首页 > 论文发表知识库 > 因式分解的方法研究论文答辩

因式分解的方法研究论文答辩

发布时间:

因式分解的方法研究论文答辩

导语:因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

1、提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x3-2x2-x

x3-2x2-x=x(x2-2x-1)

2、应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a2+4ab+4b2

解:a2+4ab+4b2=(a+2b)2

3、分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m2+5n-mn-5m

解:m2+5n-mn-5m=m2-5m-mn+5n

= (m2-5m)+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、十字相乘法

对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x2-19x-6

分析:1×7=7,2×(-3)=-6

1×2+7×(-3)=-19

解:7x2-19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的'可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x2+6x-40

解x2+6x-40=x2+6x+(9) -(9 ) -40

=(x+ 3)2-(7 )2

=[(x+3)+7]*[(x+3) – 7]

=(x+10)(x-4)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x4–x3-6x2-x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)

解:2x4–x3-6x2-x+2=2(x4+1)-x(x2+1)-6x2

=x2{2[x2+()2]-(x+)-6}

令y=x+,

x2{2[x2+()2]-(x+)-6}

= x2[2(y2-2)-y-6]

= x2(2y2-y-10)

=x2(y+2)(2y-5)

=x2(x++2)(2x+-5)

=(x2+2x+1)(2x2-5x+2)

=(x+1)2(2x-1)(x-2)

8、求根法

令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则多项式可因式分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)(一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)

例8、分解因式2x4+7x3-2x2-13x+6

解:令f(x)=2x4+7x3-2x2-13x+6=0

通过综合除法可知,f(x)=0根为,-3,-2,1 ,

则2x +7x -2x-13x+6=(2x-1)(x+3)(x+2)(x-1)

9、图象法

(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的)

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1,x2,x3,……xn,则多项式可因式分解为

f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)

例9、因式分解x3+2x2-5x-6

解:令y=x3+2x2-5x-6

作出其图象,可知与x轴交点为-3,-1,2

则x3+2x2-5x-6=(x+1)(x+3)(x-2)

10、主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a2(b-c)+b2(c-a)+c2(a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a2(b-c)+b2(c-a)+c2(a-b)=a2(b-c)-a(b2-c2)+bc(b-c)

=(b-c) [a2-a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、利用特殊值法

将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x3+9x2+23x+15

解:令x=2,则x3+9x2+23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x3+9x2+23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x4–x3-5x2-6x-4

如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x4–x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)

= x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd

从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4

所以解得

则x4–x3-5x2-6x-4=(x2+x+1)(x2-2x-4)

1】提取公因式

这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等

例一:2x-3x=0

解:x(2x-3)=0

x1=0,x2=3/2

这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。

2】公式法

将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等

注意:使用公式法前,建议先提取公因式。

例二:x-4分解因式

分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2)

3】十字相乘法

是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。

这种方法的关键是把二次项系数a分解成两个因数的积,把常数项c分解成两个因数的积,并使a1c2?a2c1正好是一次项b,那么可以直接写成结果

例三: 把2x-7x+3分解因式.

分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.

分解二次项系数(只取正因数):

2=1×2=2×1;

分解常数项: 222

导语:因式分解的常用方法,还有很多方法都很不错,也能对我们的数学能力进行拓展,例如十字相乘法等等。我们在学习初中数学因式分解的时候,一定要多做题,题海战术虽然饱受诟病,但是对于初中数学确实是理解和熟练知识点的最佳途径,当然要适量,不可疲劳战,这是为了保持对学习的浓厚兴趣,长此以往,养成习惯,你会发现数学这么简单。

因式分解的步骤

1、提公因式;

2、公式法(完全平方式、平方差公式)。

初中数学因式分解常用解法有哪些提公因式法

① 公因式: 各项都含有的公共的因式叫做这个多项式各项的~.

② 提公因式法 :一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③ 具体方法: 当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

初中数学因式分解常用解法有哪些

运用公式法

①平方差公式:.a^2-b^2=(a+b)(a-b)

②完全平方公式:a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

※多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

配方法: 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

换元法 :有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

待定系数法: 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

扩展资料:

因式分解(英语:factorization,factorisation或factoring)是指把一个多项式分解为两个或多个的因式的过程,分解过后会得出一堆较原式简单的多项式的积。例如多项式x-4可被分解为(x+2)(x-2)。

基本概念

定义

把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。

相关结论

基本结论:分解因式与整式乘法为相反。

高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。

1)因式分解与解高次方程有密切的.关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

2)所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)

3)因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。

4)因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。

分解一般步骤

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

原则

1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。

2、分解因式的结果必须是以乘积的形式表示。

3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。

4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;

5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;

6、括号内的首项系数一般为正;

7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);

8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。

口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。

分解方法

因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。

因式分解的方法和技巧:十字相乘法,双十字相乘法,提公因式法,因式定理法等。

1、十字相乘法

具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)。

特点:

(1)二次项系数是1。

(2)常数项是两个数的乘积。

(3)一次项系数是常数项的两因数的和。

基本步骤:

(1)把二次项系数和常数项分别分解因数。

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数。

(3)确定合适的十字图并写出因式分解的结果。

(4)检验。

2、双十字相乘法

一般步骤:

(1)用十字相乘法分解二次项(ax2 + bxy+ cy2),得到一个十字相乘图(有两列)。

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原

式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx。

(3)先以一个字母的一次系数分数常数项。

(4)再按另一个字母的一次系数进行检验。

(5)横向相加,纵向相乘。

3、提公因式法

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积

的形式,这种分解因式的方法叫做提公因式法。

各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。

具体方法:在确定公因式前,应从系数和因式两个方面考虑。当各项系数都是整数时,公因式

的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低

的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项为负,

要提出负号,使括号内的第一项的系数成为正数。提出负号时,多项式的各项都要变号。

基本步骤:

(1)找出公因式。

(2)提公因式并确定另一个因式。

①找公因式可按照确定公因式的方法先确定系数再确定字母。

②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商

即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一

个因式。

③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

4、因式定理法

根据因式定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解的方法

叫做因式定理法。

具体方法:根据因式定理(若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x一

a),找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根,对于任意多项式f(x),要求出它

的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,若既约分数

q/p是整系数多项式f(x)= AgX"+A|X 1 +...+ An-1X+A的根,则必有P是ao的约数,4是an的

约数。特别地,当ag=时,整系数多项式f(x)的整数根均为an的约娄数。

注意:

(1)对于系数全部是整数的多项式,若X=q/p(为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约娄。

(2)对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数。

多项式因式分解的方法毕业论文

高次多项式如何因式分解?清华学霸毫无思路,高级教师1秒搞定!

多项式因式分解的方法,一个是根据完全平方公式,一个是配方法还有一个因式分解法。

一、提公因式法。

多项式中,每一都含有的公共的因式叫做这个多项式的公因式。通常,某些多项式的各项或一些项有公因式,那么,我们可以把这个公因式提出来,从而将多项式化成两个因式或多个因式的乘积的形式,这种分解因式的方法叫做提公因式法。

二、公式法。

将乘法公式反过来,就可以将某些多项式因式分解,这种方法叫公式法。

三、分组分解法。

分组分解法是分解较复杂的多项式的一种方法,在能分组的多项式往往有四项或者更多,一般分组为两两分组或三一分组,常用于多项式中的某些项分别进行合并后会有公因式或者可用公式化简等。

四、十字相乘法。

十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

五、双十字相乘法。

分解形如ax²+bxy+cy²+dx+ey+f 的二次六项式在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则。

则原式=(mx+py+j)(nx+qy+k)。也叫长十字相乘法。

扩展资料:

一、多项式的分解定理:

F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。

当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。

当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。

所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。

当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。

一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。

二、因式分解的相关结论:

1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。

对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

2、 所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x4+1,这是一个一元四次多项式,看起来似乎不能因式分解。

但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。

并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)

3、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。

标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。

4、因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。

参考资料:百度百科-因式分解

多项式因式分解的话,这里主要是先看一看多项式之间是有哪一些公因式,有公因式的话就提出来,然后再进行进一步的分解。

研究因式分解的论文题目

1/2x^2-2xy+2y^2=(1/√ 2* x-√ 2* y)^2=[√ 2* (x-2y)]^2=(x-2y)^2/2=.由等式可以求出y=4/714y(x-3y)^2-4(3y-x)^3=14y(x-3y)^2+4(x-3y)^3=14y+4=12

上课认真听。多做练习,多反思。熟能生巧。

定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也作分解因式。 意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。 分解因式与整式乘法互为逆变形。[编辑本段]因式分解的方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正[编辑本段]基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也作分解因式。 意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。 分解因式与整式乘法互为逆变形。[编辑本段]因式分解的方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正[编辑本段]基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a*2+1/2变成2(a*2+1/4)不叫提公因式 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a*2-b*2=(a+b)(a-b); 完全平方公式:a*2±2ab+b*2=(a±b)*2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a*3+b*3=(a+b)(a*2-ab+b*2); 立方差公式:a*3-b*3=(a-b)(a*2+ab+b*2); 完全立方公式:a*3±3a*2b+3ab*2±b*3=(a±b)*3. 公式:a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 例如:a*2 +4ab+4b*2 =(a+2b)*2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。[编辑本段]竞赛用到的方法 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。⑷十字相乘法 这种方法有两种情况。 ①x²+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q) . ②kx²+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx²+mx+n=(ax+b)(cx+d). 图示如下: × c d 例如:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x²-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑸拆项、添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).⑹配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x²+3x-40 =x²+3x+ =(x+)²-()² =(x+8)(x-5). ⑺应用因式定理 对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x²+5x+6,f(-2)=0,则可确定x+2是x²+5x+6的一个因式。(事实上,x²+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数 ⑻换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。 注意:换元后勿忘还元. 例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则 原式=(y+1)(y+2)-12 =y²+3y+2-12=y²+3y-10 =(y+5)(y-2) =(x²+x+5)(x²+x-2) =(x²+x+5)(x+2)(x-1). 也可以参看右图。⑼求根法 令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).⑽图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确。 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).⑾主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。⑿特殊值法 将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。⒀待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x^4-x^36-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) =x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图。⒁双十字相乘法 双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。[编辑本段]多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。” 几道例题 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图。) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。 解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).[编辑本段]因式分解四个注意: 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误 例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。 分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 考试时应注意: 在没有说明化到实数时,一般只化到有理数就够了 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。[编辑本段]因式分解的应用 1、 应用于多项式除法。 2、 应用于高次方程的求根 3、 应用于分式的运算

因式分解论文答辩问题答案

1、你的毕业论文采用了哪些与本专业相关的研究方法?

本文通过学术论文的方式进行,主要是通过对书籍、报刊的阅览与浏览网站寻找大量相关材料及信息,综合整理,系统分析,并运用所学经济学原理以及分析手段,对如何结合自身优势,借鉴国内外先进模式以及经验,对平度市旅游产业发展进行了深入的探索分析,对其成功经验进行提炼,并结合所学知识对不足之处提出改进建议和提升方法。

2、论文中的核心概念是什么?用你自己的话高度概括 。

旅游产业已成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

3、你选题的缘由是什么?研究具有何种现实指导意义?

近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

4、论文中的核心概念怎样在你的文中体现?

现状分析、提出问题并进行针对性的解决。

5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?

阻碍旅游产业的科学、健康、可持续发展,进而放缓地区的经济发展速度。

6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?

为论文的主体框架提供理论依据。框架直接反应理论的理论概念。

主要理论基础:现代旅游产业发展规律、区域旅游规划原理、第三产业经济学。

7、质性研究与访谈法、定性研究、定量研究、调查研究、实证研究的区别?

质性研究方法的基本问题,包括什么是质性数据,质性方法与量化方法的联系与区别,质性方法对研究现实问题和理论建构的作用与意义。

8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?

首先我必须正面诠释我的论文性质,作为一篇本科学士毕业论文,我确实用心完成了我的学习任务,但如果一旦将论文的框架与概论进行实际运用,它还是浅显、不成熟的。其结果也就有可能成为理论性上的成功或实际运用上的短板,但也为相关理论研究提供了一份微薄的补充。

正面:通过社会调查和资料查阅,分析现状,针对性的提出问题并解决问题。 负面:理论性过强,实际运用性有待于商榷,实际操作需根据不同地点不同旅游产业点的实际情况循序渐进。

9、你的论文基础何种研究视角?是管理学、教育学、心理学还是社会学视角?

社会角度。社会素材与产业数据的收集来源社会。

1、论文研究的对象是个体还是群体?是点的研究还是面的研究?

在社会大产业面前属于旅游产业的个体研究,但在这个点的集合上又是面的研究,涉及旅游产业的各个方面,综合因素及利弊端。

11、论文中的结论、建议或策略是否具有可行性和操作性?

具有。虽然相对于专家性的研究、指导具有一定的不足,但根据资料查阅和社会调研,所得结论和提出的建议及策略在配合当地实际情况及各界力量努力的基础上还有具有一定的可行性和操作性。

12、研究对象是否具有可比性?

研究框架是否符合论文规范(而不是写书的逻辑)! 具有。不同行业间的发展趋势具有一定的相似性。符合。

13、自己为什么选择这个课题?

1、论文写作的角度进行选择:我是一名平度人,平度地区旅游产业的快速发展情况我比较了解,但是在平度市旅游产业飞速发展的背后,我也在其发展过程中看到种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我认清平度市旅游产业发展的未来发展方向与发展对策,为家乡略尽微薄之力。并以此完成教学任务。

2、个人的原因进行选择:我的从业规划是以后在旅游的相关产业就业,最后进行自主创业,本篇论文的写作能够加强我对该行业的理解与认识。垒实就业基础。

14、研究这个课题的意义和目的是什么?

意义: 近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策。

目的:有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

15、全文的基本框架、基本结构是如何安排的?

分析现状、发现问题、提出解决方案。

16、全文的各部分之间逻辑关系如何?

分析现状、发现问题、提出解决方案。

17、在研究本课题的过程中,发现了那些不同见解?

对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?

景区联合的多地同步开发优惠旅游。如:齐鲁旅游年票。包含的景点多达几十上百个,根据游客的自主选择进行参观旅行。

首先合理:品牌景点带动起步景点的发展,广告宣传,提高知名度,同步发展。商榷之处:因为品牌景点价格的优惠造成旅游人口承载力压力加大,而起步景点反而相对削弱了竞争力不进反退。对游客而言,因为年票上景点的造势,去起步景点之后心理落差比较大,消费者与相关旅游地失去双赢的效果。

处理:发扬优势,去其糟粕。针对劣势提出解决对策,如起步景点在加强宣传的`同时,重视自身软硬件的开发力度,提升自身实力。

18、论文虽未论及,但与其较密切相关的问题还有哪些?

旅游产业延伸品的发展现状、问题、解决。如旅游点衣食住行产业的品牌延伸(某某景点大饭店、某某景点交通运输、某某景点品牌服饰)。

19、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?

景点的联合营销。景区联合的多地同步开发优惠旅游。如:齐鲁旅游年票。包含的景点多达几十上百个,根据游客的自主选择进行参观旅行。

首先合理:品牌景点带动起步景点的发展,广告宣传,提高知名度,同步发展。商榷之处:因为品牌景点价格的优惠造成旅游人口承载力压力加大,而起步景点反而相对削弱了竞争力不进反退。对游客而言,因为年票上景点的造势,去起步景点之后心理落差比较大,消费者与相关旅游地失去双赢的效果。

处理:发扬优势,去其糟粕。针对劣势提出解决对策,如起步景点在加强宣传的同时,重视自身软硬件的开发力度,提升自身实力。

2、写作论文时立论的主要依据是什么?

近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

21、论文和系统有哪些不足之处?

论文的资料引用相似度检测问题,引用,却有限制,有自己的论点,但难以保证与其他文献完全不同。导致论文创新点不够没明确。

22、论文有何创新之处?

我在平度市旅游产业发展分析分的写作过程中为四大部分。包括平度市旅游产业的发展现状、和旅游产业发展存在的问题,提出问题的解决对策,为平度市旅游产业的市场发展开拓创新营销手段,以此来推进平度市区域经济的快速发展。

论文逻辑层层递进,环环相扣。其中创新之处在于第二大部分的旅游产业对平度市地域发展的影响,分为利弊两方面,在两个大方向下,又从平度实地经济、文化、环境进行利弊的剖析和对比,为下文的旅游产业存在的问题和提出解决问题对策做好充分的铺垫,有理有据,具有一定的社会可行性和操作性。

论文答辩的时间是在你的论文通过学校论文检测的一个月后进行的,一般是在每年的五月份左右,具体的时间是要看你所学的专业和你的论文的字数来决定的,如果是你所学的专业比较热门的话,答辩的人数就比较多,答辩时间也会相应的延长;如果是你所学的专业比较冷门的话,答辩的人数就比较少,答辩的时间也会相应的缩短;如果是你的字数比较多,答辩时间就会相应的延长;如果你的字数比较少。

论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。设置毕业答辩的目的就是检查学生论文的完成情况,判断学生是否用心在撰写自己的论文。此外,采取答辩的形式,可以增强学生的语言表达能力以及逻辑思维能力。毕业答辩形式以回答为主,辩论为辅,是学生与老师的一次直接交流一般老师是提问者,学生是回答者。

论文答辩—般会问的问题:1、你的毕业论文采用了哪些与本专业相关的研究方法?2、论文中的核心概念是什么?用你自己的话高度概括。3、你选题的缘由是什么?研究具有何种现实指导意义?4、论文中的核心概念怎样在你的文中体现?5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?9、自己为什么选择这个课题?10、研究这个课题的意义和目的是什么?11、全文的基本框架、基本结构是如何安排的?12、全文的各部分之间逻辑关系如何?13、在研究本课题的过程中,发现了哪些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?

论文答辩研究问题的解决方法

会计专业论文答辩时会遇到的问题及解决方法

一、会计毕业论文答辩中的六大问题:

1.准备问题不独立。

准备问题环节,主要考核答辩学生查阅资料、分析问题和解决问题的能力。然而答辩学生为了能顺利完成答辩老师的提问,通过独立思考解决问题的很少,往往是答辩老师提问,其他学生分头行动,各负责一题,答辩学生完成记录,几个间题的答案已作出。若有一到二题不会,还可以大言不惭地要求老师作答。

2.回答问题不切题。

回答问题是会计论文答辩的最后一环。该环节的主要问题有:回答问题准确度低,说话吞吞吐吐,声音小,难以听清。究其原因,前者是对所学会计知识掌握不牢或记录问题有错。后者是功底浅,胆小怕出错或语言表达能力差或无法回答,想蒙混过关。

3.介绍论文不清楚。

会计专业学生由于平时锻炼不够,论文介绍总体反映为:学生对论文不熟,介绍的内容不明不白,与预期目标相去甚远。主要表现是走极端:要么先在黑板上写上论文题目,再念提纲;要么是抓紧时间,通读全文。这样介绍会计论文的.坏处是:前者过于简单.答辩老师不能详细了解论文的内容,无法提出适当的问题;后者虽克服了前者缺点,但往往超过规定时间,给答辩老师留下不好的第一印象,答辩老师不仅容易疲劳,而且难以抓住重点,往往凭记住的“关键词”提问,难免刁钻古怪,影响答辩效果。

4.提出问题不适当。

由于答辩学生介绍论文的原因和答辩老师主观上的原因,答辩老师在提问的数量、质量和方式上还缺乏统一规范,随意度大,主要表现为:数量上,少则2一3个问题,多则20个以上;质量上,要么过于简单,要么过于复杂;方式上,自己喜欢和有所研究的多提,而自己不喜欢或未曾研究的少提。除此之外,更有不负责任的老师,提出一些误导性的问题,如你参加工作以后准备作几套帐。

5.记录问题不准确。

记录问题是会计论文答辩的中间环节,该环节考核了答辩学生的反映能力、速写能力、综合能力。从答辩实践中看,记录问题中所反映出的不足有:对答辩老师提问断章取义,丢三拉四,含糊不清,张三的提问记在李四名下等等。其结果一是回答问题漏洞百出,笑话连篇,二是严重挫伤了答辩老师的感情。

6.考核评分不规范。

会计毕业论文考核评分是不规范的,表现为:打整体印象分。认为按指标逐个打分太烦。这样往往出现某老师的问题答对了就给高分,某老师的问题没答对就给低分,而缺乏整体考虑,即共有多少个问题,答对了多少问题,该得多少分。老师这种以自己的提问为中心严重挫伤了答辩学生的积极性。

二、六大解决方法:

1.介绍论文应有备而来,避免仓促上阵。

学生介绍论文前,应做好以下准备工作:首先准备好一篇过渡性文章,该文章应比提纲详细,比全文精炼,能清楚地表达作者的主要论点、论据和最新研究成果;其次是熟悉过渡性文章,最好是记住它,以免因锻炼不够发生怯场而照本宣读;第三是在宿舍进行模拟论文介绍,锻炼表达能力,控制介绍时间;最后是以挂图形式写出论文提纲,以便介绍时挂出,弥补因普通话不标准出现的不清楚、不完整。这样就可以做到论文介绍清楚、明白、通俗、易懂。

2.提出问题应紧扣论文,把握适当性。

要使老师提出问题把握针对性、适当性,应采取以下措施:一是每篇论文安排一个主要提问者(称为主问),主问应对该毕业论文及其涉及的专业领域有较广泛的了解。在进行答辩前准备好相应数量的问题,并作好答案要点。该主问常可指定为毕业论文的评阅老师;二是限制非主问老师所提问题的数量。

3.采取双重记录复核法,保证记录问题的准确性。

具体操作方法是:首先由答辩小组指定一位有较强记录能力的学生进行专职记录。老师提问时,专职记录员与答辩学生同时记录。其次是记录完了之后,答辩学生重述老师的提问,老师复核认可,并与专职记录员一致才可下台准备问题。这样既可保证记录问题的准确性,又可防止回答问题时避难就易的丢题现象。

4.提供必备的空间环境,确保准备问题独立化。

要保证答辩学生准备问题的独立性,其措施就是给其独立空间,即让其与同学和老师隔离,失去同学的援助和询问老师的可能。

5.平时加强会计知识积累,做到回答问题“手中有粮,心中不慌”。

回答问题质量高低完全取决于答辩学生平时对知识积累程度和临场发挥水平。要做到回答问题切中要点,一是论文必须自己做,剿窃文章进行大拼盘乃为大忌;二是平时注意知识点滴积累切勿临时抱佛脚;三是平时多锻炼,提高自己的临场应变能力,如参加演讲比赛、辩论会等。

6.建立严密的考核指标体系,实现评分规范化。

对毕业论文考核评分应坚持公正、公平、公开、合理原则,该原则要求对毕业论文考核有一套规范的量化标准。如论文介绍量化评分标准,可细化为:观点是否正确、是否有新意,论证是否严密,论文抄写是否清楚,语言表达是否清晰等具体指标,切忌凭整体印象模糊评分。标准化评分要求答辩老师在答辩过程中工作要细,如回答问题准确程度评分就要求提问老师在学生回答该问题后表明该问题正确答案的要点,以便其他老师评分。这样就可以避免评分的不规范性。

学位论文答辩提问方式及技巧

一、提问方式

在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。

1.提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。

2.提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。

如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。

(1)什么是科学技术?

(2)科学技术是不是生产力的一个独立要素?

在学员作出正确回答以后,紧接着提出第三个小问题:

(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?

(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。

如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。

3.当答辩者的'观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以“真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。

如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。

4.当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。

参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。

二、回答提问时要注意的问题。

研究生宣讲完学位论文后就要进入答辩提问环节,为了提高回答的质量和效果,研究生在进行论文答辩前就需要思考以下一些方面的问题:(1)对选题意义的提问;(2)对重要观点及概念的提问;(3)对论文创新点的提问;(4)对论文细节的提问;(5)对论文数据来源的提问;(6)对论文薄弱环节的提问;(7)对自己所做具体工作的提问;(8)对与课题相关的扩展性问题的提问。

针对以上问题,为了取得良好的答辩效果,在回答时需要注意以下几个细节:

1.听问题一定要注意力集中,没听清时要再问一遍,以免答非所问、把本来能回答的问题答错。

2.不要急于回答,要经过思考后再作回答,这样可使回答更有条理、更加深入和全面。

3.要认真领会专家的题意,针对问题的核心回答,宁少勿多。语言要简练,不要含混不清、模棱两可,不要过多地使用“大概”、“可能”、“也许”等词语.

4.有些问题不会回答是正常的,不一定影响评语。有时候专家看答辩者论文做的好,可能会问几个难度较大的问题,看答辩者是否有所考虑并与之进行深入交流,所以答辩者答不上来也是可能的,只需如实说明情况即可,不要不懂装懂,以免出现不必要的错误。

5.要尊重答辩专家,不要过分争辩。当自己的观点与答辩专家的观点相左时,既要尊重答辩专家,又要让答辩专家接受自己的观点,就得学会运用各种辩论的技巧,而不要过分争辩。

三、其它事项。

1.要有自信心。克服紧张、不安、焦 躁 的情绪,想信自己一定可以顺利通过答辩。自卑的心理会使答辩大失水准,甚至由于胆怯而不能正常表达自己的想法,无法体现真实的能力和水平。

2.要有饱满的热情。要面带微笑、充分调动自己的积极性,把最佳的精神状态展示给大家。

3.要讲文明礼貌。开始时要向专家和同学们问好,答辩结束时要道谢,体现出良好的修养。无论是听答辩专家提问题,还是回答问题都要做到礼貌应对。

4.要注意仪态和风度。答辩者要仪容整洁、举止大方。如果能在最初的一、两分种内以良好的仪态和风度体现出良好的形象,就有了一个好的开端。

成功的答辩是自信和技巧的结合,扎实的专业知识和细致答辩准备工作是成功的前提。使用一些答辩技巧可以充分展示整理研究材料、展示研究成果的能力,让别人知道自己所做的工作。要想取得良好的效果,就必须对答辩的目的、答辩报告的内容、答辩报告技巧、可能遇到的提问及解决方法进行深入剖析。做好这些工作,答辩者就一定会获得优异的成绩、顺利通过学位论文答辩。

1.在论文答辩会之前,我们需要将经过了老师审定并签署过意见的毕业论文,包括所有的提纲以及任务书还有初稿都提交上去。2.在答辩会上进行论文阐述时需要先用一个短时间概述自己毕业论文的大概是什么内容以及为什么会选择这个论题,详细的介绍毕业论文的主要论点论据还有自己在写作时候的体会,字句清晰意思明确的让老师和其他在场人员明白自己所讲述的内容,这部分会考察到你的分析能力还有一些综合归总能力以及语言表达能力。3.答辩进行时会有老师对你所讲述的问题进行提问,一般在3个左右,在老师提问完后根据学校的规定可以准备一段时间或者立即给与老师答复。4.答辩完成之后学员退场,导师以及其他委员会成员根据你的论文质量和答辩的情况商讨是否通过并拟定大概成绩。5.在拟定完成绩之后主答辩导师可能会找回学员,对学员答辩情况给与小结,会肯定部分内容,然后对其他内容提出修改意见加以补充和指点。

具体的范文模板链接:

  • 索引序列
  • 因式分解的方法研究论文答辩
  • 多项式因式分解的方法毕业论文
  • 研究因式分解的论文题目
  • 因式分解论文答辩问题答案
  • 论文答辩研究问题的解决方法
  • 返回顶部