首页 > 论文发表知识库 > 一元函数求法的毕业论文

一元函数求法的毕业论文

发布时间:

一元函数求法的毕业论文

这位几星期后的校友 自己写吧。。。 没办法啊。。。 不过可以看一下参考书 上面有一些内容应该能用的上。。。。。。。再次表示同情以及无奈。。。。。

这个真的不难,多看课本,然后总结一下,加上自己的一些思考,可以写函数最值的一些求法,以及存在的条件,在实际生活中的应用,无论多元函数,还是一元函数,书上都有具体的求法,公式,好好总结一下,真的很容易写好的.

你可介绍一下 论文中将包含1、一元函数连续的条件(即什么时候能连续),并少量举例;2、一元函数可导的条件,并举例;3、介绍连续和可导是什么关系,什么情况下连续函数可导,什么情况下连续函数不可导,并举例;4、介绍可微的定义,并举例;5、介绍可导和可微的关系,同3。举例的时候,一定要举哪些比较经典的,当然自己构造的函数也很好。说实在的,这个题目的论文很好写,但不会有什么新意。仅是毕业而用,很好写,但要想争取优秀或者发表那是不太现实的了。

初三 就写 论文 厉害 佩服啊你可以 按这个 模式 写一下一、目的要求从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。二、内容分析1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。三、教学过程复习提问:1.当x取什么值的时候,3x-15的值(1)等于0;(2)大于0;(3)小于0。(这是初中作过的题目)2.你可以用几种方法求解上题?新课讲解:像3x-15>0(或<0)这样的不等式,常用的有两种解法。(1)图象解法:利用一次函数y=3x-15的图象求解。注:①直线与x轴交点的横坐标,就是对应的一元一次方程的根。②图象在x轴上面的部分表示3x-15>0。(2)代数解法:用不等式的三条基本性质直接求解。注这个方法也是对比一元一次方程的解法得到的。复习提问:画出函数的图象,利用图象回答:(1)方程的解是什么;(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0。(这也是初中作过的题目)新课讲解:1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3;当x<-2,或x>3时,y>0,即;当-2经上结果表明,由一元二次方程数的解是x=-2,或x=3,结合二次函数图象,就可以知道一元二次不等式的解集是{x|x<-2,或x>3};一元二次不等式的解集是{x|-2<3}。< p>提出问题:一般地,怎样确定一元二次不等式与的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程的根的情况(2)抛物线的开口方向,也就是a的符号。新课讲解:1.总结讨论结果:(1)抛物线(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程的判别式三种取值情况(Δ>0,Δ=0,Δ<0)来确定。因此,要分二种情况讨论。(2)a<0可以转化为a>0。2.分Δ>O,Δ=0,Δ<0三种情况,得到一元二次不等式与的解集。(见教科书)3.讲解教科书例1--例4。4.归纳解一元二次不等式的步骤。(1)把二次项系数化成正数;(2)解对应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向,写出不等式的解集。课堂练习:教科书节第一个练习第1~3题。(第3题相当于求函数的定义域,下一章将学习函数)归纳总结:(可以让学生自行归纳,可参考教科书“小结与复习”中的表)拓广引申:例 对任何实数x,不等式都成立,求k的取值范围。解:当k=0时,原不等式化为2x>0,不是对任何实数x都成立。当k<0时,抛物线开口向下,不等式也不是对任何实数x都成立。因此,我们有故当时,不等式恒成立。四、布置作业1.教科书习题第1、3、6、7题。2.选作:对任何实数x,不等式都成立,求k的取值范围。(k>1)

毕业论文一元函数连续性的证明

对于一元函数;先证明它的连续性,如果函数y=f(x)在点x处可导,则函数y=f(x)在点X处连续,反之,函数y=f(x)在点x处连续,但函数y=f(x)处不一定可导;

1、如果其导数存在,那么必连续;

2、定义法:左连续=右连续=函数值;

可导性,

1、定义法;

2、对于初级函数,都是可导的;

扩展资料:

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

对于一元函数,连续性,1.如果其导数存在,那么必连续;2.定义法:左连续=右连续=函数值 可导性,1.定义法;2.对于初级函数,都是可导的.

你自己判断,看看断点处得值是否一样,如果一样就是连续的了,基本的连续函数记得就差不多可以判断了。还可以借助图像。

如何证明函数可导呢?函数的连续性和可导性,数学讲解。

多元函数应用毕业论文

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

这个真的不难,多看课本,然后总结一下,加上自己的一些思考,可以写函数最值的一些求法,以及存在的条件,在实际生活中的应用,无论多元函数,还是一元函数,书上都有具体的求法,公式,好好总结一下,真的很容易写好的.

数学领域中的一些著名悖论及其产生背景

多元函数的极值问题毕业论文

1. 原则上,求出所有驻点,不可导的点,以及边界点,比较各点处的函数值,最大的和最小的选出来,即可。2. 求曲线y=x^2 与直线x-y=2之间的最短距离…… 如果你化成一元函数的无条件极值,可以判断这是唯一的极值,且是个极小值,故该点处取得最小值。 如果你使用Lagrange条件极值的方法,判断这是唯一的一个条件极值点,问题本身有最小值,故在该点取得最小值。( 因为在无穷远处,距离是无穷大。) 这时需要问题的实际背景,的确不是太严密,因为我们通常并不考虑它是条件极大或极小。

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。

再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27

扩展资料

人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。

但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。

例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。

参考资料来源:百度百科-多元函数

求f(x,y)=x³+2xy-y³+2的极值解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27

二元函数可微性毕业论文

证明:由于偏导数在点M(x,y)连续,0<θ,θ<1,α=0,

△z=f(x+△x,y+△y)-f(x,y)

=[f(x+△x,y+△y)-f(x,y+△y)]+[f(x,y+△y)-f(x+y)]

=f(x+θ△x,y+△y)△x+f(x,y+θ△y)△y

=[f(x,y)+α]△x+[f(x,y)+β]△y

=f(x,y)△x+f(x,y)△y+α△x+β△y

而||≤|α|+|β|,

所以△z=f(x,y)△x-f(x,y)△y+o(ρ),

即f(x,y)在点M可微。

设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

可微条件

1、必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

扩展资料

函数可导的条件:

函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

一元函数:可导必然连续,连续推不出可导,可导与可微等价。

多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。

多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有连续性则可推出可微。

证明二元函数的可微性即证明二元函数可微的一个充分条件:

1、若z=f(x,y)在点M(x,y)的某一邻域内存在偏导数f,且它们在点M处连续,则z=f(x,y)在点M可微。

2、证明:由于偏导数在点M(x,y)连续,0<θ,θ<1,α=0,

△z=f(x+△x,y+△y)-f(x,y)

=[f(x+△x,y+△y)-f(x,y+△y)]+[f(x,y+△y)-f(x+y)]

=f(x+θ△x,y+△y)△x+f(x,y+θ△y)△y

=[f(x,y)+α]△x+[f(x,y)+β]△y

=f(x,y)△x+f(x,y)△y+α△x+β△y

而||≤|α|+|β|,

所以△z=f(x,y)△x-f(x,y)△y+o(ρ),

即f(x,y)在点M可微。

拓展资料:

1、设平面点集D包含于R2,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。

2、且称D为f的定义域,P对应的z为f在点P的函数值,记作z=f(x,y);全体函数值的集合称为f的值域.

3、一般来说,二元函数是空间的曲面,如双曲抛物面(马鞍形)z=xy.

4、二元函数可以认为是有两个自变量一个因变量,可以认为是三维的函数,空间函数。

5、f为定义在点集D上的二元函数.P0为D中的一点,对于任意给定的正数ε,总存在相应的正数δ,只要P在P0的δ临域和D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D在点P0处连续。

6、若f在D上任何点都连续,则称f是D上的连续函数。

参考资料:百度百科-二元函数

用课本上的定义去证,即Δz-[fx(x0,y0)Δx+fy (x0,y0)Δy]为ρ的高阶无穷小,ρ=√(△x^2+△y^2)也就是求当ρ→0时,Lim{Δz-[fx(x0,y0)Δx+fy (x0,y0)Δy]}/ρ=0。以下附一例题:

总之要注意二元函数在某点可偏导且连续只是在该点可微的充分条件,同时在某点可微只能说明在该点偏导存在,但不一定连续。

二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

二元函数可微性

定义

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

可微性的几何意义

可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微。

这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

  • 索引序列
  • 一元函数求法的毕业论文
  • 毕业论文一元函数连续性的证明
  • 多元函数应用毕业论文
  • 多元函数的极值问题毕业论文
  • 二元函数可微性毕业论文
  • 返回顶部