首页 > 期刊投稿知识库 > 煤直接液化催化剂的研究进展论文

煤直接液化催化剂的研究进展论文

发布时间:

煤直接液化催化剂的研究进展论文

煤直接液化需要在大约450℃高温、15—20MPa氢气压下进行加氢反应。煤直接液化的主要原料是煤和氢气,加氢反应是在催化剂和循环溶剂的作用下实现的。 此项技术在二战期间一度在德国实现了工业化生产。到了20世纪80年代,美国、德国和日本等西方国家又相继开发出新一代的煤直接液化的工艺,并完成了日处理百吨级煤的煤直接液化中试厂的设计、建设和成功运转,有的国家已完成了日处理5000吨煤的液化示范厂的设计。 "但是目前世界上还没有一个国家拥有工业化的煤直接液化工程的经验,我国正在进行世界上首座煤直接液化示范厂的建设,一些工程化的技术问题将在我国煤直接液化示范厂项目中得以突破和解决。" 方法二:间接液化法 煤的间接液化是先将煤气化,生产出原料气,经净化后再进行合成反应,生成油的过程。它是德国化学家于1923年首先提出的,可以分三大步。 第一步:制取合成气。 把经过适当处理的煤送入反应器,在一定温度和压力下通过气化剂(空气或氧气+蒸汽),使煤不完全燃烧,这样就能以一定的流动方式将煤转化成一氧化碳和氢气混合的合成气,灰分形成残渣排出。 第二步:进行催化反应。 把这些合成气净化,在催化剂作用下,让合成气发生化合反应,合成烃类或液态的烃类的类似石油和其他化工产品。这个过程催化剂起着关键的作用。 很早时候,国外有一家公司曾经研制出成分为铁、硅、钾、铜的催化剂,所得产物组成为:汽油32%、柴油21%、石蜡烃47%。 第三步:需要对产物进行进一步的提质加工。 因为经过催化反应出来的油可能有很多指标不合格,如十六烷值含量、硫含量、水分,以及黏度、酸度等,所以还需要把产物进行处理,使其达到合格标准,满足市场需要。

煤可以通过化学手段转化为石油。煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。) `! o# ?/ k( i5 i' j y 经化学方法将煤炭转换为气体、液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业。 包括焦化、电石化学、煤气化等。随着世界石油资源不断减少,煤化工有着广阔的前景。 * j6 s( j k7 y4 \6 }" f0 b2 m( h 以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。; e* ~7 d& g& o5 r 主要包括煤的气化 、液化 、干馏,以及焦油加工和电石乙炔化工等。

煤炭的主要成分是碳,石油的主要成分是烃类(碳氢化合物)。许多勘探资料都表明,全世界煤的可开采资源是巨大的,其能量值相当于石油资源的10倍。煤和石油的形态、形成历史、地质条件虽然不同,但是它们的化学组成却大同小异。煤中约含碳80%~85%,含氢4%~5%,平均分子量在2000以上。石油含碳85%,含氢13%,平均分子量在600以内。从组成上看,它们的主要差异是含氢量和分子量的不同,因此,只要人为地改变压力和温度,设法使煤中的氢含量不断提高,就可以使煤的结构发行变异,由大分子变成小分子。当其碳氢比降低到和石油相近时,则煤就可以液化成汽油、柴油、液化石油气、喷气燃料等石油产品了。同时还可以开发出附加值很高的上百种产品,如乙烯、丙烯、蜡、醇、酮、化肥等,综合经济效益十分可观。国际上经典的煤变石油工艺是把褐煤或年轻烟煤粉与过量的重油调成糊状(称为煤糊),加入一种能防止硫对催化剂中毒的特殊催化剂,在高压釜里加压到20266~70931千帕并加热到380~500摄氏度的温度,在隔绝空气的条件下通入氢气,使氢气不断进入煤大分子结构的内部,从而使煤的高聚合环状结构逐步分解破坏,生成一系列芳香烃类的液体燃料和烷烃类的气体燃料。一般约有60%的煤能转化成液化燃料,30%转化成为气体燃料。具体来说,煤变石油的工艺可分为“直接液化”和“间接液化”两种,从世界范围来看,无论哪一类液化技术,都有成熟的范例。“直接液化”是对煤进行高压加氢直接转化成液体产品。早在第二次世界大战之前,纳粹德国就注意到了煤和石油的相似性,从战略需要出发,于1927年下令建立了世界上第一个煤炭直接液化厂,年产量达10万吨,到1944年达到423万吨,用来开动飞机和坦克。一些当时的生产技术,今天还在澳大利亚、德国、巴基斯坦和南非等地应用。“间接液化”是煤先气化,生产原料气,经净化后再行改质反应,调整氢气与一氧化碳的比例。此项技术主要源于南非,技术已非常成熟,煤变石油成本已低于国际油价,但技术一直严格保密。20世纪50年代,南非为了克服进口石油困难,成立了南非萨索尔公司,主要生产汽油、柴油、乙烯、醇等120多种产品,总产量达到700多万吨。目前,这家公司的3个液化厂,年耗煤4590万吨,年产合成油品1000万吨。该公司累计投资70亿美元,现在早已回收了全部设备投资。此外,俄罗斯、美国、日本等国也相继陆续完成了日处理150~600吨煤的大型工业试验,并进行了工业化生产的设计。

可以。煤转油是由煤炭气化生产合成气、再经费-托合成生产合成油称之为煤炭间接液化技术。“煤炭间接液化”法早在南非实现工业化生产。南非也是个多煤缺油的国家,其煤炭储藏量高达553.33亿吨,储采比为247年。煤炭占其一次能源比例为75.6%。南非1955年起就采用煤炭气化技术和费-托法合成技术,生产汽油、煤油、柴油、合成蜡、氨、乙烯、丙烯、α-烯烃等石油和化工产品。煤与石油都是由碳、氢、氧为主的元素组成的天然有机矿物燃料,这是煤能制成油最根本的基础。但它们在外观和化学组成上都有明显差别,其中最明显的差别就是氢、氧含量的不同。煤中氢含量低、氧含量高,氢/碳比低、氧/碳比高。煤的化学成分中氢含量为5%,碳含量较高,而成品油中氢含量为12%-15%,碳含量较低,且油品为不含氧的液体燃料。这主要是由于煤与石油的分子结构不同。因此,要将煤转化为液体产物,首先要将煤的大分子裂解为较小的分子。而要提高氢/碳比,就必须增加氢原子或减少碳原子。总之,煤液化的实质是在适当温度、氢压、溶剂和催化剂条件下,提高其氢/碳比,使固体的煤转化为液体的油。

催化剂研究进展论文

如下:

【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。

【关键词】:环己烷氧化,环己酮,催化剂的认识。

环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。

由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在3.5%~5.0%,氧化选择性为90%左右。

但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。

本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。

这不是闺房记乐,这是闲情记趣中的。绝 是说 花多,不断绝。你自己参照百度吧属 是一类的意思 。联系上下文,是寻觅昆虫善 这一句翻译为,岂不是很好吗行 试验,或者说做了 。何妨而效之 , 何不仿效一下。或抱花梗,或踏草叶,栩栩如生,宛然动人。上文说以针刺死,做了标本,所以有这句。浮生六记记得是芸这个人,表现的是一个知己与伴侣的妻子,你从这方面来回答吧。既然是闲情,也何必计较呢,应试教育真是糟蹋东西。我闲居在家的时候,案头上的插花盆景长续不断。芸说,你的插花啊,能表现出雨露风晴中的各种自然韵味,可谓精妙入神。然后画法中有一种草木与昆虫共同相处的方法,你为何不效仿一下呢。我说,虫儿会爬会乱动,怎么可能像作画一般呢?芸说,我有一种办法,不过恐怕会被(后人)作为始作俑者而引起罪过呢。我说,那你说说看。芸说,虫儿死后,它的颜色神态并不会有多大改变,(我们)找到螳螂产蝉蝶之类用针刺死,然后用细丝捆在它们的脖子上,系在草木间,再整理它们的脚足,或抱花梗,或踏草叶,栩栩如生,(这样)岂不是很好吗?我很高兴,按她的办法去试了,看见的人没有不赞美称绝的。求于闺中的意见,当今世上恐怕未必再有这样会心的人了吧。

催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入0.01%~0.02%没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。

磁性催化剂研究进展论文题目

你这个问题太泛泛了。催化剂可以有理论研究分子结构,什么样的催化剂催化效果好。也可以是研究一种催化剂物质是怎么合成,或是怎么用实验的方法,工业生产的方法制造出来。或是研究一种特定的催化剂在某个应用中的催化效果,这种应该比较多,也比较常见。或是研究一种催化剂怎样改进,怎样更耐用,怎样更有效率。具体到写一个论文,可以先查查这方面的文献,了解这个研究的研究状况,写个综述或是开题报告。再下来就是设计实验,或是确定理论研究的逻辑。实验做完后就是,把收集到的数据进行分析,看是不是预期的效果,不是的话写明原因。最后就是写出结论。具体的你可以到网上随便搜一篇化学催化剂这方面的论文,看一看格式。

看文章 情感 笑话 恐怖 新闻资讯 搜 惜缘文章系统 挺不错了

cs2水解催化剂研究的论文

导电胶 具有室温、高温或潮湿固化机理的单成分或双成分环氧树脂和硅酮粘合剂。 通用导电环氧树脂 双成分的银、铜镀银和玻璃镀银填充的粘合剂满足大多数严格的电气粘接要求,不需要通常获得有效的铅--锡固体连接所要求的高温、焊剂和昂贵的准备技术。它在室温或高温下固化成固体结构的粘接。 环氧树脂对铜、青铜、冷轨钢、铝、镁、镍基合金、镍、陶瓷、酚醛和塑料基底具有良好的粘合力。典型应用包括把EMI屏蔽通道、窗口或丝网衬料粘合在屏蔽的永久性接缝上。 柔性硅酮粘合剂 具有铜镀银、铝镀银或玻璃镀银填料颗粒, 这些导电的硅酮固化成为垫状的密封件。当用在现场粘合导电硅酮衬料时,它们必须在薄(0.2~0.25mm)粘合层中使用。技术表面应当要求用推荐的打底剂来预处理以改善粘合力。 导电填充剂 用单成分非硬化系统或双成分固化系统来填塞裂缝和较大的缝隙。 刚性环氧树脂 双成分导电环氧树脂填充剂对不同的基底提高良好的粘合力,并且能用在搭接或对接应用上。它们的特点是较大的铜镀银颗粒(>0.00127mm),非常适用于密封公差较差的表面。粘合层应当不薄于0.25mm。砂粒填料咬透薄的、非导电 表面,例如氧化层。应用包括粘合和屏蔽铸铝机壳、导管闷头、过滤器和加工好的技术机壳。 注意:这些复合剂应当仅在接缝将不会破裂时使用。 硅酮和柔性聚异乙烯 这些单成分非硬化密封胶配置用来屏蔽或密封那些很可能是错装或者承受振动、承受扭曲的接点和接缝。关键特点是这种材料能保持粘合处不干裂或者从表面脱开。 导电涂料 环氧树脂涂料 导电环氧树脂涂料在各种应用场合提供EMI屏蔽、防静电保护、电晕屏蔽和表面接地。聚丙乙烯涂料 导电聚丙乙烯风干涂料倾向于用在非导电基底上的EMI屏蔽。它们提供了选择填料系统,来满足不同的性能要求,含银的系统具有较低的电阻率,用于要求较好的屏蔽性能。含镍的系统相对较贵,用于在很宽的频率范围内提供中等等级的EMI屏蔽

固定床活性评价结果表明:温度300℃、空速10000h<-1>、CS<,2>浓度200mgS/m<3>、水蒸汽含量2%左右、 N<,2>气氛下负载单一及多种碱金属、过渡金属、稀土金属氧化物活性组分制备的的二硫化碳水解催化剂,在反应12h左右水解转化率趋于稳定。对于负载单一活性组分的催化剂来说,负载K<,2>O制备的催化剂上CS<,2>水解转化率最高;对于负载多活性组分的催化剂而言,负载ZrO<,2>-K<,2>O制备的催化剂上CS<,2>水解活性最高。温度300℃、空速10000h<-1>、CS<,2>浓度200mgS/m<3>、水蒸汽含量2%左右、高浓度35%CO气氛下改性制备的催化剂CS<,2>水解转化率有下降趋势,但改性制备的La<,2>O<,3>-ZrO<,2>-K<,2>O/Al<,2>O<,3>催化剂CS<,2>水解活性下降趋势最为缓慢。随着气体中CO含量的减少,制备的系列催化剂上CS<,2>水解活性下降趋势有所缓和,但也存在差异。CO气氛下,CS<,2>水解催化剂活性下降的原因主要是一方面由于CO与水解产物H<,2>S发生反应生成COS,导致中间产物COS量的增多,一定程度上抑制CS<,2>水解的进行,另一方面由于CO歧化反应积炭堵塞催化剂孔隙结构,导致催化剂中毒失活。碱金属及过渡金属氧化物的添加可以提高制备的催化剂上CS<,2>水解转化率,稀土金属氧化物的添加可以降低CO气氛对催化剂上CS<,2>水解转化率的影响。 CO<,2>-TPD结果表明:活性组分负载明显提高CO<,2>脱附所表征的碱性中心的数量。负载K<,2>O增加了CO<,2>脱附所表征的碱性中心数量近4倍,负载La<,2>O<,3>-ZrO<,2>-K<,2>O增加了近20倍。活性组分K<,2>O、La<,2>O<,3>-ZrO<,2>-K<,2>O的负载提高了低温脱附表征的碱性中心的强度,但随着活性组分种类的增加,碱性中心的强度有所下降。CO-TPD和XPS研究结果表明:CO能在催化剂上产生吸附,吸附的CO量随着吸附温度的升高而降低。活性组分负载能明显降低CO的吸附,其中负载La<,2>O<,3>-ZrO<,2>-K<,2>O催化剂上CO吸附量最低。吸附的CO在催化剂表面生成石墨碳,最终导致催化剂积炭中毒。BET分析结果表明:负载活性组分导致催化剂表面积下降,催化剂在CO气氛下CS<,2>水解后催化剂表面积也有轻微下降趋势。CO在催化剂上积炭机理是酸催化反应,由此减少催化剂表面酸性中心是抑制催化剂上CO积炭中毒的主要手段。K<,2>O、ZrO<,2>、La<,2>O<,3>都是碱性金属氧化物,负载它们可以用于中和催化剂表面酸性,提高催化剂表面碱性。同时合理组合的负载,得到碱性强度适宜的催化剂,使得催化剂具有抑制积炭和提高CS<,2>水解活性的特性。本征动力学实验研究得出La<,2>O<,3>-ZrO<,2>-K<,2>O催化剂上CS<,2>水解过程中,CS<,2>呈一级反应,水为零级反应。本征动力学方程如下:CS<,2>催化水解机理为:CS<,2>吸附在碱性中心上形成活性中间体,吸附的CS<,2>与吸附的水发生反应,水的吸附速率非常快,CS<,2>的吸附速率影响CS<,2>的水解反应速率。在300℃,进口CS<,2>浓度300mgS/m<3>,空速60000h<-1>,催化剂粒度60~80目条件下,H<,2>浓度由10%增加到35%,CS<,2>水解转化率提高,这可能是部分CS<,2>参与加氢转化反应;随着CO浓度由10%增大到35%,CS<,2>水解转化率出现下降

喜欢就 关注我们吧,订阅更多最新消息

第一作者及通讯作者:李伟(陕西 科技 大学(西安))

共同通讯作者:王传义(陕西 科技 大学(西安))

通讯单位:陕西 科技 大学

论文DOI:10.1016/j.apcatb.2021.121000

研究亮点

1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。

2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。

3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。

研究背景

随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。

硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。

拟解决的关键问题

本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。

成果简介

针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。

要点1:CdS-Pd复合光催化剂合成

通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。

图1.CdS-Pd复合光催化剂的合成示意图及结构表征。

要点2:CdS-Pd复合光催化剂结构、组成及形貌表征

通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。

图2.CdS-Pd复合光催化剂的形貌、晶型及组成分析。

要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性

当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为947.93 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到7335.83 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为4.47%和33.92%。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。

图3.CdS-Pd复合光催化剂的催化产氢性能、持久性和重复使用性。

要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析

通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。

图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。

要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析

通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。

图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制

小结与展望

综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。

参考文献

W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: 10.1016/j.apcatb.2021.121000.

作者介绍

李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. Sci.-Nano》、《ACS Sustainable Chem.Eng.》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。

王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。

声明

光催化材料的研究进展英文论文

负载在g‑C3N4纳米片的PtCo合金和周围Co单原子的协同作用促进整体水分解

研究背景

太阳能驱动的全分解水可大规模生产氢气和氧气,是满足清洁能源需求和解决化石燃料危机的理想策略。然而,在不消除牺牲试剂或不需要施加外部偏压的情况下,水分解需要协同活性位点,以连接空间分离的析氢和析氧反应。具有最高原子利用效率的原子分散催化剂已成为催化领域的前沿。然而,单组分单原子催化剂在整个光催化水分解反应(OWS)中的应用却鲜有报道。

内容简介

基于此,近日华东师范大学姚叶锋和王雪璐团队设计了一种双组分协同光催化剂,其包含单原子Co(CoSAs)中心和PtCo合金纳米颗粒(Nps)的分散体负载在C3N4纳米片上。CoSAs中心是析氢反应(HER)的高活性位点,PtCo合金是析氧反应(OER)的高活性位点。当两个不同的反应中心结合时,它们之间会产生协同效应,这表明CoSAs中心和PtCo合金Nps之间可能存在质子或羟基溢出现象。CoSAs中心和PtCo合金的协同促进了OWS反应实现最大原子利用率和最佳双功能活性之间的协同。这种结合为开发OWS原子分散催化剂提供了一个很有前景的模型。相关论文以” Synergistic Promotionof Single-Atom Co Surrounding a PtCo Alloy Based On a g‑C3N4 Nanosheet for Overall Water Splitting”发表在ACS Catal.

本文亮点

1. 设计了一种新型的双组分协同光催化剂CoSAs/PtCo@CNN,由负载在纳米片g-C3N4上的CoSAs和PtCo合金纳米颗粒组成。该催化剂有效地促进了光催化整体水分解反应。

2. 纳米片C3N4具有大的比表面积和高的孔容,为CoSAs的形成提供了丰富的N配位。CoSAs和PtCo合金的协同活性在最大原子利用率和析氢析氧双功能反应性之间架起了一座桥梁。

3. CoSAs/PtCo@CNN在可见光照射下,三乙醇胺(TEOA)存在下,催化剂在整个水裂解反应中的产氢活性高达300.9μmol/h·g,产氢活性为5.58 mmol/h·g。

4. 这项研究不仅为构建协同合金位点开发高效的单原子光催化剂提供了一种有希望的策略,而且还提供了对结构的深入了解 通过光催化过程进行的整体水分解反应的活性关系。

图文解析

TEM,FT-IR

CN样品由膨胀和连续结构中的大波浪层组成。负载金属后,金属颗粒聚集在大块CN的表面或次表面。经过两步煅烧后,所得CNN样品转变为薄、松散、柔软的丝状纳米片结构。煅烧方法导致了CN层的卷曲,使金属颗粒更均匀、更稳定地负载在表面上。红外光谱结果表明CNN样品的C-NH-C键的振动明显强于CN样品中的振动,表明CNN具有高浓度的-NH-缺陷位点,可能会增强水分子的光催化活性。

NMR

在D2O 处理(表示为 CNN-D)之前和之后获得的 CNN 样品的1D 1H MAS 核磁结果表明当 CNN 样品中残留水通过 D2O 处理被氘化时,CNN-D 的 Hw 信号显著减弱。这表明CNN样品具有易于吸附和解吸水分子的双重优势。相反,在 D2O 处理后,普通 CN 样品的Hw 信号强度或其位置没有显著变化,表明由于氢交换没有明显的结构变化。氘交换后, CNN-D 样品的 CN3, Ha 峰的相关性显著降低, 表明边缘氨基(Ha) 和 d 氘化水之间存在强烈的质子交换。相比之下, CN-中的质子交换的证据Ha和氘化水之间的D样品几乎没有氘处理前后的变化。

XANES,HAADF-STEM

为了进一步了解铂和钴金属的配位化学,测试了CoSA/PtCo@CNN催化剂的X射线吸收近边缘结构(XANES)光谱。在CoSAs中形成Co(II)Nx配位中心外,合金中的Co4s和4p轨道还通过与Pt电子结合发生杂化。EXAFS分析表明PtxCo合金和N-Co(II)连接性结构形成。Pt L3边缘的EXAFS光谱中电子的径向分布发生了0.2Å的偏移,表明Pt Co键的形成。Co 原子分散在单金属位点,中心 Co 原子由四个 N 原子配位稳定。少量的 CoSA可以通过长距离的 Co-N-C 协调。像差校正的HAADF-STEM结果表明分离出单个纳米颗粒具有 0.224 nm 间距的晶面(Pt3Co 平面)并被许多孤立的金属原子包围。结合 XANES 分析,纳米粒子(NPs)和孤立的金属原子分别为PtxCo 合金和单个 Co 原子。CoSAs/PtCo@CNN 催化剂的组成为大多数 Pt 原子参与形成随机分布的PtCo 合金。额外的Co原子不均匀地分散在 PtCo 合金簇。很少量的Co单原子远离单纳米粒子。所有这些形式共同构成CoSAs/PtCo结构体。

EPR,UV-vis

CoSAs/PtCo@CNN 催化剂用于在紫外-可见光照射下在整个水分解反应中生成产物,而无需使用任何电子牺牲剂,通过原位 EPR 光谱观察到悬浮液中•OH(羟基自由基)的特征信号。这种强烈的•OH 信号表明该途径涉及水的单电子氧化以产生•OH。在 CoSAs@CNN 上仍然没有检测到 •OH 信号,CoSAs/PtCo@CNN表现出高活性产氢气(高达 300.9 μmol/h·g)和 65.6 μmol/h g的活性用于整个水分解反应中的 O2。在整个水分解反应中观察到 H2O2 产物。催化剂使用3次后,PtCo合金上的Co0保持稳定的结构。在单组分催化剂 CoSAs@CNN 或 PtCo@CNN 上没有检测到可测量的 H2 或 O2 物种,这表明单原子 Co 和纳米片CNN 上负载的 PtCo 合金复合材料之间存在协同。

DFT

理论计算给出了CoSAs/PtCo@CNN对 HER 的反应途径。第二步(OH* O*)为 OER 过程的决速步。对于合金表面的 Pt 位点、合金表面的 Co 位点和 CoSAs 位点,此步骤的 ΔGO* 值分别为 2.18、1.82和 2.52 eV。对于 PtCo 合金表面的 Co 位点,每个基元步骤都是吸热的,其决速步基本上可用于完成 OER 半电池反应。如上所述,这种协同作用是通过 CoSAs配位的 N 原子产生的,N原子充当 HER 半反应的高活性位点。同时,由纳米片 C3N4负载的 PtCo 合金纳米颗粒是OER 的高活性位点。

该研究主要计算及测试方法

做同步辐射 找易科研

做球差电镜 找易科研

做计算 找易科研

悬赏太低,我才不屑

  • 索引序列
  • 煤直接液化催化剂的研究进展论文
  • 催化剂研究进展论文
  • 磁性催化剂研究进展论文题目
  • cs2水解催化剂研究的论文
  • 光催化材料的研究进展英文论文
  • 返回顶部