是有的,你自己来拿吧,行不
总体设计思路:拟屋顶建设低压配电用户侧并网光伏发电项目所发电量接入内供电网络光伏发电自发自用实现光伏新能源电力示范应用保障光伏装机容量及发电量光伏电池板采用固定倾角支架式安装朝向南太阳能电池组件阵列尽量避免建筑物阵列间遮挡并预留维护通道根据客户初步提供用电32度根据佳角度进行太阳能电池组件铺设计算初步铺设太阳能电池组件205W(1580x808x50mm)16块总装机容量3.28kwp初步设计需要安装面积59.189平米设计光伏组件安装倾角面设计32度安装式,32度倾角实现单位装机容量全发电量尽量利用屋顶效使用面积获较屋顶发电效率预计发电量:北京市光伏发电示范项目预计平均发电量按32度倾角设计11.066KWh电网接入案:屋面光伏组件经定数量串联升压通直流防雷汇流装置别接至1台并网逆变器并网逆变器光伏所发直流电逆变与区域内电网同频率同相位交流电经交流配电柜(含防 雷保护、发电量计量等)接入配电间光伏发电路(原配电柜增加光伏路)两相220V低压配电网通交流配电线路给负荷供电实现光伏发电并入商场内部电网北京市光伏发电示范项目工程设计概算包括光伏组件、光伏支架(含基础钢架)、逆变设备、直流配电、交流配电、电缆、工程施工等二、光伏发电原理简介及特点()太阳能利用概况太阳能各种再能源重要基本能源物质能、风能、海洋能、水能等都自太阳能广义说太阳能包含各种再能源太阳能作再能源种则指太阳能直接转化利用通转换装置太阳辐射能转换热能利用属于太阳能热利用技术再利用热能进行发电称太阳能热发电属于技术领域;通转换装置太阳辐射能转换电能利用属于太阳能光发电技术原理图:(二)光伏发电原理太阳能光发电技术通转换装置太阳辐射能转换电能利用技术光电转换装置通利用半导体器件光伏效应原理进行光电转换称太阳能光伏技术光伏特效应简称光伏效应指光照使均匀半导体或半导体与金属组合同部位间产电位差现象(三)光伏系统发电特点- 没转部件产噪音;- 没空气污染、排放废水;- 没燃烧程需要燃料;- 维修保养简单维护费用低;- 运行靠性、稳定性;- 根据需要容易扩发电规模
太阳能电池组件在阳光照射下会产生光伏电压和光生电流,是光伏系统的发电装置。它输出的是直流电,经充放电控制器整定后用来为蓄电池充电;充电的过程是储能的过程。蓄电池是光伏系统的储能装置。白天,太阳能被光电池转化为电能,通过给蓄电池充电,电能又转化为化学能。到了晚上,太阳能电池停止发电和充电,蓄电池开始对负载放电,化学能又转化为电能供给光源工作。所以,一个完整的光伏系统在一昼夜间发生了一系列能量的转化:太阳辐射能→电能→电化学能→电能→电光照明。智能化充放电控制器在光伏系统能量转化中起着极其重要的控制作用。这个控制器具有先进的充电控制、放电控制以及过充电保护、过放电保护、过载保护反接保护等一系列保护功能。光伏系统的性能好坏与控制器有着重大关系,可以说充放电控制器是光伏系统的心脏。目前光伏系统用充放电控制器都以单片机对充放电过程尤其是充电过程进行严密监控,大大提高了系统可靠性
是有的,你自己来拿吧,行不
一、项目概括1.1项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 1.2 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值1.3项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计2.1组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 41.2V 41.33V组件转换效率(%) 19.54% 19.78% 19.9%最佳工作电流(Imp) 9.76A 9.83A 9.68A开路电压(Voc) 48.8V 49V 49.58V短路电流(Isc) 10.24A 10.3A 10.33A工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 -0.350%/℃ -0.35%/℃ -0.35%/℃开路电压(Voc)的温度系数 -0.290%/℃ -0.29%/℃ -0.272%/℃短路电流(Isc)的温度系数 0.048%/℃ 0.048%/℃ 0.044%/℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图2.2最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图2.3组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式2.4组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(27.96°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图2.5逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 98.1% 98.1% 98.1%最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 28.5AMPPT电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) 168.8A 185.7 A 167A功率因数 0.8 超前—0.8 滞后 0.8超前—0.8滞后 0.99 (0.8超前—0.8滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 93.5kg工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。2.6光伏阵列布置设计2.6.1串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数-0.00272K——光伏组件的工作电压系数-0.0035t/——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)41.33VMPPTmax——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)49.58N——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)-12.7——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:5.5≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图2.6.2项目方阵排布据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 2.7基础与支架设计2.7.1水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图2.7.2支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图2.8配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜2.9电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数0.8==190A=0.035Ω=976W线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图2.10防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图2.11电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益3.1电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 1.77 18.42 逆变器 固德威HT 100K 台 1 3.3w 3.33 直流电缆 PV1-F-1*4mm² 米 1500 5.2 0.784 交流电缆 ZRC-YJV22 70mm2 米 100 72 0.725 支架 \ 套 39 556 2.176 水泥墩 500*500*500mm 个 78 250 1.957 配电箱 昌松100kw光伏交流配电箱 台 1 1.3w 1.38 运输费 \ 总 18 1000 1.89 其他 \ \ \ \ 4.1510 人工费 \ \ \ \ 7合计:41.57万元3.2电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。 (式3-1)Q=100*1116.6*0.8=89328度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数(1258.2H)——系统综合效率(0.8)任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 2.5% 97.50% 89328.000 89328.000第2年 0.7% 96.80% 87094.800 176422.800第3年 0.7% 96.10% 86469.504 262892.304第4年 0.7% 95.40% 85844.208 348736.512第5年 0.7% 94.70% 85218.912 433955.424第6年 0.7% 94.00% 84593.616 518549.040第7年 0.7% 93.30% 83968.320 602517.360第8年 0.7% 92.60% 83343.024 685860.384第9年 0.7% 91.90% 82717.728 768578.112第10年 0.7% 91.20% 82092.432 850670.544第11年 0.7% 90.50% 81467.136 932137.680第12年 0.7% 89.80% 80841.840 1012979.520第13年 0.7% 89.10% 80216.544 1093196.064第14年 0.7% 88.40% 79591.248 1172787.312第15年 0.7% 87.70% 78965.952 1251753.264第16年 0.7% 87.00% 78340.656 1330093.920第17年 0.7% 86.30% 77715.360 1407809.280第18年 0.7% 85.60% 77090.064 1484899.344第19年 0.7% 84.90% 76464.768 1561364.112第20年 0.7% 84.20% 75839.472 1637203.584第21年 0.7% 83.50% 75214.176 1712417.760第22年 0.7% 82.80% 74588.880 1787006.640第23年 0.7% 82.10% 73963.584 1860970.224第24年 0.7% 81.40% 73338.288 1934308.512第25年 0.7% 80.70% 72712.992 2007021.5043.3电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
一、项目概括1.1项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 1.2 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值1.3项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计2.1组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 41.2V 41.33V组件转换效率(%) 19.54% 19.78% 19.9%最佳工作电流(Imp) 9.76A 9.83A 9.68A开路电压(Voc) 48.8V 49V 49.58V短路电流(Isc) 10.24A 10.3A 10.33A工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 -0.350%/℃ -0.35%/℃ -0.35%/℃开路电压(Voc)的温度系数 -0.290%/℃ -0.29%/℃ -0.272%/℃短路电流(Isc)的温度系数 0.048%/℃ 0.048%/℃ 0.044%/℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图2.2最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图2.3组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式2.4组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(27.96°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图2.5逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 98.1% 98.1% 98.1%最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 28.5AMPPT电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) 168.8A 185.7 A 167A功率因数 0.8 超前—0.8 滞后 0.8超前—0.8滞后 0.99 (0.8超前—0.8滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 93.5kg工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。2.6光伏阵列布置设计2.6.1串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数-0.00272K——光伏组件的工作电压系数-0.0035t/——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)41.33VMPPTmax——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)49.58N——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)-12.7——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:5.5≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图2.6.2项目方阵排布据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 2.7基础与支架设计2.7.1水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图2.7.2支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图2.8配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜2.9电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数0.8==190A=0.035Ω=976W线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图2.10防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图2.11电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益3.1电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 1.77 18.42 逆变器 固德威HT 100K 台 1 3.3w 3.33 直流电缆 PV1-F-1*4mm² 米 1500 5.2 0.784 交流电缆 ZRC-YJV22 70mm2 米 100 72 0.725 支架 \ 套 39 556 2.176 水泥墩 500*500*500mm 个 78 250 1.957 配电箱 昌松100kw光伏交流配电箱 台 1 1.3w 1.38 运输费 \ 总 18 1000 1.89 其他 \ \ \ \ 4.1510 人工费 \ \ \ \ 7合计:41.57万元3.2电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。 (式3-1)Q=100*1116.6*0.8=89328度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数(1258.2H)——系统综合效率(0.8)任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 2.5% 97.50% 89328.000 89328.000第2年 0.7% 96.80% 87094.800 176422.800第3年 0.7% 96.10% 86469.504 262892.304第4年 0.7% 95.40% 85844.208 348736.512第5年 0.7% 94.70% 85218.912 433955.424第6年 0.7% 94.00% 84593.616 518549.040第7年 0.7% 93.30% 83968.320 602517.360第8年 0.7% 92.60% 83343.024 685860.384第9年 0.7% 91.90% 82717.728 768578.112第10年 0.7% 91.20% 82092.432 850670.544第11年 0.7% 90.50% 81467.136 932137.680第12年 0.7% 89.80% 80841.840 1012979.520第13年 0.7% 89.10% 80216.544 1093196.064第14年 0.7% 88.40% 79591.248 1172787.312第15年 0.7% 87.70% 78965.952 1251753.264第16年 0.7% 87.00% 78340.656 1330093.920第17年 0.7% 86.30% 77715.360 1407809.280第18年 0.7% 85.60% 77090.064 1484899.344第19年 0.7% 84.90% 76464.768 1561364.112第20年 0.7% 84.20% 75839.472 1637203.584第21年 0.7% 83.50% 75214.176 1712417.760第22年 0.7% 82.80% 74588.880 1787006.640第23年 0.7% 82.10% 73963.584 1860970.224第24年 0.7% 81.40% 73338.288 1934308.512第25年 0.7% 80.70% 72712.992 2007021.5043.3电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
太阳能光伏电源毕业论文设计标签: 太阳能电池逆变器毕业论文校园目录摘要... 1ABSTRACT. 21 绪论.... 32太阳能光伏电源系统的原理及组成... 42.1太阳能电池方阵... 42.1.1太阳能电池的工作原理... 52.1.2 太阳能电池的种类及区别... 52.1.3太阳能电池组件... 52.2 充放电控制器.... 62.2.1充放电控制器的功能... 72.2.2 充放电控制器的分类... 72.2.3 充放电控制器的工作原理... 82.3蓄电池组... 92.3.1太阳能光伏电源系统对蓄电池组的要求.... 92.3.2铅酸蓄电池组的结构.... 102.3.3铅酸蓄电池组的工作原理... 102.4直流-交流逆变器.... 112.4.1逆变器的分类... 112.4.2太阳能光伏电源系统对逆变器的要求... 122.4.3逆变器的主要性能指标... 122.4.4逆变器的功率转换电路的比较... 143太阳能光伏电源系统的设计原理及其影响因素... 163.1太阳能光伏电源系统的设计原理... 173.1.1太阳能光伏电源系统的软件设计... 173.1.2太阳能光伏电源系统的硬件设计... 193.2太阳能光伏电源系统的影响因素... 204 总结... 21致谢...参考文献...摘要光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上蓄电池组,充放电控制器,逆变器等部件就形成了光伏发电装置。本文首先介绍了太阳能光伏电源系统的原理及其组成,初步了解了光生伏打效应原理及其模块组成,然后进一步研究各功能模块的工作原理及其在系统中的作用,最后根据理论研究成果,利用硬件和软件相结合的方法设计出太阳能光伏电源系统,以及研究系统的影响因素。关键词:光生伏特效应;太阳能电池组件;蓄电池组;充放电控制器;逆变器Topic:The Design of Photovoltaic PowerAbstractPhotovoltaic power generation is a technology of being energy directly into electrical energy on semiconductor photo-voltaic effect .The key components of this technology is the solar cell. Solar cells in series can be formed after the package to protect a large area of solar cells, together with the battery, charge and discharge controller, inverter and other components to form a photovoltaic device. This paper introduces the principle of solar photovoltaic power system and its components, a preliminary understanding of the principle of photovoltaic effect and its modules, and then further study the working principle of each functional module and its role in the system, the final results of theoretical studies based the use of hardware and software combination designed a solar photovoltaic power systems, and study the impact of system factors.Keywords : photo-voltaic effect; Solar cells; batteries; charge and discharge controller;inverter.1 绪论人类社会进入21世纪,正面临着化石燃料短缺和生态环境污染的严重局面。廉价的石油时代已经结束,逐步改变能源消费结,大力发展可再生能源,走可持续发展的道路,已逐渐成为人们的共识。太阳能光伏发电具有独特的优点,近年来正在飞速发展。太阳能电池的产量年增长率在40%以上,已成为发展最迅速的高新技术产业之一,其应用规模和领域也在不断扩大,从原来只在偏远无电地区和特殊用电场合使用,发展到城市并网系统和大型光伏电站。尽管目前太阳能光伏发电在能源结构中所占比例还微不足道,但是随着社会的发展和技术的进步,其份额将会逐步增加,可以预期,到21世纪末,太阳能发电将成为世界能源供应的主体,一个光辉的太阳能时代将到来。我国的光伏产业发展极不平衡,2007年太阳能电池的产量已经超过日本和欧洲而居世界第一,然而光伏应用市场的发展却非常缓慢,光伏累计安装量大约只占世界的1%,应用技术水平与国外相比还有相当大的差距。光伏产品与一般机电产品不同,必须很据负载的要求和当地的气象、地理条件来决定系统的配置,由于目前光伏发电成本较高,所以应进行优化设计,以达到可靠性和经济性的最佳结合,最大限度的发挥光伏电源的作用。为了提高太阳能的转换效率,获取更多的有效能源,满足人类的能源供应,世界各国在研究太阳能光伏系统中都投入了大量的人力与物力。我国对太阳能光伏电源系统的研究还处于世界低等水平,产品的性能还有待提高,为迎接未来能源短缺带来的严峻挑战,我们应该加大对太阳能光伏系统的研究,以满足人类未来对能源的需求。本文从理论出发,阐述了太阳能光伏电源的原理及其组成结构;结合科研实际,应用硬件和软件结合的方法,设计了简易的太阳能光伏电源模拟系统。根据这个简易系统研究分析了太阳能光伏电源的影响因素,合理优化了系统的配置,以提高系统的性能,最终提高了太阳能的转换效率。
是有的,你自己来拿吧,行不
[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.2012.2[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,IEEE.1999,36(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998
太阳能电池组件在阳光照射下会产生光伏电压和光生电流,是光伏系统的发电装置。它输出的是直流电,经充放电控制器整定后用来为蓄电池充电;充电的过程是储能的过程。蓄电池是光伏系统的储能装置。白天,太阳能被光电池转化为电能,通过给蓄电池充电,电能又转化为化学能。到了晚上,太阳能电池停止发电和充电,蓄电池开始对负载放电,化学能又转化为电能供给光源工作。所以,一个完整的光伏系统在一昼夜间发生了一系列能量的转化:太阳辐射能→电能→电化学能→电能→电光照明。智能化充放电控制器在光伏系统能量转化中起着极其重要的控制作用。这个控制器具有先进的充电控制、放电控制以及过充电保护、过放电保护、过载保护反接保护等一系列保护功能。光伏系统的性能好坏与控制器有着重大关系,可以说充放电控制器是光伏系统的心脏。目前光伏系统用充放电控制器都以单片机对充放电过程尤其是充电过程进行严密监控,大大提高了系统可靠性
太阳能发电系统是利用电池组件将太阳能直接转变为电能的装置系统。在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。
通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。太阳能→电能→化学能→电能→光能。
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
(1)电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,于是就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。
(2)电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。
是有的,你自己来拿吧,行不
北宋神宗朝西北军需补给研究战争影响下的社会信息控制与边疆安全建设单一窗口式的通关模式思考用户型独立光伏发电照明系统的研究与设计河湟地区开发史研究桥头堡战略下提升云南经济开放度对策研究公安边防院校大学英语课程设置个案研究基于龙芯HS3210电力巡检仪研制金代招讨司研究明代山西都司研究北宋北方淤田若干问题初步研究出入境边防检查机关执法不足、原因及对策研究环境影响下的传统农田水利的开发研究明洪武永乐时期对河西地区的经营余子俊及其在延绥镇边防中的作用俄罗斯海上执法主体的设置模式及对我国的启示刘大夏研究明代浙江海防建置研究少数民族对民族政策的认同感研究基于Struts技术的案件综合管理系统的设计与实现清代海南建置制度考清初中俄东北边事法律问题研究基于无线传感器网络的目标跟踪研究辽朝东京海事问题研究一种新型风力发电一体机的设计与研究试论深圳南头古城遗址的保护汽车炸弹爆炸冲击波在城市街道传播规律研究论南宋儒臣曹彦约新疆兵地经济融合发展模式研究论宋代赊买卖契约制度中晚唐边塞行旅诗研究周恩来在抗美援朝战争中的军事和外交贡献部队在线网络考试系统的设计与实现明代洮州卫研究我国边防管理体制改革研究明蒙互市贸易述论论我国不准外国人入境制度的完善提升广州边检服务顾客满意度实证研究内陆边防出入境管理问题研究魏晋南北朝晋语研究独立型太阳能发电系统双向直直变换模块的研究与实现成都市公安信息化建设现状与对策分析我国边防执法体制弊端及改革研究基于生物识别技术的出入境旅客自助查验系统设计某超高层续建工程施工项目总承包管理的研究应急指挥网络系统中路由技术的研究与实现河南省文化信息资源共享工程管理机制研究基于TD-SCDMA无线固定终端系统的设计与实现出入境边防检查总站民警轮岗交流研究
光伏发电我明白,这个我了解好比