首页 > 期刊投稿知识库 > 甲烷化工艺论文参考文献

甲烷化工艺论文参考文献

发布时间:

甲烷化工艺论文参考文献

甲烷化反应是在催化剂存在下,用氢气还原一氧化碳和二氧化碳生成甲烷和水的反应。中文名甲烷化反应特点体积缩小、强放热过程生成甲烷和水使用范围催化剂反应原理影响因素甲烷化催化剂TA说反应原理甲烷化反应原理CO和CO2,在一定的温度和甲烷化催化剂作用下,与H2发生反应,生成CH4和水蒸气,通过后部冷却,使水蒸气冷凝分离,最后得到只含CH4杂质的合格氢。甲烷化反应是体积缩小、强放热过程。[1]影响因素(1)催化剂活性催化剂的活性好,则甲烷化反应速度快,CO和CO2去除较为彻底,一旦催化剂使用不当,造成活性衰退,就很难保持装置满负荷生产,使生产能力受到制约。甲烷化工艺流原则程图(2)温度因甲烷化反应是强放热反应,温度低有利于反应进行。但温度过低,反应活性分子数量大大减少,反应速度反而因此减慢。装置生产在负荷大的情况下是不能降低温度操作的,这样很容易出现反应物穿透。如果温度过高,化学平衡观点认为,不能把CO和CO2降到更低的水平。因此,实际生产中所控制的温度应兼顾到反应速度和化学平衡两个方面。(3)压力CO和CO2的甲烷化反应是体积缩小的反应,压力升高有利于反应彻底。相反,降低反应压力,残余的CO和CO2就会有所上升。实际生产中,甲烷化反应器的压力变化非常小。(4)空速空速对反应的影响较大。空速过大,反应不完全。(5)CO浓度转化气中的CO,由于经过两次低温两次变换后,在其粗氢中的残留量已不构成对甲烷化反应器超温威胁。但由于CO的甲烷化反应放热量比CO2甲烷化的放热量大,在正常空速下,每增加1%的CO量,会使甲烷化反应器床层温度升高72℃。所以在正常生产中,一定要控制好变换反应,监控好CO残留量,才能保证甲烷化反应器不发生超温事故。(6)CO2浓度C02含量是造成甲烷化反应器超温的最大潜在危害。因为正常生产中,一旦吸收塔操作不正常,会使大量的CO2进入到甲烷化反应器内,每增加1%的CO2,会使反应器床层温度升高60℃。[1]

化工论文格式范文

导语:化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。下面是我分享的化工论文格式的范文,欢迎阅读!

题目:化学工程中的化工生产工艺

摘要:

化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。

关键词:化学工程;化工生产工艺;化工技术

目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。

1我国化工生产的现状

机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。

1.1化工生产效率较低

我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。

1.2对自然环境污染较为严重

化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。

2降低我国化工生产污染的措施

从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:

2.1优化反应环境,强化反应条件

反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。

2.2做好废料环保处理工作

目前,我国法律明文规定,化工生产中产生的`重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。

2.3从化工生产技术入手

只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。

3结论

化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。

参考文献

[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.

[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.

[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.

[4]高改轻.化学工程中化工生产的工艺解析[J].民营科技,2014(7):73.

题目:化学工程技术创新在石化工业装置实践研究

摘要: 化学工程技术是石油工业发展的重要基础,其技术的创新和发展对推动整个石化行业发展有着重要的意义。化学工程技术能有效解决石化工业装置建设中的问题,并且能对其进行改造,让石化工业得到更好的发展。本文主要通过讲述石化工业装置中关于工业炉的改造,以体现化学工程创新在其中的意义。

关键词:化学工程;技术创新;石化工业;装置建设

引言

化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。

一、石化工业装置建设中的主要改造的部分

在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:

1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。

2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。

3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。

4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。

5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。

二、化学工程技术创新在炼油方面的实践与进展

1.催化裂化技术

在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。

2.炼油装置

炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了79.12%,整个装置的能耗量低至每吨11千克标油。

3.催化重整技术创新

在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。

4.新型塔板、填料和冷换设备

在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。

三、化学工程技术创新在有机原料方面

1.乙烯成套技术

自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。

2.甲苯歧化和烷基转移成套技术

甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。

3.苯乙烯成套技术

在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。

4.化工型MTBE合成及裂解一体化成套技术

化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。

结论

化学工程技术的创新对石化工业装置建设的发展发挥着重要的促进作用,但也正是因为石化工程装置建设要不断满足市场的需求,不断自我发展,自我突破,才为化学工程技术提供了良好创新环境。二者相辅相成,相互促进。所以只有不断注重化学工程技术的创新,重视合理的引进、吸收国外的经验,并根据本国的国情与条件进行合理的研究,是能有发现好的创新点,大大提升化学工程技术的效率。

甲醇废液处理工艺论文参考文献

甲醇比乙醇便宜,而且沸点低,容易蒸出和回收,其缺点就是有一定的毒性,而且由于沸点低,对防爆要求更高。

朋友你好:可以做以下的步骤1.将废水通酸池进行酸洗去除碱性的叠氮钠,此时的DMF不反应2.将剩余的废水进行静止分层,利用液体的密度,取上层清夜(DMF)3.将取出清夜进行空气冷凝蒸馏,纯化个人感觉回收率可以超过60%,工艺控制好的可以将废水反复利用,从而达到一点不浪费

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

甲烷资源化国内外研究现状论文

煤层气是保留在生气母质——煤层中的气体,其成分以甲烷为主,是一种自生自储式的天然气。这种气体大多未经运移而分散在煤层中,部分聚集成“瓦斯包”,成为采煤中瓦斯突出的根源。长期以来,煤层气被视为灾害,以往很多工作都从煤矿安全的角度出发,开展瓦斯赋存和运移规律研究及相应的排放工程试验,在世界能源问题日趋严重的今天,煤层气作为一种新型能源受到许多国家的高度重视。如俄罗斯已将煤矿床看作“煤-甲烷”矿床,把甲烷视同煤一样进行开发利用。世界上74个发现有煤炭资源的国家中,35个国家开展了煤层气研究工作,其中约一半的国家开展了煤层气专门探井和生产参数测试等工作(图0.5)。美国在煤层气研究开发方面一直处于世界领先地位,自20世纪70年代以来,美国能源部(DOE)制定了“非常规天然气回采计划”,从煤层气资源的基础地质研究到钻探、试采、强化和集输等方面投入了大规模研究工作,建立了煤层甲烷情报中心、煤层数据库和用于模拟煤层甲烷生产和水力压裂的数字模型,取得了控制煤层甲烷产能的地质因素及煤层的储集性能等方面的重大突破。1998年,美国的煤层气年产量就达到324×108m3。2005年全美17个含煤盆地,有圣胡安、黑勇士、尤因塔、阿巴拉契亚、汾河和拉顿等13个盆地开展了煤层气资源评价,煤层气生产井达到8万多口,年产量达到490×108m3。加拿大的煤层气开发试验始于1978年,2002年煤层气产量达到1×108m3,2004年猛增到15.5×108m3;加拿大煤层气商业化开发高潮是2002~2004年,2002~2003年增加了1000口煤层气井,产量达到5.1×108m3/a,2004年煤层气井总数达1900口,产量达到15.5×108m3/a;澳大利亚煤层气总资源量(8~14)×1012m3,1996年以来到2004年,年产煤层气12.85×108m3,单井产量3000~7000m3/d;俄罗斯煤层气抽放始于1951年,1990年达到巅峰,当年有48处煤矿抽放煤层气,年抽放量2.16×108m3,之后,抽放量下降。英国目前有9口煤层气抽采井,主要用于发电。德国煤层气总资源量3×1012m3,1998年的煤层气年抽放量就达到10.7×108m3,1998年和1999年修建了2座煤层气发电厂。印度煤层气资源较丰富,但勘探程度低,目前试验井的单井产量可达5000~6000m3/d。波兰下西里西亚、上西里西亚和卢布林盆地煤层气资源量约3×1012m3,政府将煤层气开发作为减少天然气进口的主要手段,今后五年计划在上西里西亚煤田开采煤层气50×108m3,下西里西亚煤田开采3×108m3。

图0.5 世界煤层气研发现状图

(据贾承造等,2007)

全世界的煤估计含有3500×1012~9500×1012ft3的煤层气

我国煤层气工业起步较晚,大致可分为三个阶段:新中国成立后到20世纪70年代末,主要是以煤矿安全为中心的瓦斯抽放和利用阶段;从70年末到90年代初,是资源调查与评价、地面勘探开发试验和井下抽放利用阶段,韩城矿区煤层气地面勘探就是从90年代初开始的;90年代以来,煤层气进入大规模勘探、开采试验和商业化开发利用阶段。预计2050年全国煤层气年产量将达到500×108m3。

“七五”期间,我国设立了“中国煤层甲烷的富集条件和资源评价”科技攻关研究项目,对中国煤层气资源远景进行了分类,提出了选区意见,估算埋藏深度2000m以浅的煤层气资源量31×1016m3。“八五”期间设立了“煤层气勘探开发评价选区及工程工艺技术”和“有利区块煤层吸附气开发研究”攻关项目,从生产角度在山西柳林,安徽淮南等地施工十余口地面勘探井,进行了测试、压裂和排采试验。1989年开始,我国陆续开展了煤层气勘探井或试生产井的实践工作,从1992年开始,原煤炭工业部在联合国开发计划署的资助下,实施“中国煤层气资源开发项目”,原地矿部、原石油部开展的“八五”国家攻关课题“85-102项目”,联合国资助的“深层煤层气勘探项目”、2002年国家“973”“煤层气成藏机制及经济开采基础研究”等课题以及许多外国公司的投资咨询都为我国深入开展储层特性研究、开采技术试验研究以及经济可行性研究积累了丰富的经验。据国家新一轮油气资源评价办公室2008年8月18日的消息,最新评价资料显示,我国42个含煤盆地,煤层气资源总量达37×1016m3,可采资源量11×1016m3。

进入21世纪以来,煤层气开发迎来了快速发展时期,2006年底全国登记煤层气探矿权区块98个,总面积6.5×104km2。在沁水、铁法探明煤层气地质储量1130×108m3,经济可采储量523×108m3。2007年设立了20多个煤层气专项试验区(图0.6),截至2005年底,全国施工煤层气地面抽采井615口,仅2005年就施工330口。山西潞安、晋城,安徽淮南等进入商业化开采,2006年全国煤层气产量超过1×108m3,2007年地面产能达到10×108m3,产量5×108m3。2007年仅山西沁水盆地产能达到3.3×108m3/a。辽宁煤田地质局在阜新施工8口煤层气生产井,2003年5月开始向阜新市供气,日供气量1.6×104m3。山西晋城潘庄煤层气地面开发项目,施工了175口煤层气井,日产气约10×104m3;山西沁南潘河先导性试验工程,计划施工900口煤层气井,到2005年底完成钻井100口,日产气约8×104m3。2005年以来,港联公司在陕西韩城矿区登记了煤层气采矿权,开始进行井网开采,但由于种种原因,只施工了一口煤层气井。2004~2006年中联煤层气有限公司在韩城矿区板桥一带施工了煤层气专门勘探井11口,单井煤层气产量达到500~2000m3/d,2007年提交了储量报告。

图0.6 全国煤层气试验区分布图

(据贾承造等,2007)

我国煤矿井下瓦斯抽采始于20世纪50年代初,1952年在辽宁抚顺矿务局龙凤煤矿进行了首次井下抽放试验并获得成功,随后,逐步推广到全国高瓦斯矿井。1957年山西阳泉矿务局四矿试验成功了临近层瓦斯抽放,本煤层长水平井抽放是目前的最新技术。据统计,20世纪50年代,全国有抚顺、阳泉、天府、北票等矿区的6对矿井进行瓦斯抽放,年抽放量0.60×108m3;60年代,焦作、淮南、中梁山、南桐、松藻、包头、峰峰等矿区的20对矿井抽放瓦斯,年抽放量达到1.6×108m3;70年代增加到83对,年抽放量2.42×108m3;80年代111对,年抽放量3.80×108m3。2002年全国20个主要瓦斯抽放矿区95对矿井抽放瓦斯,年抽放量7.72×108m3。经过50年的发展,煤矿井下瓦斯抽采,已由最初为保障煤矿安全生产到安全能源环保综合开发型抽采;抽采技术由早期的对高透气性煤层进行本煤层抽采和采区抽采单一技术,逐渐发展到针对各类条件适合于不同开采方法的瓦斯综合抽采技术。据统计,截止到2007年底,全国煤矿高瓦斯矿井4462处,煤与瓦斯突出矿井911处,在615处国有重点矿井中,煤与瓦斯突出矿井近200处,高瓦斯矿井152处,装备地面固定瓦斯抽采系统308套。2005年,全国井下抽采煤矿瓦斯近23×108m3,阳泉、晋城、淮南、松藻、盘江、水城、抚顺等7个矿区年抽采量超过1×108m3。2007年全国国有重点煤矿已有283处高瓦斯、瓦斯突出矿井建立了抽采系统,年瓦斯抽采量达30.6×108m3,利用量9.1×108m3,利用率29.7%,年抽采量超过1×108m3的有9个矿区。陕西彬长矿区大佛寺煤矿、铜川陈家山煤矿、下石节煤矿等开展了煤层气地面抽采,2006年陕西省26处高瓦斯矿井抽出的煤层气总量达2.06×108m3,但利用率很低,进一步开发利用的潜力较大。

根据《全国煤层气规划》,2010年,全国煤层气(煤矿瓦斯)产量将达100×108m3,其中,地面抽采煤层气50×108m3,利用率100%;井下抽采瓦斯50×108m3,利用率60%以上。新增煤层气探明地质储量3000×108m3,逐步建立煤层气和煤矿瓦斯开发利用产业体系。国家级重点项目及示范工程有:①山西沁水盆地煤层气试验示范工程项目。包括三个子项,一是沁南国家高技术产业化示范工程,2004年国家批准立项,设计钻井900口,产能达到7×108m3/a;二是端氏煤层气战略选区示范工程,该项目计划施工5口多分支水平井、17个单分支水平井,建成年产能1×108m3规模;三是大宁先采气、后采煤示范工程,该项目是我国成功实施的第一口多分支水平井,现稳定日产量2×104m3,“十一五”期间,施工2~5口多分支水平井,建成先采气、后采煤的示范性工程。②鄂尔多斯盆地东缘煤层气试验示范项目。该区具有适合煤层气开发的优越地质条件,“十一五”期间,建成产能16×108m3,产量11×108m3的煤层气商业化工程。

给楼主参考:水产品在有机废弃物利用摘要:综述了当前水条件下有机废物水解产气和有氧制酸两方面的资源化研究前沿,并分析了目前水氧化法在有机废弃物资源化应用中存在的主要问题,展望了该方法的应用与理论研究前景。关键词:水产品氧化 有机废物 资源化利用伴随着经济发展与工业进步,资源短缺与环境污染的瓶颈性问题日益突现。人们的关注目光已经从环境污染控制的“末端治理”转向了兼顾污染控制和预防,以及循环经济的实现途径上来。有机废弃物的资源化研究已经成为环境领域的新热点。在水(Supercritical Water,简称SCW)存在条件下实现有机废弃物资源化更是引起学者的广泛关注。它主要是利用状态下水与溶解的氧和有机物发生反应,将各种有机废物和废水彻底处理,最终得到CO2、N2、纯净的水,以及少量的无机盐。SCWO技术以其独特的优势受到广泛的关注[2,3]。氧化技术首先应用于废水中有机物特别是难降解有机污染物质的去除,已经在含酚污水、印染废水和污泥等处理方面取得了一定的成果[4,5]。同时许多学者[6~24]在水的条件下,针对有机废物与水互溶的特点,通过水解反应来降解有机废物以制得H2等气体。水存在的条件下有机废物资源化的研究刚刚起步,主要集中在水存在条件下有机废物水解气化及氧化生成有机酸等方面。本文主要对近年来的相关研究进展进行综述。1 水条件下有机废物的气化在SCW条件下,通过控制反应条件和加入催化剂等能够实现有机废物的气化,以制得H2、CO及CH4等气体。许多学者[6~11]对以纤维素为代表的有机废物的SCW气化进行研究认为,体系的温度、压力、有机废物的组成和反应器的类型对产气量及气体组成具有一定影响。SWC有机废物气化的过程如图1所示。图 1 条件下有机废物气化示意图(以纤维素为例)在条件下,以纤维素为主体的有机废物首先水解生成葡萄糖和果糖等,然后发生水解反应,解聚和降解生成短链的有机酸和醛类,以制得气体。同时也有糠醛和苯酚类化合物生成,它们一部分降解生成有机酸和醛类,另一部分生成焦炭等高分子产物成为反应的沉渣。Kruse[6]等在330~410℃,30~50 MPa,15 min的条件下,通过测定葡萄糖和纤维素降解的主要中间产物如苯酚类、糠醛和酸类等考察了有机废物降解过程中的化学反应,利用产物中总有机碳和气相的成分组成来反映氧化进程。研究证明在下水不仅作为溶剂而且是反应物,与传统气化反应相比,有机废物的降解速度更快,H2产量增加,同时CO产量降低。有机废物复杂的组成对其在条件下的气化过程影响很大。Takuya等[7]在623 K、25 MPa和20 min条件下对纤维素、木聚糖和木质素的混合物进行气化,试验证明木质素的含量对产气量有明显影响,纤维素和木聚糖为木质素供氢,反应生成的中间产物导致H2量的减少。文献[8]在480~750 °C、28 MPa 和10~50 s的条件下研究葡萄糖的气化,试验证明在温度高于660°C时,H2的产量会随着温度的升高明显升高,而CO的产量反而下降,在700℃时C的转化效率能够达到100%。SWCO反应有连续式和间歇式两种类型,主要有管式、罐式和蒸发壁式反应器。反应器类型的不同会导致气化效果差异很大。Hao[9]采用连续式管状水气化体系来对葡萄糖进行气化反应,在923.15 K、25 MPa和3.6 min的条件下能够使得葡萄糖完全气化,并且无焦碳产生,改变反应温度和压力能生成不同比例的H2、CO和CO2及少量的C2H4和C2H6,反应的气化率能够达到95%以上。Kruse等[10]利用连续搅拌反应器(CSTR)对干物质质量分数在1.8%~5.4 %的有机废物进行气化反应,试验证明干物质量的提高,能够增加产气量和苯酚量,同时影响气体组成和有机碳含量,而间歇反应器不存在这样的情况。Ayhan[11]在条件下对果皮进行气化产H2试验,结果表明H2产量随着压力和温度的增加而升高,后者影响更为明显。与热解和蒸汽气化方法相比,该法具有无需干燥和气化率高等优点。Yukihiko[12]以水葫芦为例,对甲烷化和水气化在能量、环保和经济方面进行了比较,试验证明水气化较甲烷化有一定优势,但其产气的消耗较大,通过增强热交换器的效率能够提高水的气化效果。水条件下有机废物气化需要高的温度压力,无催化剂条件下H2产量一般较低,副产物增多。因此引入适当的催化剂以缓和反应条件,提高反应速率和H2产量,优化反应途径成为研究热点。水作为一个特殊的环境,需要稳定性和催化活性兼备的催化剂,研究发现,Mn、Ni等重金属的氧化物、碱性化合物如KOH、K2CO3以及碳等能够表现出很好的催化活性。Calzavara等[13]评价了条件下有机废物气化制H2,认为焦碳的生成是反应过程的主要问题,选择合适的催化剂能够增加H2的产量和减少焦碳的生成。Ali等[14]研究了不同的催化剂条件下葡萄糖的气化。试验证明对于质量分数为5 %的葡萄糖水溶液,催化剂的存在影响葡萄糖气化中间产物的生成。采用重金属及其氧化物作为催化剂已经成为水条件下有机废物气化普遍采用的方法,并取得很好的效果。同时SWC装置普遍采用的镍基材料等耐腐蚀性材料本身对有机废物气化具有一定的催化作用。Takafumi等[15]在条件下以不同的金属催化剂对烷基酚进行催化气化,试验发现气化产物主要是CH4、CO2和H2。研究可知在钌/ç-氧化铝催化剂存在的条件下能够产生丙烷酚异构体,并发现不同的异构体产量各异。Takuya [16]在673 K、25 MPa的条件下对木质素和纤维素及其混合物进行镍催化气化,试验证明纤维素和软木木质素反应生成的中间产物降低了催化剂活性,但随着催化剂用量的增加,气化效果变好。Takuya [17]采用高温分解、氧化和催化组合的流化反应体系来气化葡萄糖和葡萄糖-木质素的混合物。在673 K、25.7 MPa和1 min的条件下,生成物主要是H2和CO2,气化效率为96%。Boukis等[18]在镍合金Inconel625的连续管状反应器中来气化甲醇,主要生成产物是H2,还有少量的CO、CO2和CH4,气化率达到了99%,试验表明在反应器内壁的重金属对反应过程起催化作用,反应器内壁的氧化能够提高反应产率和降低CO的生成。研究表明,K2CO3和KOH等碱性化合物的加入能够增加H2产量,提高C的转化率和缓和反应条件。Jayant [19]在Inconel 600管状反应器中,通过重整甲醇来制H2。试验表明随着压力的增加,反应时间的增长和气碳比的降低,CO和CO2发生甲烷化,从而导致H2的损失。通过增加K2CO3和KOH能够降低甲烷化率和提高H2的产量。Schmieder[20]在管状连续反应器研究有机废物的气化过程,试验发现在600°C、250 bar和KOH或K2CO3存在的条件下,有机废物气化完全,同时生成大量的H2、CO2及少量的CO、CH4和C2–C4化合物,碳的转化率能够达到96%。Andrea[21]利用间歇反应器和管状反应器来研究芳香族化合物和木质素制H2过程,试验表明随着KOH的加入,增加了H2和CO2的产量,同时CO的产量降低。Wang[22]采用Ca(OH)2为催化剂对低品质煤在条件下进行气化。Ca(OH)2在中间产物降解和残碳的的气化过程中起到很大的作用,同时它可以作为CO2的扑收剂。在混和物的Ca/C为0.6、690℃和30MPa时,反应生成H2、CH4及少量的CO2。研究采用碳作为水条件下有机废物气化的催化剂,通过优化反应条件增加了催化剂的使用寿命,取得了很好的效果。文献[23]利用管状连续式反应器在650 ℃、22 MPa的条件下,采用碳作为催化剂来气化玉米、马铃薯和木屑,气相产物主要包括H2、CO2、CO、CH4和少量C2H6。在最高温度条件下得到的气量大于2 L/g,氢气含量是57 %。Xu等[24]研究了碳催化剂对有机废物气化的影响,试验证明,在600℃、34.5 MPa和22 h-1时,葡萄糖(质量分数为22%)能够气化生成富含H2的气体,碳的气化效率能够达到100%,碳的比表面积并没有对其催化效率产生很大影响。试验中通过反应器入口处安装漩涡生成器以增加催化剂的使用寿命。2 水氧化有机废物制酸水氧化有机废物过程中可产生醋酸、乳酸等中间产物。近年来,研究者通过控制反应条件来使反应停留在有机酸中间产物生成的环节上,而不是将其彻底的氧化为CO2气体和水排放出来,这样既可获得有价值的有机酸原料,同时能够降低反应的能耗。试验一般采用H2O2或O2为氧化剂,同时试验研究可知,在碱性存在的条件下能够增加有机酸等中间产物的生成。金放鸣[25]利用H2O2为氧化剂对胡萝卜和牛油的SCWO氧化,初始阶段反应迅速并能够生成稳定的醋酸,以后反应趋于平稳,而反应速率取决与此。对于胡萝卜来说,多聚糖首先水解成葡萄糖,葡萄糖迅速发生氧化。对于牛油来说,首先是甘油脂水解成甘油和羧酸,然后发生氧化反应。从TOC降解可以看出,在前3 min反应速度很快,而在以后的7 min反应速度趋于平缓。两者的TOC降解率能够达到97.5%。Anikeev[26]利用连续反应器在对硝基甲烷、硝基乙烷和1-硝基丙烷进行SCWO试验,试验表明随着碳原子数的增加,脂肪族硝基化合物降解速度降低,但氧化速度升高。温度恒定时,反应速率常数随着压力成指数增加。Lourdes[27]利用H2O2为氧化剂,对纤维素、椰子油和酿酒厂和牛奶厂的排除废液进行制酸研究,试验证明在400 ℃, 27.6 MPa和5 min的条件下有稳定的醋酸产生,同时生成蚁酸、乙二醇和乳酸。当H2O2 过量时,95%的碳转化到气相之中,只有15%的相应的酸类产生,加入催化剂TiO2及H2SO4不能够增加有机酸的产量。但在250℃、27.6 MPa和NaOH存在条件下,却有77%的葡萄糖转化为醋酸(17%),乙醇酸(22%)和蚁酸(38%)。Motonobu[28] 利用间歇式和半连续反应器对垃圾中兔肉进行水氧化处理,反应产物中的可溶性部分主要是有机酸和葡萄糖。间歇反应器中可溶性产物最大能够达到50%,有机酸主要是醋酸(2.6%)和乳酸(3.2%),在523 K时葡萄糖的最高产量为33%,而在473 K时半连续反应器葡萄糖的最高产量仅为11.5%。Jomaa[29]对污泥、木屑和生活垃圾进行水氧化处理,试验表明木质垃圾的处理较其他两种困难,通过改变试验条件来平衡降解和氧化,从而在祛除COD的同时实现可溶性有机物的积累。Armando[30]在状态下将有机废物氧化生成低分子羧酸,试验获得的有机酸包括醋酸、蚁酸、乳酸和琥珀酸等。随H2O2的增加,从每克干鱼内脏获得的醋酸量从26 mg上升到42 mg,从每克葡萄糖中获取29 mg的醋酸。结果还表明,温度对主要中间产物醋酸的稳定性有一定的影响。Selhan[31]在碱性条件下催化处理木质有机物,催化效果依次为K2CO3 >KOH>Na2CO3 > NaOH,催化作用下固态剩余物大为降低。非催化条件下有机废物的主要产物是呋喃衍生物,而在催化条件下主要产物是酚类化合物。Jin等[32]通过控制反应条件来提高醋酸产量,实验采用两段法,第一步反应是加速生成HMF、2-FA和LA,在第二步反应中,通过加入H2O2氧化第一步产生的呋喃和乳酸以生成醋酸,通过两段法来生成醋酸产率大约是85%~90%,而呋喃和乳酸生成醋酸的比例大约是2:1。利用该法产生的醋酸与工业废物Ca、Mg来生成无腐蚀的CMA融雪剂,CMA的转化率能够达到99%。3 水氧化处理有机废物存在问题及发展前景SCWO技术存在的问题限制了其在有机废物处理过程中的大规模的工业化应用,现在研究还基本处于实验室阶段。首先,影响SCWO反应进行的影响因素众多,原料的浓度、成分、密度、pH等的监测和目的产物实时快速控制难以实现,从而直接影响整个氧化反应速率和目的产物的生成。其次,在状态下,反应过程中产生的活性自由基及强酸或盐类的加入对反应器设备的腐蚀很严重,高分子有机物降解过程中和处理含有卤素及S、P等元素的有机物时产生的酸类物质时更加剧了腐蚀作用[33]。再者,因金属离子及无机盐在水中的溶解度低,由此而产生的无机盐和金属氧化物的沉积问题,极易造成设备堵塞。此外,氧化反应器的密封问题也是困扰反应正常进行的重要因素。水氧化处理有机废物在现实应用中除了存在高投入、腐蚀和反应器堵塞等问题,尚存在以下急待解决的问题。首先是SCWO动力学的研究问题。有机物的氧化需要在不同的压力、温度条件下进行,在设备中的停留时间也不相同。现行的研究主要集中在典型污染物在氧化条件下的动力学模型的建立上,主要研究有机物的去除率和反应产物的生成,仅以此建立的反应动力学是不全面的,不能够反映复杂有机物在状态下反应过程,所以有必要建立TOC及COD的消失动力学等来全面反映氧化进程。同时SCWO反应机理也成为研究者关注的对象[34]。在SCWO状态下水的特殊性质,有机化合物的复杂性,使得降解的机理会存在一定的变化,而且随着反应条件的不同,分析手段的各异,对反应机理的认识存在差距。再者,在状态下的处理有机污染物质成为CO2和H2O及其他产物,需要高温高压的反应条件,因此引入催化剂来缓和反应条件,加速反应速率和提高目标产物的产率目前已经成为新的研究热点。综上所述,水条件下有机废物资源化研究已经在水解产气和氧化制酸等方面取得了一定的成果,但作为一种新兴的资源化技术,水及其氧化反应技术还尚未成熟,加强动力学、反应机理、催化剂和腐蚀堵塞等问题的研究,必将为其带来广阔的资源化应用前景。参考文献1. Modell. Processing methods for the oxidation of organics in supercritical water. US Pto 4,338,199.1982.2. Peter K, Eckhard D. An assessment of supercritical water oxidation (SCWO) Existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal. 2001, 83: 207~2143. Marc H, Philip A M, Glenn T H, et al. Salt precipitation and scale control in supercritical water oxidation—part A: fundamentals and research. Journal of Supercritical Fluids. 2004, 29: 265~2884. Chien Y C, Wang H P, Lin K S, et al. Oxidation of Printed Circuit Board Wastes In Supercritical Water. Wat. Res. 2000, 34(17): 4279~42835. Jeffrey T H, Phillip E S. Potential explanations for the inhibition and acceleration of phenol SCWO by water. Ind. Eng. Chem. Res. 2004, 43: 4841~48476. Kruse A, Gawlik A. Biomass Conversion in Water at 330~410 °C and 30~50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 2003, 42:267~2797. Takuya Y, Yoshito O, Yukihiko M. Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy. 2004, 26:71~ 788. Lee I G, Kim M S, Ihm S K. Gasification of glucose in supercritical water. Ind. Eng. Chem. Res. 2002, 41:1182~11889. Hao X H, Guo L J,Mao X et al. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. International Journal of Hydrogen Energy,2003, 28:55~6410. Kruse A, Henningsen T. Biomass Gasification in supercritical water: influence of the dry matter content and the formation of phenols. Ind. Eng. Chem. Res. 2003, 42:3711~3717

一篇甲烷研究论文的读感

甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时远离,可致窒息死亡。皮肤接触液化的甲烷,可致冻伤。

甲烷毒性:急性中毒,甲烷毒性甚低,接触高浓度甲烷时引起的“甲烷中毒”,实际上是因空气氧含量相对降低造成的缺氧窒息。允许气体安全地扩散到大气中或当作燃料使用。有单纯性窒息作用,在高浓度时因缺氧窒息而引起中毒。空气中达到25~30%出现头昏、呼吸加速、运动失调。

/iknow-pic.cdn.bcebos.com/267f9e2f07082838e3efe774b799a9014d08f1f4"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/267f9e2f07082838e3efe774b799a9014d08f1f4?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/267f9e2f07082838e3efe774b799a9014d08f1f4"/>

扩展资料

美国斯坦福大学一项新研究称,将温室气体甲烷转化为二氧化碳(CO2),可作为达成该目标的有效补充手段。研究人员20日在《自然·可持续性》杂志上发表论文指出,将一种温室气体转化为另一种温室气体,这种方案看似违反常理,但却很有效,且有利可图。

甲烷是一种比CO2更活跃的温室气体,其对气候变暖的影响高出CO2许多倍。人类活动是大气甲烷浓度升高的主要原因。2018年,大气中甲烷的浓度达到了工业化前水平的2.5倍,其中约60%是由人类活动产生的,这些排放很难消除。

参考资料来源:/health.people.com.cn/n1/2019/0522/c14739-31098418.html"target="_blank"title="人民网-甲烷转化为CO2或有利于控制气候变化">人民网-甲烷转化为CO2或有利于控制气候变化

参考资料来源:/baike.baidu.com/item/%E7%94%B2%E7%83%B7/634659?fr=aladdin#9_1"target="_blank"title="百度百科-甲烷">百度百科-甲烷

读后感,就是写一个人读了某本书、某篇文章、某个故事后获得的一些心得和体会,然后把这种体会用文字记录和表达出来的文体,就是读后感。接下来小编为你带来论文读后感怎么写,希望对你有帮助。想要把论文读后感写得出彩的话,并不十分难,关键是你能读懂文章,然后把你的一些个人简洁给完整表达出来即可。不过有些人对读后感的写作感觉比较难。第一步:要把所读的论文给吃透。比如说这个论文的主题是什么,产生背景是怎样的,它所研究的问题、提出的观点有意义吗或者有趣吗?它论证这个问题或观点时采取的是哪些论据和论证手段,最终得出的结论是什么?这样的结论有什么意义或者其实,这个结论是否存在问题和不足等。要把这些都搞懂了,你后期写读后感就利索多了。第二步:把你对论文的理解和想到的问题一一罗列出来。运用发散思维的方式,在内心梳理好,打好腹稿了,才开始下笔写文章。读后感虽然讲究的是随个人的性致来发散思考,但是你个人引发出的论点和论题也不应该离所读的论文主旨太远,否则两者之间就没啥联系了。第三步:要谨记写论文读后感要有明确的论点、论据。而非是让你写流水账,也不是让你写记叙文,让你写的是自己真心实意的感受,对这个论文的看法,以及你为何会产生这样的看法,对你未来的人生和处事方法等有哪些借鉴或者改变、指导等。第四步:执笔为读后感拟题目。一般常见的题目格式大概为——“读《……》有感”或者“《……》读后感”,这种格式就是使用你所看到的论文题目直接加上“读后感”这三个字就行了,简单明了,不拐弯抹角,很直白。不过你想让题目更出彩一点的话,可以把你自己论文的观点当主标题,然后副标题再写上“读《……》有感”就行了。第五步:简述所看论文的主要内容。把你所看的论文的.主旨内容用自己的文字复述简明扼要的复述一遍,然后重点阐释自己的总体感受和观点。这是作为文章的第一段开头来写的,文字不需要太多,以免出现凤头鸡尾的现象,两三百字就可以了。第六步:叙述你这篇读后感的主要内容和自身的感受。这部分的内容可以分为多段表述,首先你对所读论文提出了自己的见解和观点,然后再细细地去论证就好了。其中,也可以重点针对所读论文的一些内容和语句进行感情抒发。毕竟这里写的是读后感嘛,有点真情实意表达在里边才比较妥当。不然整个文章看起来冷冰冰的,实在是不成功的一篇读后感哟。第七步:写你读完这篇论文后,对自己的未来人生带来哪些思考。这个思考可以是对你的学习、生活、信心等各方面的,也可以是对现在社会的一种呼吁、感触和思量。不管怎么说,写论文的读后感,主要是写你内心切实的一种感受,而非让你“强附上一些浮夸的东西”,所以抓住了你的真实感受,就能够很好的组织语言写下来了。

编译 冯维维

Nature , 22 April 2021, Volume 592 Issue 7855

《自然》 2021年4月22日,第592卷,7855期

天体物理学

Astrophysics

All-sky dynamical response of the Galactic halo to the Large Magellanic Cloud

银河系晕对大麦哲伦星云的全天动力学响应

作者:Charlie Conroy, Rohan P. Naidu, Nicolás Garavito-Camargo, Gurtina Besla, Dennis Zaritsky, Ana Bonaca & Benjamin D. Johnson

链接:

摘要

大麦哲伦云(LMC)与银河系恒星和暗物质晕之间的引力相互作用,预计会导致银河系外的不平衡现象。

据预测,LMC的轨道上会有一个局部尾流,且在北半球大片区域会出现大规模过密度现象。作者报告了在一幅银河系地图上检测到的局部尾流和北部过密度,这幅地图是基于在60到100千秒之间的银河系中心距离上的1301颗恒星。

探测到的强烈的局部尾流是麦哲伦星云在银河系的第一个轨道上的独立证据。这些数据表明,外晕并不像人们通常认为的那样处于动态平衡状态。尾流的形态和强度可以用来测试暗物质和重力的性质。

Abstract

Abstract: Gravitational interactions between the Large Magellanic Cloud (LMC) and the stellar and dark matter halo of the Milky Way are expected to give rise to disequilibrium phenomena in the outer Milky Way. A local wake is predicted to trail the orbit of the LMC, and a large-scale overdensity is predicted to exist across a large area of the northern Galactic hemisphere. Here we report the detection of both the local wake and northern overdensity in a map of the Galaxy based on 1,301 stars at Galactocentric distances between 60 and 100 kiloparsecs. The detection of a strong local wake is independent evidence that the Magellanic clouds are on their first orbit around the Milky Way. These data demonstrate that the outer halo is not in dynamical equilibrium, as is often assumed. The morphology and strength of the wake could be used to test the nature of dark matter and gravity.

High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection

仙后座A中由中微子驱动的对流产生的高熵喷射羽流

作者:Toshiki Sato, Keiichi Maeda, Shigehiro Nagataki, Takashi Yoshida, Brian Grefenstette, Brian J. Williams, Hideyuki Umeda, Masaomi Ono & John P. Hughes

链接:

摘要

最近的多维模拟表明,高熵浮力羽流有助于大质量恒星爆炸。在星系超新星残骸仙后座A中向外突出的富含铁的气体手指似乎与这幅图相吻合。

作者报告了在仙后座A的冲击高速富铁喷射物中,在置信水平大于5个标准偏差的情况下观察到的这些元素——稳定的钛(Ti)和铬(Cr)。

他们发现,观测到的Ti/Fe和Cr/Fe质量比需要富α冻结,提供了在爆炸时增强冲击波的高熵喷射羽流存在的证据。这些羽流的金属成分与强烈经过中微子处理的富含质子的喷出物的预测非常吻合。这些结果通过产生仙后座A的超新星中的中微子加热支持了对流超新星引擎的运行。

Abstract

Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode. Outwardly protruding iron (Fe)-rich fingers of gas in the galactic supernova remnant Cassiopeia A seem to match this picture. Here we report observations of such elements—stable titanium (Ti) and chromium (Cr)—at a confidence level greater than 5 standard deviations in the shocked high-velocity Fe-rich ejecta of Cassiopeia A. We found that the observed Ti/Fe and Cr/Fe mass ratios require α-rich freeze out, providing evidence of the existence of the high-entropy ejecta plumes that boosted the shock wave at explosion. The metal composition of the plumes agrees well with predictions for strongly neutrino-processed proton-rich ejecta. These results support the operation of the convective supernova engine via neutrino heating in the supernova that produced Cassiopeia A.

物理和化学

Physics & Chemistry

Multistable inflatable origami structures at the metre scale

米级多稳定充气折纸结构

作者:David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman & Katia Bertoldi

链接:

摘要

从 体育 场罩到太阳帆,人们依靠可展开性来设计大型结构,这些结构可以迅速压缩到其体积的一小部分。

作者从折纸艺术中汲取灵感,设计了多稳定、可膨胀的刚性壁可展开结构。在几何分析和实验的指导下,他们创建了一个双稳态折纸形状库,可以通过一个单一的流体压力输入部署。

然后,他们将这些单元结合起来,在米尺度上构建功能结构,如拱门和应急避难所,为建造大型充气系统提供了直接的路径,这些系统在部署后可以锁定,并通过它们僵硬的表面提供一个坚固的外壳。

Abstract

From stadium covers to solar sails, we rely on deployability for the design of large-scale structures that can quickly compress to a fraction of their size. Here we draw inspiration from origami to design rigid-walled deployable structures that are multistable and inflatable. Guided by geometric analyses and experiments, we create a library of bistable origami shapes that can be deployed through a single fluidic pressure input. We then combine these units to build functional structures at the metre scale, such as arches and emergency shelters, providing a direct route for building large-scale inflatable systems that lock in place after deployment and offer a robust enclosure through their stiff faces.

A single-molecule van der Waals compass

单分子范德瓦尔斯罗盘

作者:Boyuan Shen, Xiao Chen, Huiqiu Wang, Hao Xiong, Eric G. T. Bosch, Ivan Lazić, Dali Cai, Weizhong Qian, Shifeng Jin, Xin Liu, Yu Han & Fei Wei

链接:

摘要

单分子成像在研究分子水平上的分子间相互作用方面具有挑战性,但也非常有益。在约束条件下,亚纳米尺度上的范德华相互作用强烈影响分子的各种行为。

受传统指南针的启发,作者使用对二甲苯分子作为旋转指针来检测MFI型沸石骨架直线通道中的主-客体范德瓦尔斯相互作用。

他们采用集成差示相位对比扫描透射电子显微镜对每个通道中的单个对二甲苯分子进行实空间成像。结合计算和成像研究的结果,建立了单分子指针的取向与通道的原子结构之间的良好相关性。

对二甲苯的取向有助识别范德瓦尔斯相互作用的变化,这与空间和时间维度上的通道几何有关。

这项工作不仅为在分子水平上研究多孔材料的主-客体范德瓦尔斯相互作用提供了一种可见和灵敏的手段,也促进了利用电子显微镜技术进一步研究其他单分子行为。

Abstract

Single-molecule imaging is challenging but highly beneficial for investigating intermolecular interactions at the molecular level. Van der Waals interactions at the sub-nanometre scale strongly influence various molecular behaviours under confinement conditions. Inspired by the traditional compass, here we use a para-xylene molecule as a rotating pointer to detect the host–guest van der Waals interactions in the straight channel of the MFI-type zeolite framework. We use integrated differential phase contrast scanning transmission electron microscopy to achieve real-space imaging of a single para-xylene molecule in each channel. A good correlation between the orientation of the single-molecule pointer and the atomic structure of the channel is established by combining the results of calculations and imaging studies. The orientations of para-xylene help us to identify changes in the van der Waals interactions, which are related to the channel geometry in both spatial and temporal dimensions. This work not only provides a visible and sensitive means to investigate host–guest van der Waals interactions in porous materials at the molecular level, but also encourages the further study of other single-molecule behaviours using electron microscopy techniques.

A highly stable and flexible zeolite electrolyte solid-state Li–air battery

高度稳定、灵活的沸石电解质固态锂空气电池

作者:Xiwen Chi, Malin Li, Jiancheng Di, Pu Bai, Lina Song, Xiaoxue Wang, Fei Li, Shuang Liang, Jijing Xu & Jihong Yu

链接:

摘要

固态锂空气电池被认为是下一代的能源存储解决方案,以解决液体电池系统遇到的安全性和电化学稳定性问题。

然而,传统的固体电解质不适合在固态锂-空气系统中使用,因为它们对锂金属和/或空气不稳定,而且难以构建低电阻界面。作者提出了一个集成固态锂空气电池,包含一个超薄,高离子导电锂离子交换沸石X (LiX)膜作为唯一的固体电解质。

该电解质与铸锂作为阳极和碳纳米管作为阴极使用原位组装策略集成。由于锂或空气的影响,电解质的退化得到有效的抑制。

该电池的容量为每克碳纳米管12020毫安时,在电流密度为每克500毫安和每克容量为1000毫安时,其循环寿命为149次。

此循环寿命大于相同条件下锂铝锗磷酸盐电池(12次循环)和有机电解质电池(102次循环)。沸石基锂空气电池的电化学性能、灵活性和稳定性赋予其实用性,可以扩展到其他储能系统,如锂离子、钠空气和钠离子电池。

Abstract

Solid-state lithium (Li)–air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems. However, conventional solid electrolytes are unsuitable for use in solid-state Li–air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li–air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li–air batteries confer practical applicability that could extend to other energy-storage systems, such as Li–ion, Na–air and Na–ion batteries.

气候和生态

Climate & Ecology

Equity is more important for the social cost of methane than climate uncertainty

对于甲烷的 社会 成本而言,公平比气候不确定性更重要

作者:Frank C. Errickson, Klaus Keller, William D. Collins, Vivek Srikrishnan & David Anthoff

链接:

摘要

甲烷的 社会 成本(SC- CH4 )衡量的是向大气中排放一吨甲烷所造成的 社会 福利的经济损失。这种评估可能反过来用于成本效益分析或为气候政策提供信息。作者通过结合最近对甲烷辐射强迫计算的25%的向上修正,结合校准的简化全球气候模型和综合评估模型(IAMs),估计了SC- CH4 。他们对SC- CH4 的多模型平均估计是在高排放情景下每吨CH4933美元,与基于美国联邦政府使用的气候不确定性框架的估计相比减少了22%。在低排放情景下(RCP 2.6),他们的多模型估计平均每吨 CH4 减少到710美元。作者表示,较紧的平衡气候敏感性估计加上先前忽略的气候模型不确定参数之间关系的影响,降低了这些估计。将研究结果扩展到考虑 社会 对公平的关注,得出的SC- CH4 估计在低收入和高收入地区之间相差超过一个数量级。作者对美国的平均加权估计增加到每吨 CH4 8290美元,而对撒哈拉以南非洲的估计减少到每吨 CH4 134美元。

Abstract

The social cost of methane (SC- CH4 ) measures the economic loss of welfare caused by emitting one tonne of methane into the atmosphere. Here we estimate the SC- CH4 by incorporating the recent upward revision of 25 per cent to calculations of the radiative forcing of methane, combined with calibrated reduced-form global climate models and an ensemble of integrated assessment models (IAMs). Our multi-model mean estimate for the SC- CH4 is US$933 per tonne of CH4 under a high-emissions scenario, a 22 per cent decrease compared to estimates based on the climate uncertainty framework used by the US federal government. Under a low-emissions scenario (RCP 2.6), our multi-model mean decreases to US$710 per tonne of CH4 . Tightened equilibrium climate sensitivity estimates paired with the effect of previously neglected relationships between uncertain parameters of the climate model lower these estimates. Extending our results to account for societal concerns about equity produces SC- CH4 estimates that differ by more than an order of magnitude between low- and high-income regions. Our central equity-weighted estimate for the USA increases to US$8,290 per tonne of CH4 whereas our estimate for sub-Saharan Africa decreases to US$134 per tonne of CH4 .

High and rising economic costs of biological invasions worldwide

世界范围内生物入侵造成的高昂且不断上升的经济代价

作者:Christophe Diagne, Boris Leroy, Anne-Charlotte Vaissière, Rodolphe E. Gozlan, David Roiz, Ivan Jarić, Jean-Michel Salles, Corey J. A. Bradshaw & Franck Courchamp

链接:

摘要

生物入侵造成了生物多样性的大幅度下降,以及与管理这些入侵相关的 社会 经济损失和资金支出。InvaCost数据库使世界范围内生物入侵货币成本的综合数据能够可靠、全面、标准化和易于更新。

研究发现,过去几十年(1970-2017年),入侵的总报告成本最低为1.288万亿美元,年平均成本为268亿美元。此外,他们预计2017年的平均成本将达到1627亿美元。

这些费用仍然被严重低估,而且没有显示出任何放缓的迹象,每十年持续增长三倍。作者发现,所记录的成本分布广泛,在区域和分类规模上有很大差距,损害费用比管理费用高一个数量级。

作者表示,记录生物入侵代价的研究方法需要进一步改进。他们呼吁实施一致的管理行动和国际政策协议,以减少外来入侵物种的负担。

Abstract

Biological invasions are responsible for substantial biopersity declines as well as high economic losses to society and monetary expenditures associated with the management of these invasions. The InvaCost database has enabled the generation of a reliable, comprehensive, standardized and easily updatable synthesis of the monetary costs of biological invasions worldwide. Here we found that the total reported costs of invasions reached a minimum of US$1.288 trillion (2017 US dollars) over the past few decades (1970–2017), with an annual mean cost of US$26.8 billion. Moreover, we estimate that the annual mean cost could reach US$162.7 billion in 2017. These costs remain strongly underestimated and do not show any sign of slowing down, exhibiting a consistent threefold increase per decade. We show that the documented costs are widely distributed and have strong gaps at regional and taxonomic scales, with damage costs being an order of magnitude higher than management expenditures. Research approaches that document the costs of biological invasions need to be further improved. Nonetheless, our findings call for the implementation of consistent management actions and international policy agreements that aim to reduce the burden of invasive alien species.

有机化学甲醛的论文参考文献

住宅室内空气中甲醛的污染现状调查与分析论文

无论是在学校还是在社会中,大家都接触过论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。如何写一篇有思想、有文采的论文呢?下面是我精心整理的住宅室内空气中甲醛的污染现状调查与分析论文,仅供参考,大家一起来看看吧。

摘要: 根据对石家庄市100户居民住宅室内空气中甲醛含量的检测及分析,甲醛已经成为家庭装修后威胁人体健康最主要的有害成分,甲醛含量超标情况普遍且严重,随着装修竣工时间的延长,甲醛含量呈下降趋势,但效果并不明显。对受检的100户住宅中有无家具情况进行了统计分析,结果表明:家具是造成室内空气中甲醛含量超标的另一个重要因素,特别是板材家具,会明显加重甲醛的污染程度。

关键词: 室内环境;甲醛;污染

1 引言

随着当今社会的高速发展,生态环境与可持续发展已成为我们无法回避的现实问题,尤其是与我们工作生活息息相关的室内空气环境污染问题,更成为影响我们自身健康的重大威胁。建筑材料、装修材料的广泛使用使得室内空气中的有害物质种类和数量都明显增多,其中甲醛对人体健康的危害最为明显。

甲醛是一种挥发性有机化合物,无色,具有刺激性气味,易溶于水。甲醛主要来源于室内装修使用的胶合板、细木工板、中密度纤维板和刨花板、木芯板等人造板材,贴墙布、贴墙纸、化纤地毯、油漆、涂料以及一些有机材料。甲醛对眼睛、呼吸道、人体黏膜和皮肤产生明显的刺激作用;急性中毒可导致流泪、流涕、咳嗽等症状,引发多种呼吸道疾病;慢性吸入低浓度可导致持续头痛、无力、失眠等;长期接触低剂量可引起慢性呼吸道疾病、女性月经紊乱、妊娠综合症、新生儿体质降低、染色体异常,甚至诱发鼻咽癌;高浓度时会侵害人的神经系统、肝脏等。针对甲醛严重的危害性,于2010年9月对石家庄市100家居民住宅进行了摸底调查,严格按照国标方法进行采样检验,并对最终数据进行科学的'分析总结。

2 室内空气中甲醇检测方法

2.1 采样方法

在河北省会报名参加免费室内空气检测活动的500名业主中随机抽取,对抽中的100名业主的住宅选取一个代表性房间进行检测。采样工作严格按照《室内空气质量标准》(GB/T 18883-2002)执行,采样点的数量根据监测室内面积大小和现场情况确定,原则上小于50m2的房间应设(1~3)个点,在对角线上或梅花式均匀分布,并避开通风口,离墙壁距离大于0.5m,采样点高度原则上与人的呼吸带高度一致,在0.5m~1.5m之间。采样前受检房间在充分通风后封闭门窗12h。

2.2 检测方法

采用国标中“酚试剂分光光度法”分析样本,方法原理是空气中的甲醛与酚试剂反应生成嗪,嗪在酸性溶液中被高铁离子氧化成蓝绿色化合物,根据颜色深浅,比色定量。比色时采用10mL的具塞闭塞管和分光光度计,在630nm测定吸光度。

2.3 判定标准

检测依据《室内空气质量标准》(GB/T 18883-2002)中的甲醛≤0.10mg/m3为标准判定检测结果。

2.4 检测结果分析

2.4.1 检测结果总体分析

在此次检测的100户住宅中,甲醛含量范围为0.02~0.62mg/m3。超标数量为84户,不合格率为84%;超标一倍以上的23家,占总数的23%,占甲醛不合格家庭的27%;超标2倍以上的16家,占总数的16%,占甲醛不合格家庭的19%;最大超标52倍。

2.4.2 装修竣工时间对甲醛含量的影响

表1是对100户住宅的装修竣工时间与所测空气中甲醛含量及超标率的数据统计,由此可以直观的反映出空气中甲醛含量随装修竣工时间变化的趋势。从下表可明显看出,装修竣工后1个月内的室内空气中甲醛含量最为严重,在受检的26户住宅中仅有2户合格,超标率达到92%,最高超标倍数甚至达到5.2倍;随着装修竣工时间的延长,室内空气中甲醛含量略有下降,装修竣工时间1~6个月的,超标率降为89%,最高超标倍数3.8倍;装修竣工时间6~12个月的,超标率降为76%,最高超标倍数2.1倍;装修竣工时间1年以上的,超标率降为67%,最高超标倍数1.6倍。从这些数据可以看出,甲醛含量随着装修竣工时间的延长呈现下降趋势,但效果并不明显,装修竣工1年后仍有一半的家庭室内空气甲醛含量不合格,甲醛挥发相对于其他污染物来说是一个漫长的过程,人们在入住新居时一定要警惕室内空气中的甲醛成分及其含量高低,入住前必须进行一段时间的通风晾房,入住后也要保持大量通风换气。

表1 装修竣工时间与甲醛含量的情况统计

装修竣工

时间样本数/户含量范围/mg·m-3甲醛标准/mg·m-3超标数/户超标率/%

1个月内260.09~0.620.102492

1~6个月370.06~0.480.103389

6~12个月250.06~0.310.101976

1年以上120.02~0.260.10867

合计1000.02~0.620.108484

2.4.3 家具对甲醛含量的影响

此次检测活动也对受检住宅是否进驻家具及家具类别进行了统计,具体情况详见表2。装修后没有购置新家具的住宅,室内空气中甲醛含量超标率为75%,最高超标倍数3.3倍;购置实木家具的住宅室内空气中甲醛含量超标率为80%,最高超标倍数为3.5倍;购置板材家具的住宅室内空气中甲醛含量超标率为93%,最高超标倍数为5.2倍。由此可以看出,住宅内放置的家具越多,尤其是板材家具越多,室内空气中甲醛含量超标情况越严重,家具能明显加重室内空气甲醛污染。

表2 家具与甲醛含量的情况统计

装修竣工

时间样本数/户含量范围/mg·m-3甲醛标准/mg·m-3超标数/户超标率/%

无家具320.02~0.430.102475

实木家具250.05~0.450.102080

板材家具430.06~0.620.104093

合计1000.02~0.620.108484

2.5 检测结论

(1)甲醛超标情况较严重。100户住宅中室内空气甲醛超标的84家,不合格率为84%;超标1倍以上的23家,占甲醛不合格家庭的27%;超标2倍以上的16家,占甲醛不合格家庭的19%。由此可见,住宅室内空气中甲醛超标情况普遍且严重。

(2)装修竣工时间对室内空气中甲醛含量的影响并不显着。随着装修竣工时间的延长甲醛含量略有下降,但下降趋势不明显。

(3)家具的购入是造成室内空气中甲醛含量超标的另一个重要因素。通过对住宅内有无家具的不同情况下室内空气中甲醛含量进行对比,会发现住宅内有家具的情况下甲醛含量大大高于无家具的情况,尤其是板材家具更会明显加重甲醛的污染程度。

3 甲醇污染预防措施

3.1 优化家装方案和施工工艺

在家庭装修中,应当尽可能的选择有资质的装饰公司,优化设计方案,注意空间承载量和材料使用量,对装修使用的各种材料严格把关,采用先进施工工艺,只有这样才能减少因施工带来的室内环境污染。

3.2 规范家具的选择和购买

选购家具时必须要求厂方提供的说明书,特别注意说明书里描述家具的主材和主材中有害物质含量,严格按照国家标准进行选择购买。

3.3 加强通风措施,提高净化能力

在装修竣工后必须进行一定时间的通风换气,保持空气流通,以降低室内空气污染,这是一种简便易行且最有效的改善室内空气质量的方法。除此之外,还可以在室内栽种绿色植物,放置活性炭、硅胶等吸附材料,以加强对室内空气中有害物质的清除。

参考文献:

冯瑞玉.室内环境污染现状分析与对策.河北企业,2009(8):74~75.

苏 瑛,冯 垚,赵宏伟,等.重庆装修室内空气污染现状及控制.检验医学与临床,2010,7(8):747~748.

国家质量技术监督局.GB/T 18204.26-2000,公共场所空气中甲醛测定方法.北京:中国标准出版社,2000.

居宁生.高校新建宿舍舍内空气质量的现状与调查.现代科技,2009,8(7):26~27.

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

  • 索引序列
  • 甲烷化工艺论文参考文献
  • 甲醇废液处理工艺论文参考文献
  • 甲烷资源化国内外研究现状论文
  • 一篇甲烷研究论文的读感
  • 有机化学甲醛的论文参考文献
  • 返回顶部