方案、进度安排

本课题采取的研究方法为:

(1)理论分析,参照调研的加工中心,进行刀库布局总体设计。

进度安排:

2009.3.16-3.20 收集相关的毕业课题资料。

2009.3.23-3.27 完成开题报告。

2009.3.30-4.17 完成毕业设计方案的制定、设计及计算。

2009.4.20-5.15 完成刀库的设计

2009.5.18-5.29 完成毕业设计说明书。

2009.6.01-6.08 毕业设计答辩。

主要参考文献

[1] 廉元国,张永洪. 加工中心设计与应用 [M]. 北京:机械工业出版社,1995.3

[2] 惠延波,沙杰.加工中心的数控编程与操作技术 [M]. 北京:机械工业出版社2000.12

[3] 励德瑛.加工中心的发展趋势 [J]. 机车车辆工艺,1994,6

[4] 徐正平.CIMT2001 加工中心评述[J]. 制造技术与机床,2001,6

[5] 刘利. FPC-20VT 型立式加工中心[J]. 机械制造,1994,7

[6] 李洪. 实用机床设计手册 [M]. 沈阳:辽宁科学技术出版社,1999.1

[7] 刘跃南.机械系统设计[M].北京:机械工业出版社,1998.8

[8] Panasonic 交流伺服电机驱动器 MINASA 系列使用说明书

[9] 成大先.机械设计手册第四版第 2 卷[M]. 北京:化学工业出版社,2001.11

[10] 成大先.机械设计手册第四版第 3 卷[M]. 北京:化学工业出版社,2001.11

1 课题提出的背景与研究意义

1.1 课题研究背景

在数控机床移动式加工中移动部件和静止导轨之间存在着摩擦,这种摩擦的存在增加了驱动部件的功率损耗,降低了运动精度和使用寿命,增加了运动噪声和发热,甚至可能使精密部件变形,限制了机床控制精度的提高。由于摩擦与运动速度间存在非线性关系,特别是在低速微进给情况下,这种非线性关系难以把握,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。为此,把消除或减少摩擦的不良影响,作为提高机床技术水平的努力方向之一。该课题提出的将磁悬浮技术应用到数控机床加工中,即可以做到消除移动部件与静止导轨之间存在的摩擦及其不良影响。对提高我国机床工业水平及赶上或超过国际先进水平具有重大意义,且社会应用前景广阔。

1.2课题研究的意义

机床正向高速度、高精度及高度自动化方向发展。但在高速切削和高速磨削加工场合,受摩擦磨损的影响,传统的滚动轴承的寿命一般比较短,而磁悬浮轴承可以克服这方面的不足,磁悬浮轴承具有的高速、高精度、长寿命等突出优点,将逐渐带领机电行业走向一个没有摩擦、没有损耗、没有限速的崭新境界。超高速切削是一种用比普通切削速度高得多的速度对零件进行加工的先进制造技术,它以高加工速度、高加工精度为主要特征,有非常高的生产效率,磁悬浮轴承由于具有转速高、无磨损、无润滑、可靠性好和动态特性可调等突出优点,而被应用于超高速主轴系统中。要实现高速切削,必须要解决许多关键技术,其中最主要的就是高速切削主轴系统,而选择合理的轴承型式对实现其高转速至关重要。其中,磁悬浮轴承是高速切削主轴最理想的支承型式之一。磁悬浮轴承可以满足超高速切削技术对超高速主轴提出的性能要求。但它与普通滑动或滚动轴承的本质区别在于,系统开环不稳定,需要实施主动控制,而这恰恰使得磁悬浮轴承具有动特性可控的优点磁悬浮轴承是一个复杂的机电磁一体化产品,对其精确的分析研究是一项相当困难的工作,如果用实验验证则会碰到诸如经费大、周期长等困难,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,利用计算机软件对磁悬浮控制系统进行仿真是一种获得磁悬浮系统有关特征简便而有效的方法。这就是本课题的研究目的和意义。

2 本课题国内外的研究现状

磁悬浮轴承的应用与发展可以说是传统支承技术的革命。由于具有无机械接触和可实现主动控制两个显著的优点,主动磁悬浮轴承技术从一开始就引起了人们的重视。磁悬浮轴承的研究最早可追溯到1937年,Holmes和Beams利用交流谐振电路实现了对钢球的悬浮。自1988年起,国际上每两年举行一届磁悬浮轴承国际会议,交流和研讨该领域的最新研究成果;1990年瑞士联邦理工学院提出了柔性转子的研究问题,同年G.Schweitzer教授提出了数字控制问题;1998年瑞士联邦理工学院的R.Vuillemin和B.Aeschlimann等人提出了无传感器磁悬浮轴承。近十年,瑞士、美国、日本等国家研制的电磁悬浮轴承性能指标已经很高,并且已成功应用于透平机械、离心机、真空泵、机床主轴等旋转机械中,电磁悬浮轴承技术在航空航天、计算机制造、医疗卫生及电子束平版印刷等领域中也得到了广泛的应用。纵观2006年在洛桑和托里诺召开的第10界国际磁轴承研讨会,磁轴承主要应用研究为磁轴承在高速发动机、核高温反应堆(HTR-10GT)、人造心脏和回转仪等方面。国内在磁悬浮轴承技术方面的研究起步较晚,对磁悬浮轴承的研究起步于80年代初。

1983年上海微电机研究所采用径向被动、轴向主动的混合型磁悬浮研制了我国第一台全悬浮磁力轴承样机;1988年哈尔滨工业大学的陈易新等提出了磁力轴承结构优化设计的理论和方法,建立了主动磁力轴承机床主轴控制系统数学模型,这是首次对主动磁力轴承全悬浮机床主轴从结构到控制进行的系统研究;1998年,上海大学开发了磁力轴承控制器(600W)用于150m制氧透平膨胀机的控制;2000年清华大学与无锡开源机床集团有限公司合作,实现了内圆磨床磁力轴承电主轴的'工厂应用实验。目前,国内清华大学、西安交通大学、国防科技大学、哈尔滨工业大学、南京航空航天大学等等都在开展磁悬浮轴承方面的研究。2002年清华大学朱润生等对主动磁悬浮轴承主轴进行磨削试验,当转速60000r/min、法向磨削力100N左右时,精度达到小于8m的水平,精磨磨削效率基本达到工业应用水平。2003年6月,南京航空航天大学磁悬浮应用技术研究所研制的磁悬浮干燥机的性能指标已通过江苏省技术鉴定,向工业应用迈出了可喜的一步。2005年“济南磁悬浮工程技术研究中心”研制的磁悬浮轴承主轴设备,在济南第四机床厂做磨削试验,成功磨制出一个内圆孔工件,这是我国第一个用磁悬浮轴承主轴加工的工件。此项技术填补了国内空白。近几年来,由于微电子技术、信号处理技术和现代控制理论的发展,磁悬浮轴承的研究也取得了巨大进展。

从总体上看,磁悬浮轴承技术正向以下几个方向发展:

(1)理论分析更注重系统的转子动力学分析,更多地运用非线性理论对主动

磁悬浮转子系统的平衡点和稳定性进行分析;更注重建立系统的非线性耦合模型以求得更好的性能。

(2)注重系统的整体优化设计,不断提高其可靠性和经济性,以期获得磁悬浮轴承更加广泛的应用前景。

(3)控制器的实现越来越多的采用数字控制。为达到更高的性能要求,控制器的数字化、智能化、集成化成为必然的发展趋势。由于数字控制器的灵活性,各种现代控制理论的控制算法均在磁悬浮轴承上得到尝试。

(4)发展了多种新型磁悬浮轴承如:无传感器磁悬浮轴承、无轴承电机超导磁悬浮轴承、高温磁悬浮轴承。此外,磁悬浮机床主轴在各方面也有较大的发展空间如:高洁净钢材Z钢和EP钢的引入;陶瓷滚动体,重量比钢球轻40%;润滑技术的开发,对于高速切削液的主轴,油液和油雾润滑能有效防止切削液进入主轴;保持架的开发,聚合物保持架具有重量,自润滑及低摩擦系数的特点从应用的角度看,磁悬浮轴承的潜力尚未得到的发掘,而它本身也未达到替代其它轴承的水平,设计理论,控制方法等都有待研究和解决。

3 课题的研究目标与研究内容

3.1 研究目标

控制器是主动控制磁悬浮轴承研究的核心,因此正确选择控制方案和控制器参数,是磁悬浮轴承能够正常工作和发挥其优良性能的前提。该课题主要研究单自由度磁悬浮系统,其结构简单,性能评判相对容易、研究周期短,并且可以扩展到多自由度磁悬浮系统的研究。针对磁悬浮主轴系统的非线性以及在控制方面的特点,该课题探索出提高系统总体性能和动态稳定性的有效控制策略。

3.2 主要研究内容

(1)阐述课题的研究背景与意义,对国内外相关领域的研究状况进行综述。

(2)对磁悬浮机床主轴的动力学模型进行分析,并将其数值化、离散、解耦和降阶等,为后续研究

1、 目的及意义(含国内外的研究现状分析)

本人毕业设计的课题是”钢坯喷号机行走部件及总体设计”,并和我的一个同学(他课题是“钢坯喷号机喷号部件设计”)一起努力共同完成钢坯喷号机的设计。我们的目的是设计一种价格相对便宜,工作性能可靠的钢坯喷号机来取代用人工方法在钢坯上写编号。

对钢坯喷号是钢铁制造业必然需要存在的一个环节,这是为了实现质量管理和质量追踪。我们把生产钢坯对应的连铸机号、炉座号、炉号、流序号以及表示钢坯生产时间的时间编号共同组成每块钢坯的唯一编号,适当的写在钢坯的表面。这样就在钢铁厂的后续检验或在客户使用过程中,如果发现钢坯的质量有问题,就可以根据这个编号来追踪到生产这个钢坯的连铸机、炉座、炉号、流序及时间等重要信息,及早的发现并解决生产设备中存在的问题。

目前,在国外像日本、美国等一些发达国家已经实现了对钢坯的自动编号,虽然其辅助设备较多,价格较贵,但大大提高生产的自动化进程和效率。并且钢坯喷号机具有设备利用率高、位置精度高、可控制性能好等优点。而在国内,除了少数的几家大型钢铁企业(宝钢、鞍钢等)引进了自动钢坯喷号机,大部分的钢铁企业仍然处在人工编号的阶段。

实现钢坯喷号的机械化和自动化是提高生产效率和降低生产成本的重要途径之一,钢坯喷号机无论在国内还是国外都会有很大的市场。一方面因为人工的工艺流程不但浪费了大量的能量,而且打断了生产的自动化进程,从而致使生产效率降低,生产成本增加。另一方面由于生产钢坯的车间温度很高,有强烈的热辐射,同时还有大量的水蒸气和粉尘,因此对其中进行人工编号的工人的劳动强度非常大,并且对身体是一种摧残,容易得职业病。所以无论从那个方面看都急需一种价格相对便宜,工作性能可靠的钢坯喷号机来代替人工编号。

作为一个大学生,毕业设计对我来说是展示我大学四年学习成果的一个机会,也是对我的综合能力的一个考验。我本人对“钢坯喷号机行走部件及总体设计”的课题也非常感兴趣,我一定会努力完成这次毕业设计的。总的来说,钢坯喷号机对于钢铁厂和这次毕业设计对于我都是具有现实意义的。

2、基本内容和技术方案

本课题是基于机械设计与电子控制结合的技术来设计钢坯喷号机。经连连轧的钢坯规格为160mmx200mm的方形钢坯,用切割机割成定长,由300mm宽的输出通道送出。

1.基本内容

先拟定钢坯喷号机的总体方案,然后确定钢坯喷号机行走部件的传动方案及结构参数,最后画出钢坯喷号机行走部件的装配图以及零件图。

2.系统技术方案

(1)工作过程:启动机器PLC控制步进电机带动钢坯喷号机到相应的位置,按下启动键发送控制信号传到控制部件(PLC),控制部件发出控制命令给执行部件(主要是行走部件及喷号部件,行走部件带动喷头靠近钢坯表面,然后喷头进行喷号),喷号完成后喷头上升并清洗号码牌。再次移动喷号到下一个钢坯处。

(2)要求实现的功能:行走部件功能(喷号机整体左右的移动,喷号部件的上下前后移动,喷头的左右移动)、喷号部件功能(喷头喷号,清洗号码牌,号码牌的更换)。其中号码为(0—9)十个数字,号码可以变化更换。每个号码大小为35mmx15mm,号码间距为5mm。

(3)实现方案:

行走功能的实现:由于在钢坯上喷号并不需要很精确的定位,所以采用人工控制步进电机的方式移动整体喷号机来粗调。采用液压缸提供动力来推动喷号部件,并采用行程开关控制电机来实现喷号部件上下移动,下行程开关可以控制喷号部件与钢坯表面之间的间距和发出信号使喷头开始喷涂料并向右移动。采用液压缸推动,滚轮在导架上滚动的方式实现喷好机构的前后移动,并采用行程开关控制电机来实现喷头的左右移动,右行程开关可以控制喷头停止喷涂料并回到初始位置和喷号部件向上移动。

喷号功能的具体实现方案由和我一组的同学确定。

3、进度安排

3-4周 认真阅读和学习有关资料和知识,并翻译英文文献

5-7周 钢坯喷号机行走部件的传动方案及总体设计

8-9周 确定钢坯喷号机行走部件结果参数

10-13周 完成钢坯喷号机行走部件装配图及零件工作图

14-15周 准备并进行毕业答辩

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、提高劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大提高。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,提高材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,提高产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30﹪;由于锻件精化减少了切削加工量,电力消耗可降低30﹪;

(2)锻件质量显着提高,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均提高2~3倍;

(3)由于一次性挤压成型,生产率提高25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)写毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

一、毕业设计题目的背景

三级圆锥—圆柱齿轮减速器,第一级为锥齿轮减速,第二、三级为圆柱齿轮减速。这种减速器具有结构紧凑、多输出、传动效率高、运行平稳、传动比大、体积小、加工方便、寿命长等优点。因此,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并且已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、主要研究内容及意义

本文首先介绍了带式输送机传动装置的研究背景,通过对参考文献进行详细的分析,阐述了齿轮、减速器等的相关内容;在技术路线中,论述齿轮和轴的选择及其基本参数的选择和几何尺寸的计算,两个主要强度的验算等在这次设计中所需要考虑的一些技术问题做了介绍;为毕业设计写作建立了进度表,为以后的设计工作提供了一个指导。最后,给出了一些参考文献,可以用来查阅相关的资料,给自己的设计带来方便。

本次课题研究设计是大学生涯最后的学习机会,也是最专业的一次锻炼,它将使我们更加了解实际工作中的问题困难,也使我对专业知识又一次的全面总结,而且对实际的机械工程设计流程有一个大概的了解,我相信这将对我以后的工作有实质性的帮助。

三、实施计划

收集相关资料:20XX年4月10日——4月16日

开题准备: 4月17日——4月20日

确定设计方案:4月21日——4月28日

进行相关设计计算:4月28日——5月8日

绘制图纸:5月9日——5月15日

整理材料:5月15日——5月16日

编写设计说明书:5月17日——5月20日

准备答辩:

四、参考文献

[1] 王昆等 机械设计课程设计 高等教育出版社,1995.

[2] 邱宣怀 机械设计第四版 高等教育出版社,1997.

[3] 濮良贵 机械设计第七版 高等教育出版社,2000.

[4] 任金泉 机械设计课程设计 西安交通大学出版社,2002.

[5] 许镇宁 机械零件 人民教育出版社,1959.

[6] 机械工业出版社编委会 机械设计实用手册 机械工业出版社,2008

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、增强劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大增强。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、增强零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,增强材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,增强产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30%;由于锻件精化减少了切削加工量,电力消耗可降低30%;

(2)锻件质量显着增强,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均增强2~3倍;

(3)由于一次性挤压成型,生产率增强25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、增强生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

1 前言:敝公司为流体机械专业工厂,产品有真空泵浦、齿轮泵浦、离心泵浦及柱塞泵浦等,每一项产品皆经严格品管试验,故性能优越,品质稳定。泵浦为流体输送之中心枢纽,其使用与保养方法之不当,皆影响泵浦之寿命,对泵浦运转影响甚大,甚至造成不可弥补之损失。为期防止无形之损失,有赖您对泵浦的了解,正确的使用,及平时的保养工作。若有任何使用及保养上的问题,请立刻与敝公司连络,敝公司将为您提供最热诚完善的服务。2 安装:2.1 安装前请检视机体各部零件是否齐全,若因搬运中短缺或受损时,请立即通知敝公司,将马上补全或派员处理。2.2 安装地点宜选乾燥通风,装卸及保养便利之场所。2.3 安装泵浦之基础须平直,水平,使共同底座能平均安置於基础台,以免底座承受变形之应力。2.4 埋设基础螺丝时,须等水泥硬化后,共同底座与基础没有间隙才可锁紧基础螺丝。2.5 检查泵浦是否水平,联轴器 (皮带轮) 是否对正,皮带的紧度是否适中,泵浦与基础台是否稳固。2.6 泵浦安装位置距液面愈近愈好。2.7 管接合处应确实锁紧,入口管的外部不宜外加荷重致使管路弯曲。2.8 联轴器之检查要领∶联轴式泵浦一般以挠性联轴器传动,泵浦与马达之中心线角度必需正确,以避免联轴器之不正常损坏及噪音震动。3 配管:3.1 吸入管内为负压,故应使用钢管或其它硬质材料。3.2 泵浦入口尽可能靠近液体,以减少管路损失。3.3 管路完成后,迫紧封闭不可先除去,须等配管完成清洁后才可除去。3.4 入口管路太重时,须作支架,以免泵浦受负荷变形。3.5 入口管路完成后,须作气密探漏,以避免使用时空气漏入,造成流量减少或不能自吸。3.6 管路与泵浦出路口接合处,务必加装防震软管,管路也要加以支撑固定,以避免泵浦受外力变形产生故障。3.7 液体之蒸气压太高时,须以正压流入泵浦,足够的压力才可避免蒸气及吸力不够之情形。3.8 入口真空计及出口压力计之装置,对使用保养甚为便利,最好装置备用。3.9 吸水槽内各泵浦原则上以单独并列安装最为理想。3.10 由小管路进入较大吸水槽时应使向吸入管的水路方向平均流入。3.11 入口管的位置尽量安装於吸水槽的中央。3.12 水路只有一条时,尽量避免各入口管直接排於此水路口。3.13 入口管尽量采用直的短管,假如必须用弯管时,则采用曲率半径大的弯管且距泵浦入口不可太近。3.14 不能在入口管的中途有高低起伏的情形,应从泵浦开始稍做向下倾斜(斜度约 1/50-1/100),以避免中途积存空气。3.15 吸入管之直径大小与泵浦吸入口不同时,应以偏心异径管连接,否则空气将滞留於异径管及管路上部。底阀不得距离水槽的排出口太近,否则会吸入空气。水槽水位至底阀的距离不得太短以免水呈涡流而吸入空气。为防止异物堵塞底阀或叶轮,应使用面积充足的滤器,在树枝、树叶、杂草多的地方,应於上流装设金属网,以防滤器之阻塞。4 电器配线:4.1 依照电动机之额定电流容量,选择适当配线材料。(按电气法规)4.2 保险丝之容量须为马达额定电流容量之2-3倍。4.3 最好使用电磁开关起动泵浦,大容量泵浦请用Star delta starting。4.4 检视转向是否依照箭头指示。5 运转:5.1 运转前:5.1.1 润滑油的检查:如有异物存在,将在短时间内伤害轴承。a) 采用机油润滑时,油量以填充至油面表之中间程度为宜,不能太多或太少。b) 采用油脂润滑时,油脂不可填满轴承箱以免轴承发热。5.1.2 检查旋转体间是否有摩擦。a) 如有异物入内,会产生摩擦,影响运转。b) 检查电动机之转向,若转向相反易使装於轴上之叶轮防松螺帽脱落,试转前需灌满水后,才能试转,以免损坏轴封。5.1.3 试转完毕以上各程序后:a) 引水充满泵浦本体及入口管并抽尽空气,否则无法扬水,且将烧毁轴封。b) 运转时要徐徐转开阀,并注意电流表的读数,不可快速旋开阀引起电动机过负荷现象。5.2 运转中:5.2.1 轴承部份:a) 最初运转一小时左右应对过热作严密注意,轴承温度不得超过周温+40度C,一般设法维持75度C以下为宜。b) 再次确认全部轴承是否有润滑油作润滑之作用。5.2.2 填料部份:a) 填料不能过紧以避免过热、损伤或主轴磨耗。b) 填料之松紧程度,通常以填料盖漏出少量之水为宜。c) 填料函之温度通常维持在40℃以下为宜。5.2.3 本体部份:a) 运转中应时常旋开本体顶端之空气拷克(Air Cock),以检查空气是否漏入。b) 如有空气漏入则应检查入口处有否裂痕或吸水槽有否旋涡发生。5.3 停止:5.3.1 采用自吸式泵浦於停止时,应先关闭出口阀,然后关闭电源,否则会发生水鎚作用,增加泵浦负荷。5.3.2 采用涡卷式泵浦时,应於出口管处加装止回阀,防止液体逆流。5.4 操作上之其他注意事项:5.4.1 填料函所用之封水必须是清水,否则会损伤主轴及填料。如填料受损时,应依液体性质迅速给予更换。5.4.2 应随时注意轴承用润滑油的污染程度,初期运转时每两星期更换一次。应时常检查轴承之磨耗程度,轴承磨耗不平为造成震动之主要原因。5.4.3 要避免泵浦长时期运转於与设计点远离之点。5.4.4 要避免关闭出口阀而长时运转,否则水温会上升而发生蒸气。5.4.5 将液体排出於液体易凝固之气候,运转需停止时,要打开本体底部之排泄旋塞。5.4.6 要避免出口阀关闭长时间运转时,会使泵浦体内温度升高,温度一直上升会使压力一直提升到无法负荷下,泵浦本体会爆裂,危险相当高。6 长期停用处理:6.1 切掉主电源。6.2 清除泵浦内部残留液体。6.3 泵浦易生锈部份,请涂防锈油。6.4 每半个月运转三至五分钟。6.5 再使用时,按运转说明操作。7 定期检查及保养事项:7.1 每周检查轴封、压力、轴承、电流,各部螺丝等是否正常。7.2 入口真空计及出口压力计之装置,对使用保养甚为便利,平时关闭,测定时再开。7.3 每个月注入适量黄油在每个黄油嘴上。7.4 运转中若有异常状况产生,请立即停车检查,待故障排除后再继续使用。7.5 使用於高温液体之泵浦,各部位间隙须予适当配合,详情请洽敝公司。7.6 填料及机械轴封之保养∶7.6.1 填料∶填料(迫紧)之作用为防止轴封部之泄漏,其保养之好坏,直接影响泵浦之性能及轴心的寿命,应注意如下事项∶a) 填料经长期使用后磨损,须增加圈数或全数换新。b) 填料在运转中有少量泄漏,有利润滑,不必经常锁紧。c) 锁紧填料时,最好停车调整比较均匀,不可单边调整,避免填料盖卡住轴心,甚至使压盖断裂。d) 更换填料时,须将旧填料取出,清洁填料函,不可留残渣在内。e) 装入填料时,填料之切口须密接,每一环之切口须错开约120度,不可在同一线上。7.6.2 机械轴封∶使用机械轴封防止泄漏时,必须充份维护与保养,如此寿命才可延长,注意事项∶a) 绝对禁止无液体时空转。b) 配管内之焊渣、铁屑、杂物等必须清除乾净,以防进入泵浦及轴封内部。c) 先用手转动泵浦,以确定泵浦没有异常状况,再起动泵浦。d) 确实防止轴封部液体之固化,以免损坏轴封。e) 长期停用时,务必将轴封部液体排除,并冲洗乾净。8 故障排除:8.1 无法扬水:a) 泵浦无注水。b) 转速低於额定。c) 使用系统的扬程太高。d) 入口高度高於原先设计。e) 叶轮阻塞。f) 运转反向。g) 入口管泄入空气。h) 填料函泄入空气。i) 出入口堵塞或底阀卡死。8.2 水量不足:a) 入口管或填料函泄入空气。b) 转速低於额定。c) 使用系统的扬程太高。d) NPSH(a)不足。e) 入口高度高於原先设计。f) 入口管路阻塞。g) 高温或挥发性液体时吸入扬程不够。h) 底阀太小或底阀故障。i) 叶轮阻塞。j) 叶轮破损。k) 底阀或入口管底端浸水不够深。l) 运转反向。8.3 压力不足:a) 转速太低。b) 使用系统的扬程太低。c) 液体内混有气体。d) 叶轮破损。e) 叶轮外径太小。f) 运转反向。8.4 吸程小:a) 入口管泄漏。b) 填料泄入空气。c) 入口高度过高或NPSH(a)不足。d) 叶轮破损。e) 本体衬料受损。f) 入口管阻塞。8.5 马力超载:a) 转速过高。b) 使用系统的扬程低於额定。c) 液体比重或黏度太高。d) 电压降低致使电流增高。e) 轴弯曲变形。f) 填料盖锁得太紧。g) 旋转元件过紧。h) 泵浦的选用错误。i) 运转反向。8.6 马力过小:a) 叶轮阻塞,无法送水。b) 入口侧阻塞。c) 空转没有液体。d) 底阀故障,注给不足。e) 压力过高出水小。8.7 轴承温度过热:a) 循环油不够完全,循环系统不良。b) 机油不足。c) 润滑油品质不佳,杂质入内。d) 黄油加太满。8.8 压力计、真空计、电流表的读数不正常:a) 压力过高时:a) 压力计故障。b) 实际扬程大於设计扬程。c) 出口阻塞。b) 压力过低且真空过低时:a) 转速降低。b) 叶轮阻塞。c) 运转反向。d) 空气漏入。e) 实际扬程小於设计扬程。f) NPSHA不足。g) 叶轮破损。c) 压力过低且真空过高时:a) 水位降低。b) 入口管路阻塞。c) 底阀故障。d) 液体黏度发生变化。d) 电流表不正常:a) 过高时:电压降低。泵浦内部故障。频率升高。b) 过低时:电压升高。水量太小。空转。空气泄入。e) 指针摆动不定时:a) 发生孔蚀现象。b) 吸入侧泄入空气。c) 入口损失大。8.9 震动、噪音大:a) 机械原因:a) 主轴弯曲。b) 安装不良。c) 联轴器损坏。d) 叶轮破损。e) 轴承损坏。b) 水力原因:a) 孔蚀现象发生。b) 吸入空气。SKH 本体分解组立装配流程组合步骤如下:(数字为构造图之件号)1 轴承与轴组合 9000&2102 轴承座安装 5003 调隙螺栓安装 99034 挡水环安装 94105 填料盖与中座组合 9906&1106 中座与轴承座组合 110&5007 叶轮安装 2008 叶轮键安装 9015.19 叶轮固定垫圈安装 921610 叶轮固定螺帽锁紧 920511 迫紧安装 40012 机壳安装 10013 加填料 943014 键安装 901515 联轴器安装分解与以上步骤相反,填料与填料盖可不用拆下。

泵盘根改造机械轴封毕业论文

空间足够就内装式的。不够改外装麻烦些。

1 前言:敝公司为流体机械专业工厂,产品有真空泵浦、齿轮泵浦、离心泵浦及柱塞泵浦等,每一项产品皆经严格品管试验,故性能优越,品质稳定。泵浦为流体输送之中心枢纽,其使用与保养方法之不当,皆影响泵浦之寿命,对泵浦运转影响甚大,甚至造成不可弥补之损失。为期防止无形之损失,有赖您对泵浦的了解,正确的使用,及平时的保养工作。若有任何使用及保养上的问题,请立刻与敝公司连络,敝公司将为您提供最热诚完善的服务。2 安装:2.1 安装前请检视机体各部零件是否齐全,若因搬运中短缺或受损时,请立即通知敝公司,将马上补全或派员处理。2.2 安装地点宜选乾燥通风,装卸及保养便利之场所。2.3 安装泵浦之基础须平直,水平,使共同底座能平均安置於基础台,以免底座承受变形之应力。2.4 埋设基础螺丝时,须等水泥硬化后,共同底座与基础没有间隙才可锁紧基础螺丝。2.5 检查泵浦是否水平,联轴器 (皮带轮) 是否对正,皮带的紧度是否适中,泵浦与基础台是否稳固。2.6 泵浦安装位置距液面愈近愈好。2.7 管接合处应确实锁紧,入口管的外部不宜外加荷重致使管路弯曲。2.8 联轴器之检查要领∶联轴式泵浦一般以挠性联轴器传动,泵浦与马达之中心线角度必需正确,以避免联轴器之不正常损坏及噪音震动。3 配管:3.1 吸入管内为负压,故应使用钢管或其它硬质材料。3.2 泵浦入口尽可能靠近液体,以减少管路损失。3.3 管路完成后,迫紧封闭不可先除去,须等配管完成清洁后才可除去。3.4 入口管路太重时,须作支架,以免泵浦受负荷变形。3.5 入口管路完成后,须作气密探漏,以避免使用时空气漏入,造成流量减少或不能自吸。3.6 管路与泵浦出路口接合处,务必加装防震软管,管路也要加以支撑固定,以避免泵浦受外力变形产生故障。3.7 液体之蒸气压太高时,须以正压流入泵浦,足够的压力才可避免蒸气及吸力不够之情形。3.8 入口真空计及出口压力计之装置,对使用保养甚为便利,最好装置备用。3.9 吸水槽内各泵浦原则上以单独并列安装最为理想。3.10 由小管路进入较大吸水槽时应使向吸入管的水路方向平均流入。3.11 入口管的位置尽量安装於吸水槽的中央。3.12 水路只有一条时,尽量避免各入口管直接排於此水路口。3.13 入口管尽量采用直的短管,假如必须用弯管时,则采用曲率半径大的弯管且距泵浦入口不可太近。3.14 不能在入口管的中途有高低起伏的情形,应从泵浦开始稍做向下倾斜(斜度约 1/50-1/100),以避免中途积存空气。3.15 吸入管之直径大小与泵浦吸入口不同时,应以偏心异径管连接,否则空气将滞留於异径管及管路上部。底阀不得距离水槽的排出口太近,否则会吸入空气。水槽水位至底阀的距离不得太短以免水呈涡流而吸入空气。为防止异物堵塞底阀或叶轮,应使用面积充足的滤器,在树枝、树叶、杂草多的地方,应於上流装设金属网,以防滤器之阻塞。4 电器配线:4.1 依照电动机之额定电流容量,选择适当配线材料。(按电气法规)4.2 保险丝之容量须为马达额定电流容量之2-3倍。4.3 最好使用电磁开关起动泵浦,大容量泵浦请用Star delta starting。4.4 检视转向是否依照箭头指示。5 运转:5.1 运转前:5.1.1 润滑油的检查:如有异物存在,将在短时间内伤害轴承。a) 采用机油润滑时,油量以填充至油面表之中间程度为宜,不能太多或太少。b) 采用油脂润滑时,油脂不可填满轴承箱以免轴承发热。5.1.2 检查旋转体间是否有摩擦。a) 如有异物入内,会产生摩擦,影响运转。b) 检查电动机之转向,若转向相反易使装於轴上之叶轮防松螺帽脱落,试转前需灌满水后,才能试转,以免损坏轴封。5.1.3 试转完毕以上各程序后:a) 引水充满泵浦本体及入口管并抽尽空气,否则无法扬水,且将烧毁轴封。b) 运转时要徐徐转开阀,并注意电流表的读数,不可快速旋开阀引起电动机过负荷现象。5.2 运转中:5.2.1 轴承部份:a) 最初运转一小时左右应对过热作严密注意,轴承温度不得超过周温+40度C,一般设法维持75度C以下为宜。b) 再次确认全部轴承是否有润滑油作润滑之作用。5.2.2 填料部份:a) 填料不能过紧以避免过热、损伤或主轴磨耗。b) 填料之松紧程度,通常以填料盖漏出少量之水为宜。c) 填料函之温度通常维持在40℃以下为宜。5.2.3 本体部份:a) 运转中应时常旋开本体顶端之空气拷克(Air Cock),以检查空气是否漏入。b) 如有空气漏入则应检查入口处有否裂痕或吸水槽有否旋涡发生。5.3 停止:5.3.1 采用自吸式泵浦於停止时,应先关闭出口阀,然后关闭电源,否则会发生水鎚作用,增加泵浦负荷。5.3.2 采用涡卷式泵浦时,应於出口管处加装止回阀,防止液体逆流。5.4 操作上之其他注意事项:5.4.1 填料函所用之封水必须是清水,否则会损伤主轴及填料。如填料受损时,应依液体性质迅速给予更换。5.4.2 应随时注意轴承用润滑油的污染程度,初期运转时每两星期更换一次。应时常检查轴承之磨耗程度,轴承磨耗不平为造成震动之主要原因。5.4.3 要避免泵浦长时期运转於与设计点远离之点。5.4.4 要避免关闭出口阀而长时运转,否则水温会上升而发生蒸气。5.4.5 将液体排出於液体易凝固之气候,运转需停止时,要打开本体底部之排泄旋塞。5.4.6 要避免出口阀关闭长时间运转时,会使泵浦体内温度升高,温度一直上升会使压力一直提升到无法负荷下,泵浦本体会爆裂,危险相当高。6 长期停用处理:6.1 切掉主电源。6.2 清除泵浦内部残留液体。6.3 泵浦易生锈部份,请涂防锈油。6.4 每半个月运转三至五分钟。6.5 再使用时,按运转说明操作。7 定期检查及保养事项:7.1 每周检查轴封、压力、轴承、电流,各部螺丝等是否正常。7.2 入口真空计及出口压力计之装置,对使用保养甚为便利,平时关闭,测定时再开。7.3 每个月注入适量黄油在每个黄油嘴上。7.4 运转中若有异常状况产生,请立即停车检查,待故障排除后再继续使用。7.5 使用於高温液体之泵浦,各部位间隙须予适当配合,详情请洽敝公司。7.6 填料及机械轴封之保养∶7.6.1 填料∶填料(迫紧)之作用为防止轴封部之泄漏,其保养之好坏,直接影响泵浦之性能及轴心的寿命,应注意如下事项∶a) 填料经长期使用后磨损,须增加圈数或全数换新。b) 填料在运转中有少量泄漏,有利润滑,不必经常锁紧。c) 锁紧填料时,最好停车调整比较均匀,不可单边调整,避免填料盖卡住轴心,甚至使压盖断裂。d) 更换填料时,须将旧填料取出,清洁填料函,不可留残渣在内。e) 装入填料时,填料之切口须密接,每一环之切口须错开约120度,不可在同一线上。7.6.2 机械轴封∶使用机械轴封防止泄漏时,必须充份维护与保养,如此寿命才可延长,注意事项∶a) 绝对禁止无液体时空转。b) 配管内之焊渣、铁屑、杂物等必须清除乾净,以防进入泵浦及轴封内部。c) 先用手转动泵浦,以确定泵浦没有异常状况,再起动泵浦。d) 确实防止轴封部液体之固化,以免损坏轴封。e) 长期停用时,务必将轴封部液体排除,并冲洗乾净。8 故障排除:8.1 无法扬水:a) 泵浦无注水。b) 转速低於额定。c) 使用系统的扬程太高。d) 入口高度高於原先设计。e) 叶轮阻塞。f) 运转反向。g) 入口管泄入空气。h) 填料函泄入空气。i) 出入口堵塞或底阀卡死。8.2 水量不足:a) 入口管或填料函泄入空气。b) 转速低於额定。c) 使用系统的扬程太高。d) NPSH(a)不足。e) 入口高度高於原先设计。f) 入口管路阻塞。g) 高温或挥发性液体时吸入扬程不够。h) 底阀太小或底阀故障。i) 叶轮阻塞。j) 叶轮破损。k) 底阀或入口管底端浸水不够深。l) 运转反向。8.3 压力不足:a) 转速太低。b) 使用系统的扬程太低。c) 液体内混有气体。d) 叶轮破损。e) 叶轮外径太小。f) 运转反向。8.4 吸程小:a) 入口管泄漏。b) 填料泄入空气。c) 入口高度过高或NPSH(a)不足。d) 叶轮破损。e) 本体衬料受损。f) 入口管阻塞。8.5 马力超载:a) 转速过高。b) 使用系统的扬程低於额定。c) 液体比重或黏度太高。d) 电压降低致使电流增高。e) 轴弯曲变形。f) 填料盖锁得太紧。g) 旋转元件过紧。h) 泵浦的选用错误。i) 运转反向。8.6 马力过小:a) 叶轮阻塞,无法送水。b) 入口侧阻塞。c) 空转没有液体。d) 底阀故障,注给不足。e) 压力过高出水小。8.7 轴承温度过热:a) 循环油不够完全,循环系统不良。b) 机油不足。c) 润滑油品质不佳,杂质入内。d) 黄油加太满。8.8 压力计、真空计、电流表的读数不正常:a) 压力过高时:a) 压力计故障。b) 实际扬程大於设计扬程。c) 出口阻塞。b) 压力过低且真空过低时:a) 转速降低。b) 叶轮阻塞。c) 运转反向。d) 空气漏入。e) 实际扬程小於设计扬程。f) NPSHA不足。g) 叶轮破损。c) 压力过低且真空过高时:a) 水位降低。b) 入口管路阻塞。c) 底阀故障。d) 液体黏度发生变化。d) 电流表不正常:a) 过高时:电压降低。泵浦内部故障。频率升高。b) 过低时:电压升高。水量太小。空转。空气泄入。e) 指针摆动不定时:a) 发生孔蚀现象。b) 吸入侧泄入空气。c) 入口损失大。8.9 震动、噪音大:a) 机械原因:a) 主轴弯曲。b) 安装不良。c) 联轴器损坏。d) 叶轮破损。e) 轴承损坏。b) 水力原因:a) 孔蚀现象发生。b) 吸入空气。SKH 本体分解组立装配流程组合步骤如下:(数字为构造图之件号)1 轴承与轴组合 9000&2102 轴承座安装 5003 调隙螺栓安装 99034 挡水环安装 94105 填料盖与中座组合 9906&1106 中座与轴承座组合 110&5007 叶轮安装 2008 叶轮键安装 9015.19 叶轮固定垫圈安装 921610 叶轮固定螺帽锁紧 920511 迫紧安装 40012 机壳安装 10013 加填料 943014 键安装 901515 联轴器安装分解与以上步骤相反,填料与填料盖可不用拆下。

主要看你轴直径,还有就是装盘根的那个空间,是否适合转机封。

我可以帮你设计, QQ:24859222

机械设计毕业论文减速机设计

我有 怎么联系你E:\课程设计\二级直齿圆柱齿轮减速器课程设计\二级直齿圆柱齿轮减速器课程设计

前 言机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。带式输送机概论带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。输送机发展历史中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。输送机的特点带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。一、 设计任务书设计一用于带式运输机上同轴式二级圆柱齿轮减速器1. 总体布置简图2. 工作情况工作平稳、单向运转3. 原始数据运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)350 0.85 380 10 14. 设计内容(1) 电动机的选择与参数计算(2) 斜齿轮传动设计计算(3) 轴的设计(4) 滚动轴承的选择(5) 键和联轴器的选择与校核(6) 装配图、零件图的绘制(7) 设计计算说明书的编写5. 设计任务(1) 减速器总装配图1张(0号或1号图纸)(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)(3) 设计计算说明书一份二、 传动方案的拟定及说明为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:三. 电动机的选择1. 电动机类型选:Y行三相异步电动机2. 电动机容量(1) 卷筒轴的输出功率(2) 电动机的输出功率传动装置的总效率式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则故(3) 电动机额定功率由第二十章表20-1选取电动机额定功率由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为可选符合这一范围的同步转速的电动3000 。根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:电动机型号 额定功率电动机转速传动装置传动比Y100L-2 3 同步 满载 总传动比 V带 减速器3000 2880 62.06 2三、 计算传动装置总传动比和分配各级传动比1. 传动装置总传动比2. 分配各级传动比取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的则i所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。四、计算传动装置的运动和动力参数:按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数1.各轴转速:2.各轴输入功率:Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。3. 各轴输入转矩:Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。综上,传动装置的运动和动力参数计算结果整理于下表:轴名 功率转矩转速传动比效率输入 输出 输入 输出电机轴 2.3 7.63 2880 20.96I轴 2.21 14.65 14407.130.95II轴 2.1 99.29 201. 964.35 0.95III轴2.0 410.58 46.431.00 0.98卷筒轴 1.94 398.34第三章 主要零部件的设计计算§3.1 展开式二级圆柱齿轮减速器齿轮传动设计§3.1.1 高速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 。2. 按齿面接触强度设计由设计公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩:3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。计算接触疲劳许用应力,取失效概率为1%,安全系数S=14)计算应力循环次数5) 按接触疲劳寿命系数(2) 计算:1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为3) 计算齿宽: 取 ,4) 计算分度圆直径与模数、中心距:模数: 取第一系列标准值m=1.5分度圆直径:中心距:5) 校核弯曲疲劳强度:符合齿形因数 由图6-40得 =4.35, =3.98弯曲疲劳需用应力:1) 查图6-41得弯曲疲劳强度极限 : ;2) 查图6-42取弯曲疲劳寿命系数3) 计算弯曲疲劳许用应力.取弯曲疲劳安全系数S=1,得4) 校核计算:<<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级§3.1.2 低速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。2. 按齿面接触强度设计由设计公式进行试算,即2) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=15) 查图6-42取弯曲疲劳寿命系数按接触疲劳寿命系数模数: 由表6-2取第一系列标准模数分度圆直径:中心距:齿宽:校核弯曲疲劳强度:复合齿形因数 由图6-40得6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1得校核计算: <<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级对各个轴齿轮相关计算尺寸表6-3高速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距表6-3低速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距V带的设计1)计算功率2)选择带型据 和 =2880由图10-12<械设计基础>选取z型带3)确定带轮基准直径由表10-9确定 <械设计基础>1) 验算带速因为 故符合要求2) 验算带长初定中心距由表10-6选取相近3) 确定中心距4) 验算小带轮包角故符合要求5) 单根V带传递额定功率据 和 查图10-9得8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得10)确定带根数查表10-3 查表10-4 <械设计基础>11) 单根V带的初拉力查表10-512)用的轴上的力13带轮的结构和尺寸以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽§3.3 轴系结构设计§3.3.1 高速轴的轴系结构设计一、轴的结构尺寸设计根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:图2由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表6 高速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)13.61660第2段(由唇形密封圈尺寸确定)20(18.88)50第3段 由轴承尺寸确定(轴承预选6004 B1=12)2023第4段24(23.6)145第5段 齿顶圆直径齿宽3338第6段2410第7段2023二、轴的受力分析及计算轴的受力模型简化(见图3)及受力计算L1=92.5 L2=192.5 L3=40三、轴承的寿命校核鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.校核步骤及计算结果见下表:表7 轴承寿命校核步骤及计算结果计算步骤及内容 计算结果6007轴承A端 B端由手册查出Cr、C0r及e、Y值 Cr=12.5kNC0r=8.60kNe=0.68计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66计算比值Fa/Fr FaA /FrA>e FaB /FrB< e确定X、Y值 XA= 1,YA = 0, XB =1 YB=0查载荷系数fP 1.2计算当量载荷P=Fp(XFr+YFa) PA=981.039 PB=981.039计算轴承寿命9425.45h小于12480h由计算结果可见轴承6007合格.表8 中间轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段由轴承尺寸确定(轴承预选6008 )33.64025第2段(考虑键槽影响)45(44.68)77.5第3段5012.5第4段99109第5段4639考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表10 低速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)(由联轴器宽度尺寸确定)52.4960(55.64)142第2段(由唇形密封圈尺寸确定)64(63.84)50第3段6616第4段 由轴承尺寸确定(轴承预选6014C )7024第5段7875第6段208820第7段齿宽+1080(79.8)119§3.3.4 各轴键、键槽的选择及其校核因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.一、 高速级键的选择及校核:带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096联结处的材料分别为: 45钢(键) 、40Cr(轴)二、中间级键的选择及校核:(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)此时, 键联结合格.三、低速级级键的选择及校核(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格.第四章 减速器箱体及其附件的设计§4.1箱体结构设计根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=322.5)表12 箱体结构尺寸名称 符号 设计依据 设计结果箱座壁厚 δ 0.025a+3=11 11考虑铸造工艺,所有壁厚都不应小于8箱盖壁厚 δ1 0.02a+3≥8 9.45箱座凸缘厚度 b 1.5δ 16.5箱盖凸缘厚度 b1 1.5δ1 14.18箱座底凸缘厚度 b2 2.5δ 27.5地脚螺栓直径 df 0.036a+12 24(23.61)地脚螺栓数目 n 时,n=66轴承旁联结螺栓直径 d1 0.75df 18箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6窥视孔盖螺钉直径 d4 (0.3~0.4)df 8定位销直径 d (0.7~0.8) d 2 9轴承旁凸台半径 R1 c2 16凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42大齿轮顶圆距内壁距离 ∆1 >1.2δ 11齿轮端面与内壁距离 ∆2 >δ 10箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7轴承端盖凸缘厚度 t (1~1.2) d3 10轴承端盖外径 D2 D+(5~5.5) d3 120轴承旁边连接螺栓距离S120第五章 运输、安装和使用维护要求1、减速器的安装(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。(4)减速器安装好后用手转动必须灵活,无卡死现象。(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。2、使用维护本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:1.减速器高速轴转速不高于1000r/min;2.减速器齿轮圆周速度不高于20m/s;3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。3、减速器润滑油的更换:(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。小 结转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。参 考 文 献1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,20062 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,20043 <<机械原理>> 申永胜主编 清华大学出版社 ,19994 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,20045 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,20036 <<机械制图>>

程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计 8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字) 10毕业设计 连杆孔研磨装置设计 11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计 12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器 14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向) 16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计 18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计 20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) ...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 21课程设计 杠杆的加工 22毕业设计 2SA3.1多回转电动执行机构箱体加工工艺规程及工艺装备设计 23毕业论文 数控铣高级工零件工艺设计及程序编制 24毕业论文 数控铣高级工心型零件工艺设计及程序编制25毕业设计 连杆的加工工艺及其断面铣夹具设计 26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合XKA5032AC数控立式升降台铣床自动换刀装置设计机用虎钳课程设计.rar行星齿轮减速器减速器的虚拟设计(王少华).rar物流液压升降台的设计自动加料机控制系统.rar全向轮机构及其控制设计.rar齿轮齿条转向器.rar出租车计价系统.rar(毕业设计)油封骨架冲压模具连杆孔研磨装置设计 .rar蜗轮蜗杆传动.rar用单片机实现温度远程显示.doc基于Alter的EP1C6Q240C8的红外遥器(毕业论文).doc变频器 调试设计及应用镍氢电池充电器的设计.doc铣断夹具设计 q 348414338

真空吸盘机械手论文

取决于真空发生器产生的真空度,当气压0.5MPa,真空发生器产生的真空度达到-70kPa,吸盘的吸力大于5N,一般的真空发生器都可达到要求。

写在前面:真空技术应用越来越广泛,最具代表性的应用是超级高铁的真空隧道。在非标设备领域,最常见的是利用真空吸附工件,达到取放工件或固定工件的目的,另外就是用于气密性检知设备、形成真空环境完成真空贴附、真空溅镀。

真空蒸镀等、以及真空包装、吸塑、真空管道输送等。本文以机械手用真空吸盘取放料为例对真空系统进行简单说明。

真空系统的组成。

1、真空系统原理图上图为机械手采用真空吸盘取放料时比较典型的真空系统原理图。具备真空开、真空关、破真空以及吹气功能。主要组成包含汇流板(有多组独立使用的吸盘时选用)、消音器、电磁阀、节流阀、真空发生器、真空过滤器。

真空检知开关以及吸盘、管道、管接头等元件组成。真空元件是指真空发生器、真空过滤器、真空检知开关、吸盘等。

2、原理图分析说明1)三位五通电磁阀的作用是改变气流方向,分别实现工件吸附(机械手取料)、吸附停止(机械手回程过程中)以及破真空及吹气(机械手放料)的功能。很多工程师在设计时会选用两位三通或两位五通电磁阀。

即省去了中间截止位,这样吸盘不是处于吸附状态就是处于破真空或吹气状态,在实际应用中在某些状态下会出现问题。当然在上电磁阀是可以省去中间位的,当二位五通阀(三位阀改二位阀)处于左侧位接通状态时,两位三通阀处于右侧截止状态即可。

特别提醒:有多路真空系统共用同一块汇流板时,气压回路对真空系统的影响,注意防止气路串通的情况。

真空吸盘机械手的应用是抓取式,电磁式,吊钩式等等。电动葫芦是提升和行走。真空吸盘式,因其结构,控制简单,干净卫生,被广泛的应用各个领域。吸盘式机械手善于抓取表面平整规则的物品,所以被用于物流,生产分拣,食品行业,汽车生产,玻璃搬运,钣金件搬运等领域,其数量和种类是抓取机械手中最多的。电葫芦负责电动提升和行走,人工掌控人性化省力手柄,重达一吨的板材也能轻松上下料,安全有保障。

用于模内贴标的末端工具可以完成三个动作:在有限的空间里,EOAT先拾取并插入商标,然后将商标固定在模具中。与静态贴标装置相比,这个操作可以减少该装置的尺寸。EOAT的最后一个动作是将贴有商标的塑料瓶从模具中取出。通常,在注塑汽车制件时,对于具有A级表面制品的操作要格外小心。为了避免在其表面产生划痕,必须绝对禁止使用真空吸盘。此时,可以考虑在EOAT上安装一个由缩醛制成的夹钳,就可有效地避免划伤制品的表面。那么,如何将EOAT用于复杂的加工成型过程呢?为了说明这个问题,我们例举一个用尼龙和橡胶进行重叠注塑成型的例子。在这个例子中,利用一个多功能的机械手臂末端工具(EOAT)把操作工人手边 。作为工业机器人的一个重要分支——机械手在 一、被移送物体的质量–决定吸盘的大小和数量二、被移送物体的形状和表面状态–选定吸盘的种类三、工作环境(温度)–选择吸盘的材质四、连接方式–吸盘、接头、缓冲连接器五、被移送物体的高低六、缓冲距离 英国一名业余发明家利用两部吸尘机作为动力,研制了一款真空吸盘,双手各拿着一个连接背后吸尘机背囊的巨型吸板,可以在墙上爬行,有如蜘蛛侠一样,十分过瘾。这名发明家是斯坦斯菲尔德,他在超市买了两部1500瓦特的吸尘机,拆去了机壳后,把两个机械装在一个背板上,如背囊一样负在背后。两个去壳吸尘机的长长吸喉各连接两个真空吸板,吸板用橡胶密封,确保特强吸力。斯坦斯菲尔德把吸尘发动机背囊挂在背后,然后用手各拿着一个真空吸板,双脚则踩在吸盘垂下的长带上。当开动吸尘机,便可以利用抽气原理,拿着两个吸板在墙上面走动,当推动吸板向上时,脚步踏上一步配合,如此便好像爬墙一样,一步步往上爬行。他利用这款真空吸盘,在一批观众面前,成功一步步爬上30英尺高学校外墙,直上天台。街上观众都为之目眩神往。斯坦斯菲尔德现时是英国广播公司一台节目主持人,之前曾为科幻电影《迷失太空》(Lost in Space)制作特别效果。 在EOAT使用真空吸盘(不带夹钳)的情况下,需要注意的是,机械手的移动速度不能太高,否则会在吸盘上产生一个切力,使制品在快速扭转的过程中很容易掉下来。在有些情况下,可以使用一个夹钳来保证制品的安全运送。考虑到可能会出现制品粘附在模具上的情况,通常可以安装一个气钳来解决这一问题。当制品表面积太小或者制品太重而无法使用真空吸盘时,同样可以通过使用夹钳来解决这个问题。如果制品对外观要求很严格,那么被夹住的部位就不能是外表面。为解决这一问题,可以安装一个传感电路。在确认夹钳或者吸盘抓稳了制品以后,传感器就会给机械手传送一个信号,使其能进行下一步的操作。在机械手的运动能力有限、需要人工扭一下或者翘一下才能使制品脱模或把制品和EOAT移出成型区的,情况下可以添置一个能够独自移动EOAT而不依于机械手操作的特殊汽缸,从而使这一问题得到改善。用于模内贴标的末端工具可以完成三个动作:在有限的空间里,EOAT先拾取并插入商标,然后将商标固定在模具中。与静态贴标装置相比,这个操作可以减少该装置的尺寸。EOAT的最后一个动作是将贴有商标的塑料瓶从模具中取出。通常,在注塑汽车制件时,对于具有A级表面制品的操作要格外小心。真空吸盘快易优自动化选型有收录,为了避免在其表面产生划痕,必须绝对禁止使用真空吸盘。此时,可以考虑在EOAT上安装一个由缩醛制成的夹钳,就可有效地避免划伤制品的表面。

轴承试漏机毕业论文

机械设计课程设计计算说明书 一、传动方案拟定…………….……………………………….2 二、电动机的选择……………………………………….…….2 三、计算总传动比及分配各级的传动比……………….…….4 四、运动参数及动力参数计算………………………….…….5 五、传动零件的设计计算………………………………….….6 六、轴的设计计算………………………………………….....12 七、滚动轴承的选择及校核计算………………………….…19 八、键联接的选择及计算………..……………………………22 设计题目:V带——单级圆柱减速器 第四组 德州科技职业学院青岛校区 设计者:#### 指导教师:%%%% 二○○七年十二月计算过程及计算说明 一、传动方案拟定 第三组:设计单级圆柱齿轮减速器和一级带传动 (1) 工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,小批量生产,工作为二班工作制,运输带速允许误差正负5%。 (2) 原始数据:工作拉力F=1250N;带速V=1.70m/s; 滚筒直径D=280mm。 二、电动机选择 1、电动机类型的选择: Y系列三相异步电动机 2、电动机功率选择: (1)传动装置的总功率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =0.95×0.982×0.97×0.99×0.98×0.96 =0.82 (2)电机所需的工作功率: P工作=FV/1000η总 =1250×1.70/1000×0.82 =2.6KW3、确定电动机转速: 计算滚筒工作转速: n筒=60×960V/πD =60×960×1.70/π×280 =111r/min 按书P7表2-3推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~6。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~24。故电动机转速的可选范围为n筒=(6~24)×111=666~2664r/min 符合这一范围的同步转速有750、1000、和1500r/min。 根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。 其主要性能:额定功率:3KW,满载转速960r/min,额定转矩2.0。质量63kg。 三、计算总传动比及分配各级的伟动比 1、总传动比:i总=n电动/n筒=960/111=8.6 2、分配各级伟动比 (1) 据指导书,取齿轮i齿轮=6(单级减速器i=3~6合理) (2) ∵i总=i齿轮×I带 ∴i带=i总/i齿轮=8.6/6=1.4 四、运动参数及动力参数计算 1、计算各轴转速(r/min) nI=n电机=960r/min nII=nI/i带=960/1.4=686(r/min) nIII=nII/i齿轮=686/6=114(r/min) 2、 计算各轴的功率(KW) PI=P工作=2.6KW PII=PI×η带=2.6×0.96=2.496KW PIII=PII×η轴承×η齿轮=2.496×0.98×0.96 =2.77KW3、 计算各轴扭矩(N•mm) TI=9.55×106PI/nI=9.55×106×2.6/960 =25729N•mm TII=9.55×106PII/nII =9.55×106×2.496/686 =34747.5N•mm TIII=9.55×106PIII/nIII=9.55×106×2.77/114 =232048N•mm 五、传动零件的设计计算 1、 皮带轮传动的设计计算 (1) 选择普通V带截型 由课本表得:kA=1.2 Pd=KAP=1.2×3=3.9KW 由课本得:选用A型V带 (2) 确定带轮基准直径,并验算带速 由课本得,推荐的小带轮基准直径为 75~100mm 则取dd1=100mm dd2=n1/n2•dd1=(960/686)×100=139mm 由课本P74表5-4,取dd2=140mm 实际从动轮转速n2’=n1dd1/dd2=960×100/140 =685.7r/min 转速误差为:n2-n2’/n2=686-685.7/686 =0.0004<0.05(允许) 带速V:V=πdd1n1/60×1000 =π×100×960/60×1000 =5.03m/s 在5~25m/s范围内,带速合适。 (3) 确定带长和中心矩 根据课本得 0. 7(dd1+dd2)≤a0≤2(dd1+dd2) 0. 7(100+140)≤a0≤2×(100+140) 所以有:168mm≤a0≤480mm 由课本P84式(5-15)得: L0=2a0+1.57(dd1+dd2)+(dd2-dd1)2/4a0 =2×400+1.57(100+140)+(140-100)2/4×400 =1024mm 根据课本表7-3取Ld=1120mm 根据课本P84式(5-16)得: a≈a0+Ld-L0/2=400+(1120-1024/2) =400+48 =448mm (4)验算小带轮包角 α1=1800-dd2-dd1/a×600 =1800-140-100/448×600 =1800-5.350 =174.650>1200(适用) (5)确定带的根数 根据课本(7-5) P0=0.74KW 根据课本(7-6) △P0=0.11KW 根据课本(7-7)Kα=0.99 根据课本(7-23)KL=0.91 由课本式(7-23)得 Z= Pd/(P0+△P0)KαKL =3.9/(0.74+0.11) ×0.99×0.91 =5 (6)计算轴上压力 由课本查得q=0.1kg/m,由式(5-18)单根V带的初拉力: F0=500Pd/ZV(2.5/Kα-1)+qV2 =[500×3.9/5×5.03×(2.5/0.99-1)+0.1×5.032]N =160N 则作用在轴承的压力FQ, FQ=2ZF0sinα1/2=2×5×158.01sin167.6/2 =1250N 2、齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本选7级精度。齿面精糙度Ra≤1.6~3.2μm (2)按齿面接触疲劳强度设计 由d1≥76.43(kT1(u+1)/φdu[σH]2)1/3 确定有关参数如下:传动比i齿=6 取小齿轮齿数Z1=20。则大齿轮齿数: Z2=iZ1=6×20=120 实际传动比I0=120/2=60 传动比误差:i-i0/I=6-6/6=0%<2.5% 可用 齿数比:u=i0=6 由课本取φd=0.9 (3)转矩T1 T1=9550×P/n1=9550×2.6/960 =25.N•m (4)载荷系数k 由课本取k=1 (5)许用接触应力[σH] [σH]= σHlimZNT/SH由课本查得: σHlim1=625Mpa σHlim2=470Mpa 由课本查得接触疲劳的寿命系数: ZNT1=0.92 ZNT2=0.98 通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0 [σH]1=σHlim1ZNT1/SH=625×0.92/1.0Mpa =575 [σH]2=σHlim2ZNT2/SH=470×0.98/1.0Mpa =460 故得: d1≥766(kT1(u+1)/φdu[σH]2)1/3 =766[1×25.9×(6+1)/0.9×6×4602]1/3mm =38.3mm 模数:m=d1/Z1=38.3/20=1.915mm 根据课本表9-1取标准模数:m=2mm (6)校核齿根弯曲疲劳强度 根据课本式 σF=(2kT1/bm2Z1)YFaYSa≤[σH] 确定有关参数和系数 分度圆直径:d1=mZ1=2×20mm=40mm d2=mZ2=2×120mm=240mm 齿宽:b=φdd1=0.9×38.3mm=34.47mm 取b=35mm b1=40mm (7)齿形系数YFa和应力修正系数YSa 根据齿数Z1=20,Z2=120由表相得 YFa1=2.80 YSa1=1.55 YFa2=2.14 YSa2=1.83 (8)许用弯曲应力[σF] 根据课本P136(6-53)式: [σF]= σFlim YSTYNT/SF 由课本查得: σFlim1=288Mpa σFlim2 =191Mpa 由图6-36查得:YNT1=0.88 YNT2=0.9 试验齿轮的应力修正系数YST=2 按一般可靠度选取安全系数SF=1.25 计算两轮的许用弯曲应力 [σF]1=σFlim1 YSTYNT1/SF=288×2×0.88/1.25Mpa =410Mpa [σF]2=σFlim2 YSTYNT2/SF =191×2×0.9/1.25Mpa =204Mpa 将求得的各参数代入式(6-49) σF1=(2kT1/bm2Z1)YFa1YSa1 =(2×1×2586.583/35×22×20) ×2.80×1.55Mpa =8Mpa< [σF]1 σF2=(2kT1/bm2Z2)YFa1YSa1 =(2×1×2586.583/35×22×120) ×2.14×1.83Mpa =1.2Mpa< [σF]2 故轮齿齿根弯曲疲劳强度足够 (9)计算齿轮传动的中心矩a a=m/2(Z1+Z2)=2/2(20+120)=140mm (10)计算齿轮的圆周速度V V=πd1n1/60×1000=3.14×40×960/60×1000 =2.0096m/s 六、轴的设计计算 输入轴的设计计算 1、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据课本并查表,取c=115 d≥115 (2.304/458.2)1/3mm=19.7mm 考虑有键槽,将直径增大5%,则 d=19.7×(1+5%)mm=20.69 ∴选d=22mm 2、轴的结构设计 (1)轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 (2)确定轴各段直径和长度 工段:d1=22mm 长度取L1=50mm ∵h=2c c=1.5mm II段:d2=d1+2h=22+2×2×1.5=28mm ∴d2=28mm 初选用7206c型角接触球轴承,其内径为30mm, 宽度为16mm. 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L2=(2+20+16+55)=93mm III段直径d3=35mm L3=L1-L=50-2=48mm Ⅳ段直径d4=45mm 由手册得:c=1.5 h=2c=2×1.5=3mm d4=d3+2h=35+2×3=41mm 长度与右面的套筒相同,即L4=20mm 但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm 因此将Ⅳ段设计成阶梯形,左段直径为36mm Ⅴ段直径d5=30mm. 长度L5=19mm 由上述轴各段长度可算得轴支承跨距L=100mm (3)按弯矩复合强度计算 ①求分度圆直径:已知d1=40mm ②求转矩:已知T2=34747.5N•mm ③求圆周力:Ft 根据课本式得 Ft=2T2/d2=69495/40=1737.375N ④求径向力Fr 根据课本式得 Fr=Ft•tanα=1737.375×tan200=632N ⑤因为该轴两轴承对称,所以:LA=LB=50mm(1)绘制轴受力简图(如图a) (2)绘制垂直面弯矩图(如图b) 轴承支反力: FAY=FBY=Fr/2=316N FAZ=FBZ=Ft/2=868N 由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为 MC1=FAyL/2=235.3×50=11.765N•m (3)绘制水平面弯矩图(如图c) 截面C在水平面上弯矩为: MC2=FAZL/2=631.61455×50=31.58N•m (4)绘制合弯矩图(如图d) MC=(MC12+MC22)1/2=(11.7652+31.582)1/2=43.345N•m (5)绘制扭矩图(如图e) 转矩:T=9.55×(P2/n2)×106=35N•m (6)绘制当量弯矩图(如图f) 转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩: Mec=[MC2+(αT)2]1/2 =[43.3452+(1×35)2]1/2=55.5N•m (7)校核危险截面C的强度 由式(6-3) σe=Mec/0.1d33=55.5/0.1×353 =12.9MPa< [σ-1]b=60MPa ∴该轴强度足够。 输出轴的设计计算 1、按扭矩初算轴径 选用45#调质钢,硬度(217~255HBS) 根据课本取c=115 d≥c(P3/n3)1/3=115(2.77/114)1/3=34.5mm 取d=35mm2、轴的结构设计 (1)轴的零件定位,固定和装配 单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。 (2)确定轴的各段直径和长度 初选7207c型角接球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。 (3)按弯扭复合强度计算 ①求分度圆直径:已知d2=300mm ②求转矩:已知T3=271N•m ③求圆周力Ft:根据课本式得 Ft=2T3/d2=2×271×103/300=1806.7N ④求径向力式得 Fr=Ft•tanα=1806.7×0.36379=657.2N ⑤∵两轴承对称 ∴LA=LB=49mm (1)求支反力FAX、FBY、FAZ、FBZ FAX=FBY=Fr/2=657.2/2=328.6N FAZ=FBZ=Ft/2=1806.7/2=903.35N (2)由两边对称,书籍截C的弯矩也对称 截面C在垂直面弯矩为 MC1=FAYL/2=328.6×49=16.1N•m (3)截面C在水平面弯矩为 MC2=FAZL/2=903.35×49=44.26N•m (4)计算合成弯矩 MC=(MC12+MC22)1/2 =(16.12+44.262)1/2 =47.1N•m (5)计算当量弯矩:根据课本得α=1 Mec=[MC2+(αT)2]1/2=[47.12+(1×271)2]1/2 =275.06N•m (6)校核危险截面C的强度 由式(10-3) σe=Mec/(0.1d)=275.06/(0.1×453) =1.36Mpa<[σ-1]b=60Mpa ∴此轴强度足够七、滚动轴承的选择及校核计算 根据根据条件,轴承预计寿命 16×365×10=58400小时 1、计算输入轴承 (1)已知nⅡ=686r/min 两轴承径向反力:FR1=FR2=500.2N 初先两轴承为角接触球轴承7206AC型 根据课本得轴承内部轴向力 FS=0.63FR 则FS1=FS2=0.63FR1=315.1N (2) ∵FS1+Fa=FS2 Fa=0 故任意取一端为压紧端,现取1端为压紧端 FA1=FS1=315.1N FA2=FS2=315.1N (3)求系数x、y FA1/FR1=315.1N/500.2N=0.63 FA2/FR2=315.1N/500.2N=0.63 根据课本得e=0.68 FA1/FR158400h ∴预期寿命足够 2、计算输出轴承 (1)已知nⅢ=114r/min Fa=0 FR=FAZ=903.35N 试选7207AC型角接触球轴承 根据课本得FS=0.063FR,则 FS1=FS2=0.63FR=0.63×903.35=569.1N (2)计算轴向载荷FA1、FA2 ∵FS1+Fa=FS2 Fa=0 ∴任意用一端为压紧端,1为压紧端,2为放松端 两轴承轴向载荷:FA1=FA2=FS1=569.1N (3)求系数x、y FA1/FR1=569.1/903.35=0.63 FA2/FR2=569.1/930.35=0.63 根据课本得:e=0.68 ∵FA1/FR158400h ∴此轴承合格 八、键联接的选择及校核计算 轴径d1=22mm,L1=50mm 查手册得,选用C型平键,得: 键A 8×7 GB1096-79 l=L1-b=50-8=42mm T2=48N•m h=7mm 根据课本P243(10-5)式得 σp=4T2/dhl=4×48000/22×7×42 =29.68Mpa<[σR](110Mpa) 2、输入轴与齿轮联接采用平键联接 轴径d3=35mm L3=48mm T=271N•m 查手册P51 选A型平键 键10×8 GB1096-79 l=L3-b=48-10=38mm h=8mm σp=4T/dhl=4×271000/35×8×38 =101.87Mpa<[σp](110Mpa) 3、输出轴与齿轮2联接用平键联接 轴径d2=51mm L2=50mm T=61.5Nm 查手册选用A型平键 键16×10 GB1096-79 l=L2-b=50-16=34mm h=10mm 据课本得 σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]

在写机械专业论文时,首先面临的问题就是题目如何拟定?题目的选择,关系着论文的成败,因此决定论文题目时,必须经过审慎的考虑。下面我给大家带来2021机械专业论文题目_机械论文题目选题,希望能帮助到大家!

机械论文题目

1、自主导航农业机械避障路径规划

2、煤矿机械电气设备自动化调试技术研究

3、机械加工中加工精度的影响因素与控制

4、三自由度机械臂式升降平台运动学建模及仿真

5、基于并联交错的起重机械节能装置设计研究

6、CNN和RNN融合法在旋转机械故障诊断中的应用

7、机械剪切剥离法制备石墨烯研究进展

8、机械压力机滚滑复合导轨结构设计研究

9、机械压力机曲轴、轴瓦温升自动控制设计技术

10、基于无线传感的机械冲压机振动监测分析

11、基于GNSS的农业机械定位与姿态获取系统

12、一种冗余机械臂多目标轨迹优化 方法

13、基于湍流模型的高速螺旋槽机械密封稳态性能研究

14、基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计

15、牵引变电站直流断路器机械状态监测与故障诊断研究

16、方钢管混凝土柱卡扣机械连接试验及有限元分析

17、机械电子工程与人工智能的关系

18、机械法与机械-酶消化法制备大鼠膈肌组织单细胞悬液的比较

19、机械制造工艺及精密加工技术研究

20、腐蚀减薄对X80钢管机械损伤凹陷过程中应力应变的影响

21、基于驻极体材料的机械天线式低频通信系统仿真研究

22、基于"J型锁芯"的机械锁芯结构创新分析

23、浅析我国烟草机械技术的发展现状和趋势

24、液滴分析仪的机械结构设计

25、化工机械密封件损伤数值模拟及维修对策探讨

26、一种镍基单晶高温合金的反相热机械疲劳行为

27、浅谈机械数控技术的应用现状和发展趋势

28、数控机械加工进刀工艺优化 措施 分析

29、基于STM32六自由度机械臂发展前景

30、机械工程自动化技术存在的问题及对策探析

31、机械设计制造的智能化发展趋势综述

32、RFID在机械加工中的应用探究

33、试论船舶机械设备维修保养中的常见故障及排除方法

34、探讨港口流动机械预防性维护保养

35、关于端盖零件机械加工工艺的设计要点分析

36、关于机械加工工艺对零件加工精度的影响研究

37、现代机械制造及加工技术分析

38、论机械设计加工中需要注意的问题

39、基于机械设计制造中零件毛坯选择的研究与应用

40、机械零件加工精度影响因素探析

41、机械制造加工设备的安全管理与维修探讨

42、机械设备的环保性能分析

43、探究机电一体化系统在机械工程中的应用

44、机械制造过程的绿色制造技术应用研究

45、浅析机械设计制造中机电一体化的应用

46、机械工程的可靠性优化设计分析

47、浅析机械设备焊接制作中注意事项与探讨

48、浅谈山西省农产品初加工机械发展现状

49、浅谈信息化教学在机械制图课程中的应用策略

50、基于OBE的机械原理课程设计项目式教学改革研究

机械专业 毕业 论文题目

1、新型机械设计方法研究

2、钢铁冶炼机械设备的故障诊断及处理措施研究

3、机械制造工艺的可靠性分析

4、浅谈影响机械加工表面质量的因素与应对措施

5、抛光介质对镁合金化学机械抛光的影响

6、机械设计制造及其自动化发展方向的研究

7、试论物流机械设备使用管理

8、起重机械节能技术的应用研究

9、机械传动系统扭转振动模式的有限元分析

10、齿轮加工技术发展动态

11、机电产品设计与腐蚀防护设计的关系

12、机械制造中数控技术应用分析

13、铜冶炼设备机械液压系统的污染与控制

14、柴油机齿轮室总成异响分析与改进

15、一种用于图书自动存取装置的设计

16、机械加工零件表面纹理缺陷检测技术与实践

17、圆柱齿轮的加工原理及误差分析

18、机械设计基础课程 教学方法 与手段的探讨

19、基于OBE工程 教育 理念的机械原理课程设计改革

20、基于复杂工程问题的机械产品设计制造综合实践研究

21、现代机械制造工艺的特点及发展趋势分析

22、浅谈大直径渐开线斜齿轮的修整加工

23、机械加工工艺对加工精度的影响分析

24、机械构建的自动控制阀门探究

25、浅谈绿色制造技术在机械制造领域的应用

26、试析高职“机械制图与CAD”课程教学改革与实践

27、某减速机齿轮崩齿失效分析

28、往复式压缩机能效优化分析

29、大型薄壁件多点定位的初始布局优化算法研究

30、轴向拉紧的圆弧端齿轴段扭转特性研究

31、平行轴渐开线变厚齿轮传动的几何设计与啮合特性分析

32、化工生产用减速机的常见问题与处理

33、强化工程能力培养的地方高校机械设计系列课程改革

34、机械优化设计理论方法研究综述

35、我国机械设计制造及其自动化发展方向研究

36、机械设计制造及其自动化的发展方向

37、基于小波包和样本熵的齿轮故障特征提取

38、LDP型电动单梁起重机双向防坠落安全钩设计

39、自平衡自定位节能型多段水泵的研究

40、往复运动机构的能耗特点及加入空气弹簧后的节能控制方法

41、考虑粗糙度和固体颗粒效应的直齿轮跑合瞬态热弹流润滑分析

42、超大型起重机桥架整体加工工艺及装备

43、数控车间供电质量缺陷及对策

44、浅谈机械加工工艺对零件加工精度的影响

45、基于弹流理论的深槽密封机制分析

46、管线球阀产品及监造质量控制概述

47、往复式压缩机组管线振动分析及改造

48、精制柴油泵机封泄漏原因浅析和改进措施

49、基于漂流提升区输送带优化改进

50、离心泵径向力预测方法研究

机械工程硕士论文题目

1、车载液压机械臂动态设计与研究

2、基于网络模型的复杂机电系统可靠性评估

3、螺纹联接自动装配系统的研究

4、轴承压装仿真与试验以及液力变矩器导轮的热装配变形分析研究

5、硫系自润滑钢中原位自生金属硫化物自润滑相的形成机制与控制方法

6、基于电动气旋流的吸附器的开发和特性研究

7、动圈式比例电磁铁关键技术研究

8、箱式风机管道法兰的柔性制造系统

9、六自由度运动平台优化设计及动态仿真研究

10、面向恶劣服役环境的工件抗缺陷结构优化设计方法及其应用

11、基于数字液压缸组的多浮力摆波能装置压力平衡研究

12、具有运动控制功能的电液比例阀控制器研究

13、微型轴承内圆磨削加工的质量监控系统研究

14、抗负载波动回转控制阀优化设计研究

15、气浮式无摩擦气缸静动态特性研究

16、模拟风力机载荷的电液加载装置的设计研究

17、用于扩散吸收式热变换器的气泡泵性能实验研究

18、脂肪醇聚氧乙烯醚与三乙醇胺硼酸酯水溶液的摩擦学性能研究

19、表面织构化固体润滑膜设计与制备技术研究

20、双压力角非对称齿轮承载能力的影响因素研究及参数优化

21、全电液式多路阀自动测试系统设计与实现

22、开关液压源系统研究分析及其试验系统的设计与搭建

23、飞轮储能系统电机与轴系设计

24、面向不完全数据的疲劳可靠性分析方法研究

25、树木移植机液压系统的设计研究

26、新型双输出摆线减速器的设计与分析

27、基于ARM9架构的工业喷码机研究与实现

28、超高压水射流破拆机器人液压系统设计与研究

29、考虑轴承影响的摆线针轮传动动力学研究

30、车辆传动装置供油系统设计方法研究

31、润滑油复合纳米粒子添加剂摩擦学性能的研究

32、高速气缸的缓冲结构研究

33、大长径比柔性对象自动送料关键技术研究

34、空间索杆铰接式伸展臂根部锁紧机构运动功能可靠性研究

35、基于能量梯度理论的离心压缩机固定元件性能改进研究

36、并联RCM机构构型综合及典型机构运动学分析

37、多自由度气动人工肌肉机械手指结构设计及控制

38、闸板位置对闸阀内部气固两相流及磨损的影响

39、电液伺服阀试验台测控系统的设计

40、多盘制动器加压装置典型结构设计及试验研究

41、重型多级离心泵穿杠螺母拧紧装置的设计

42、气动增压阀动态特性的仿真研究

43、小间隙下狭缝节流止推轴承特性研究

44、离心通风机的性能预测与叶片设计研究

45、基于有限元法的齿面修形设计

46、离心泵输送大颗粒时固液两相流场的数值计算

47、小流量工况下离心泵内部流动特性分析

48、双粗糙齿面接触时的弹流润滑数值分析

49、工程专用自卸车车架疲劳寿命分析

50、倾斜式带式输送机断带抓捕装置的研究

2021机械专业论文题目相关 文章 :

★ 优秀论文题目大全2021

2021毕业论文题目怎么定

★ 机械制造毕业论文范文参考

★ 机械类学术论文题目

★ 大学生论文题目大全2021

★ 优秀论文题目2021

★ 大学生论文题目参考2021

★ 2021机械毕业实习报告例文5篇

★ 机械类科技论文范文(2)

★ 2021建筑类专业论文题目

我会帮你问问的

  • 索引序列
  • 减速机真空泵机封轴承机械类论文
  • 泵盘根改造机械轴封毕业论文
  • 机械设计毕业论文减速机设计
  • 真空吸盘机械手论文
  • 轴承试漏机毕业论文
  • 返回顶部