1 植被覆盖度计算的关键问题是如何准确地测量和获取植被覆盖度的数据,并对其进行处理和分析。2 通常需要使用遥感技术获取植被覆盖度的数据,但在实际应用中,需要考虑到遥感数据的准确性和分辨率等问题。3 另外,还需要考虑到不同类型的植被覆盖度计算方法的优缺点,如基于面积和基于指标的计算方法等,以及如何选择适当的计算方法来达到最佳的计算效果。
你要通过文献查阅,知道如何反映植被盖度的时空演变。明确这个目标之后,就开始着手准备数据,获取数据后,根据你自己确定的植被盖度获取方法,反演获取植被盖度,最后再进行时空演变分析。严格的说这是一篇比较系统的论文才能完成的,一两句话也不能回答清楚,具体实现过程中有问题请私信我帮你!
植被覆盖度计算的关键问题主要有:1、如何确定植被覆盖度的测量单位;2、如何选取合理的测量方法;3、如何准确地获取植被覆盖度的数据;4、如何有效地评估和统计植被覆盖度数据;5、如何利用植被覆盖度数据进行管理与决策;6、如何与其他环境参数相结合,进行综合分析。通过研究这些关键问题,可以更好地确定植被覆盖度计算的合理方法,从而更好地保护和管理我们的环境。
1 植被覆盖度计算的关键问题是什么2 关键问题在于如何准确地测量和计算覆盖度,以及如何采集和处理植被数据。3 在测量和计算覆盖度时,需要考虑不同类型植被的特点和分布情况,同时要使用适当的遥感技术和图像处理方法。在采集和处理数据时,需要选择合适的仪器和设备,并且进行数据统计和分析,以便得出准确的结果。延伸:植被覆盖度计算是环境科学中的重要内容之一,可以用于评估生态系统的健康状况、监测土地利用变化和气候变化等。因此,提高植被覆盖度计算的准确性和可靠性,对于保护生态环境和推动可持续发展具有重要意义。
先说西藏大学缺点吧。首先,地处偏僻。在交通、社交等方面西藏与内地一二线城市还是有很大距离的,所以在一点上,我是真的很后悔来了西藏大学。
再说说生活方面。西藏大学的住宿条件不怎么好,独卫是不用想的了,四人间也不用想,上床下桌更是没有。如果你想打游戏,那不好意思了,网络更差,可能刚进游戏一分钟,你就得被迫挂机了。但西藏大学也有优点——学费便宜,消费低,民风淳朴。对于家境一般的孩子来说,西藏大学确实可以为家庭减轻不少负担。如果你的分数不怎么高,又想读一个211大学,那西藏大学自然是你的不二选择。可若是分数稍微高一点点,最好还是选择其他大学吧,毕竟人往高处走,水往低处流。西藏大学的教学质量、生活条件确实在211大学中算是垫底的了。
对啦,如果你在西藏大学就读,一定要记得涂防晒霜,西藏的紫外线很强烈,可千万别读了四年大学,黑了四个度……
西藏大学是否值得一读的关键点并不在学校本身,而在它的海拔高度。西藏大学不是所有人能去的,有很多受不了高原反应的人在西藏都有可能会有生命危险!
一般人进入3000米以上,都会有高原反应,并且各人的反应都不一样,而西藏大学,是海拔近3700米的存在!
上大学不是旅游,有不良反应过一段时间,乘飞机跑了就没事了,它需要在这个地方呆四年,所以真正向往西藏,想来这里上大学的,首先得保证自己有一副好身体。
这边的天很蓝,风景很好,不仅是在拉萨、布达拉宫的景区才有好去处,西藏任何地方对于追求蓝天白云的人来说,都是景点。哪怕出宿舍门口的小操场,举起手机,都可以拍到很漂亮的景象。
这是学生活动中心,这里面有娱乐也有休闲。
西藏大学的宿舍大楼。总的来说环境是很不错,但是高原反应是首要的。如果想报考西藏大学,头一件事就得先来西藏旅游一次,确认过自己对高原反应的过敏程度再来。
西藏大学也就是有个211的头衔所以才被众人所熟知,若是你打算长期在这里发展,那么西藏大学是你不错的选择,比起同一阶级的其他大学来讲,西藏大学的录取分数线可以说是较低了,优惠的政策,不算太高的分数线,211的头衔,是西藏大学吸引广大莘莘学子的原因,但是西藏大学毕业的学生,要想在别的城市找到个不错的工作,还是有一定难度的,社会的现状就是这样。
我一个同学的姐姐就是西藏大学毕业的,当初上这个学校也是机缘巧合,正好扒着个边上了一所211,他村里没怎么出过大学生,他姐姐被西藏大学录取,整个村都炸了,211啊!国家重点大学啊!当时也有好一阵,他姐姐应该是被当做“别人家的孩子”典范。
马上到毕业的时候,他姐姐不想待在西藏那个离自己的家乡这么远的地方,于是便回来了自己的城市,本以为以自己的学历,找个高薪酬高待遇的工作会简简单单,可没想到却却四处碰壁,能找到的工作都是一些工资少的可怜,员工待遇也不算太好,后来又回西藏发展去了,一年也回不来家乡几次,因为离得太远了。
所以整体来讲,西藏大学对于本地或者离它不远的城市的学生来讲是一个不错的选择,但离的太远的,或者以后并不打算留在西藏,那最好就是慎重考虑了。
首先,自然条件影响到城市的绿化覆盖率。有山、有水、气候条件好的城市,天然植被多,人工植被易于培育,绿化覆盖率较高。而自然条件恶劣,例如干旱、荒漠等地区,自然植被稀疏,人工植被不易于培育,绿化覆盖率自然就低。其次,城市规模影响到城市的绿化覆盖率。一般而言,城市规模越大,人口密度和开发密度就越高,绿地面积就越小,绿化覆盖率就越低,小城市绿化覆盖率一般较高。另外,城市性质、城市的经济实力、城市的发展历史等等,也都会影响城市的绿化覆盖率。除自然条件和社会经济条件外,城市规划理念也是影响城市绿化覆盖率的一个重要因素。如果将城市仅视为社会经济体,忽视城市的环境效益,那么,即使其他条件优越,城市的绿化覆盖率也会很低。
我自己收藏的,不知道是不是你要找的植被指数 概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。差值植被指数又称农业植被指数,为二通道反射率之差,它对土壤背景变化敏感,能较好地识别植被和水体。该指数随生物量的增加而迅速增大。比值植被指数又称为绿度,为二通道反射率之比,能较好地反映植被覆盖度和生长状况的差异,特别适用于植被生长旺盛、具有高覆盖度的植被监测。归一化植被指数为两个通道反射率之差除以它们的和。在植被处于中、低覆盖度时,该指数随覆盖度的增加而迅速增大,当达到一定覆盖度后增长缓慢,所以适用于植被早、中期生长阶段的动态监测。蓝光、红光和近红外通道的组合可大大消除大气中气溶胶对植被指数的干扰,所组成的抗大气植被指数可大大提高植被长势监测和作物估产精度。 详解: 植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基本的认识: 1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的; 2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息 3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大; 3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVIEVI——差值环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感; 四、SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。 小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。 1、通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。 2、kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。 3、第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好的反映出植被和土壤光谱特征的差异。 4、GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。 六、PVI——垂直植被指数,在R-NIR的二为坐标系内,植被像元到土壤亮度线的垂直距离。PVI=((S R-VR)2+(SNIR-VNIR)2)1/2,S是土壤反射率,V是植被反射率。 1、较好的消除了土壤背景的影响,对大气的敏感度小于其他VI 2、PVI是在R-NIR二位数据中对GVI的模拟,两者物理意义相同 3、PVI=(DNnir-b)cosq-DNr´sinq,b是土壤基线与NIR截距,q是土壤基线与R的夹角。 七、其他 1、根据具体情况改进型:如MSS的DVI = B4-aB2,PVI=(B4-aB2-b)/(1+a2)1/2,SARVI = B4/(B2+b/a);RDVI=(NDVI´DVI)1/2等 2、应用于高光谱数据的VI,如CARI(叶绿素吸收比值指数)和CACI(叶绿素吸收连续区指数)等 VI划分 类型 典型代表 特点 线性 DVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感 比值型 NDVI、RVI 增强了土壤与植被的反射对比 垂直型 PVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感 TM资料:专题制图仪资料
遥感原理与应用第一章 电磁波及遥感物理基础名词解释:1、 遥感 2、遥感技术 3、电磁波 4、电磁波谱 5、绝对黑体 6、绝对白体7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口12、发射率 13、热惯量 14、热容量 15、光谱反射率 16、光谱反射特性曲线 填空题:1、电磁波谱按频率由高到低排列主要由 、 、 、 、 、 、 等组成。2、绝对黑体辐射通量密度是 和 的函数。3、一般物体的总辐射通量密度与 和 成正比关系。4、维恩位移定律表明绝对黑体的 乘 是常数。当绝对黑体的温度增高时,它的辐射峰值波长向 方向移动。5、大气层顶上太阳的辐射峰值波长为 μm选择题:(单项或多项选择)1、 绝对黑体的 ①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。2、 物体的总辐射功率与以下那几项成正比关系 ①反射率 ②发射率 ③物体温度一次方 ④物体温度二次方 ⑤物体温度三次方 ⑥物体温度四次方。3、 大气窗口是指 ①没有云的天空区域 ②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段 ④没有障碍物阻挡的天空区域。4、 大气瑞利散射①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长的二次方成正比关系 ④与波长的二次方成反比关系 ⑤与波长的四次方成正比关系 ⑥与波长的四次方成反比关系 ⑦与波长无关。5、 大气米氏散射 ①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长无关。问答题:1、 电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性?2、 物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?3、 叙述沙土、植物和水的光谱反射率随波长变化的一般规律。4、 地物光谱反射率受哪些主要的因素影响?5、 何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。6、 传感器从大气层外探测地面物体时,接收到哪些电磁波能量?第二章 遥感平台及运行特点名词解释:1、 遥感平台 2、遥感传感器 3、卫星轨道参数 4、升交点赤经 5、轨道倾角6、近地点角距 7、地心直角坐标系 8、大地地心直角坐标系 9、卫星姿态角10、开普勒第三定理 11、重复周期 12、近圆形轨道 13、与太阳同步轨道14、近极地轨道 15、偏移系数 16、GPS 17、ERTS_1 18、LANDSAT_1 19、SPOT 20、IRS 21、CBERS 22、ZY_1 23、Space Shuttle 24、MODIS 25、IKONOS 26、Quick Bird 27、Radarsat 28、ERS 29、小卫星填空题:1、遥感卫星轨道的四大特点 。2、卫星轨道参数有 。3、卫星姿态角是 。4、遥感平台的种类可分为 、 、 三类。5、卫星姿态角可用 、 、 等 方法测定。6、与太阳同步轨道有利于 。7、LANDSAT系列卫星带有TM探测器的是 ;带有TM探测器的是 。8、SPOT系列卫星可产生异轨立体影像的是 ;可产生同轨立体影像的是 。9、ZY-1卫星空间分辨率为 。10、美国高分辨率民用卫星有 。11、小卫星主要特点包括 。12、可构成相干雷达影像的欧空局卫星是 。选择题:(单项或多项选择)1、 卫星轨道的升交点和降交点是卫星轨道与地球①黄道面的交点②地球赤道面的交点③地球子午面的交点。2、 卫星与太阳同步轨道指①卫星运行周期等于地球的公转周期②卫星运行周期等于地球的自转周期③卫星轨道面朝向太阳的角度保持不变。3、 卫星重复周期是卫星①获取同一地区影像的时间间隔②经过地面同一地点上空的间隔时间③卫星绕地球一周的时间。4、 以下哪种仪器可用作遥感卫星的姿态测量仪①AMS②TM③HRV④GPS⑤星相机。5、 问答题:1、 根据Landsat-1的运行周期,求该卫星的轨道高度。2、 根据Landsat-4/5的运行周期、重复周期和偏移系数,通过计算排出其轨道(赤道处)的分布图。3、 以Landsat-1为例,说明遥感卫星轨道的四大特点及其在遥感中的作用。4、 叙述地心直角坐标系与地心大地直角坐标系的差别和联系。5、 获得传感器姿态的方法有哪些?简述其原理。6、 简述遥感平台的发展趋势。7、 LANDSAT系列卫星、SPOT系列卫星、RADARSAT系列卫星传感器各有何特点?第三章 遥感传感器及其成像原理名词解释:1、遥感传感器 2、探测器 3、致冷器 4、红外扫描仪 5、多光谱扫描仪6、推扫式成像仪 7、成像光谱仪 8、瞬时视场 9、MSS 10、TM 11、HRV 12、SAR 14、INSAR 15、CCD 16、真实孔径侧视雷达17、合成孔径侧视雷达18、全景畸变 19、动态全景畸变 20、 静态全景畸变 21、距离分辨率22、方位分辨率23、雷达盲区24、角隅反射 25、粗加工产品 26、精加工产品27、多中心投影 28、多中心斜距投影填空题:1、MODIS影像含有 个波段,其中250米分辨率的包括 波段。2、RADARSAT-1卫星空间分辨率最高可达 ,共有 种工作模式。3、多极化的卫星为 。4、目前遥感中使用的传感器大体上可分为 等几种。5、遥感传感器大体上包括 几部份。6、MSS成像板上有 个探测单元;TM有 个探测单元。7、LANDSAT系列卫星具有全色波段的是 ,其空间分辨率为 。8、利用合成孔径技术能堤高侧视雷达的 分辨率。9、扫描仪产生的全景畸变,使影像分辨率发生变化,x方向以 变化,y方向以 变化。10、实现扫描线衔接应满足 。选择题:(单项或多项选择)1、 全景畸变引起的影像比例尺变化在X方向①与COSθ成正比②在X方向与COSθ成反比③在X方向与COS²θ成正比④在X方向与COS²θ成反比。2、 全景畸变引起的影像比例尺变化在Y方向①与COSθ成正比②与COSθ成反比③与COS²θ成正比④与COS²θ成反比。3、 TM专题制图仪有① 4个波段②6个波段③7个波段④9个波段。4、 TM专题制图仪每次同时扫描①6条扫描线②12条扫描线③16条扫描线④20条扫描线。5、 HRV成像仪获得的影像①有全景畸变②没有全景畸变。6、 SPOT卫星获取邻轨立体影像时,HRV中的平面镜最大可侧旋①10º②16º③27º④32º。7、真实孔径侧视雷达的距离分辨率与①天线孔径有关②脉冲宽度有关③发射的频率有关。7、 径侧视雷达的方位分辨率与①天线孔径有关②天线孔径无关③斜距有关④斜距无关。问答题:1、叙述侧视雷达图像的影像特征2、MSS、TM、ETM+影像各有何特点?3、有哪几种方法可以获得多光谱摄影影像?4、对物面扫描的成像仪为什么会产生全景畸变?扫描角为θ时的影像的畸变多大?5、叙述Landsat-1上的MSS多光谱扫描仪获取全球(南北纬度81°之间)表面影像的过程。6、TM专题制图仪与MSS多光谱扫描仪有何不同?7、SPOT卫星上的HRV推扫式扫描仪与TM专题制图仪有何不同?8、侧视雷达影像的分辨力、比例尺、投影性质和投影差与中心投影航空或航天像片影像有何不同?9、侧视雷达为什么要往飞机侧方发射脉冲并接收其回波成像?如果向飞机或卫星正下方发射脉冲并接收回波成像会是什么情景?10、简述INSAR测量高程的基本原理。第四章 遥感图像数字处理的基础知识名词解释:1、光学影像 2、数字影像 3、空间域图像 4、频率域图像 5、图像采样6、灰度量化7、BSQ 8、BIL 9、BMP 10、TIFF 11、ERDAS 12、PCI 13、3S集成填空题:1、光学图像是一个 函数。2、数字图像是一个 函数。3、光学图像转换成数字影像的过程包括 等步骤。4、图像数字化中采样间隔取决于图像的 ,应满足 (公式)。5、一般图像都由不同的 、 、 、 的周期性函数构成。6、3S集成一般指 、 和 的集成。选择题:(单项或多项选择)1、 数字图像的①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的③两者都是连续的④两者都是离散的。2、 采样是对图像①取地类的样本②空间坐标离散化③灰度离散化。3、 量化是对图像①空间坐标离散化②灰度离散化③以上两者。4、 图像数字化时最佳采样间隔的大小①任意确定②取决于图像频谱的截止频率③依据成图比例尺而定。5、 图像灰度量化用6比特编码时,量化等级为①32个②64个③128个④256个。6、 BSQ是数字图像的①连续记录格式②行、波段交叉记录格式③象元、波段交叉记录格式。问答题:1、 叙述光学影像与数字影像的关系和不同点。2、 怎样才能将光学影像变成数字影像。3、 叙述空间域图像与频率域图像的关系和不同点。4、 叙述储存遥感图像有哪几种方法,列举2—3种数字图像存储格式,并说明其特点。5、叙述3S集成的形式和作用。第五章 遥感图像几何处理名词解释:1、 共线方程2、外方位元3、像点位移4、几何变形5、几何校正6、粗加工处理7、精加工处理8、多项式纠正9、间接法纠正10、直接法纠正11、灰度重采样12、最邻近像元重采样13、双线性内插14、双三次卷积15、图像配准16、数字镶嵌17、数字地面模型18、正射影像19、地理编码图象 20、DEM填空题:1、 分别写出中心投影,推扫式传感器(旁向,航向倾斜),扫描式传感器的共线方程表达式 , , , 。2、 遥感图像的变形误差可以分为 和 ,又可以分为 和 。3、 外部误差是指在 处于正常的工作状态下,由 所引起的误差。包括 , , , 等因素引起的变形误差。4、 传感器的六个外方位元素中 的变化对图像的综合影响使图像产生线性变化,而 使图像产生非线性变形。 5、 地球自转对于多中心投影影像产生像点位移在 方向上,位移量bb’= 。6、 TM卫星图像的粗纠正使用的参数有 , , , 纠正的变形有 , 。7、 遥感图像几何纠正的常用方法有 , , 。8、 多项式拟合法纠正中,项数N与其阶数n的关系 。9、 多项式拟合法纠正中,一次项纠正 ,二次项纠正 ,三次项纠正 。10、项式拟合法纠正中控制点的要求是 , , 。11、多项式拟合法纠正中控制点的数量要求,一次项最少需要 个控制点,二次项最少项需要 个控制点,三次项最少需要 个控制点。12、SPOT图像采用共线方程纠正时需要 ,有 未知参数,最少需要 个控制点。13、常用的灰度采样方法有 , , 。14、数字图象配准的方式有 , 。15、数字图像镶嵌的关键 , , 。16、在姿态角都为0的情况下,中心投影像片的投影差为 ,推扫式影像(HRV)的投影差为 ,扫描仪影像(MSS)的投影差 ,侧视雷达影像(SAR)的投影差 。17、灰度采样中,双线性内插的权矩阵采用 函数求取, 双三卷积的权矩阵采用 函数求取。选择题:(单项或多项选择)1、 垂直航线方向距离越远比例尺越小的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。2、 垂直航线方向距离越远比例尺越大的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。3、 真实孔径天线侧视雷达影像上高出地面的物点其象点位移(投影差)①向底点方向位移②背向底点方向位移③不位移。4、 逐点扫描式影像(如TM影像)上高差引起的像点位移(投影差)发生在①像底点的辐射方向②扫描方向。5、 多项式纠正用一次项时必须有①1个控制点②2个控制点③3个控制点④4个控制点。6、 多项式纠正用二次项时必须有①3个控制点②4个控制点③5个控制点④6个控制点。7、 多项式纠正用一次项可以改正图像的①线性变形误差②非线性变形误差③前两者。8、 共线方程的几何意义是在任何情况下①像主点、像底点和等角点在一直线上②像点、物点和投影中心在一直线上③ 主点、灭点和像点在一直线上。问答题:1. 叙述中心投影的航空像片,MSS多光谱扫描仪影像,SPOT的HRV推扫式影像和真实孔径侧视雷达图像的几何特征。2. 列出中心投影影像、推扫式影像(旁向和航向)、逐点扫描影像和侧视雷达影像的构像方程和共线方程表达式。3. 列出中心投影影像、推扫式影像、逐点扫描影像和侧视雷达影像的投影差公式,并说明投影差产生的像点位移各自不同点。4. 已知中心投影影像姿态产生的变形误差公式为推导出推扫式影像、逐点扫描影像和侧视雷达影像的像点位移公式。5. 叙述最邻近法、双线性内插、双三次卷积重采样原理(可作图说明)和优缺点。6. 两幅影像进行数字镶嵌应解决哪些关键问题?解决的基本方法是什么?7. 叙述多项式拟合法纠正卫星图像的原理和步骤。8. 多项式拟合法选用一次项、二次项和三次项,各纠正遥感图像中的哪些变形误差?9. 多项式拟合法平差后精度应控制在什么范围内?超限了怎么办?10.叙述共线方程法纠正SPOT卫星图像的原理和步骤。11.在几何纠正的重采样中,内插像元4*4图像亮度值矩阵为:在间接法纠正过程中,某地面点反算到原始像点的坐标值为( ,),利用最邻近法和双线性内插法求像点的亮度值。12.叙述数字图像镶嵌的过程。13.画出各个外方位元素变化引起的图形变化情况第六章 遥感图像辐射处理名词解释:1、辐射误差2、辐射定标3、大气校正4、图像增强 5、图像直方图 6、假彩色合成 7、密度分割 8、真彩色合成 9、假彩色合成 10、伪彩色图像 11、图像平滑 12、图像锐化 13、边缘检测 14、低通滤波 15、高通滤波 17、图像融合 18、直方图正态化 19、梯度算子 20、线性拉伸 21、拉氏算子 22、直方图均衡 23、邻域法处理 填空题:1、辐射传输方程可以知道,辐射误差主要有 , , 。2、常用的图像增强处理技术有 , 。3、增强的常用方法有 , , , , , , 等。子4、直方图均衡效果 , , 。5、3*3的拉普拉斯算子 。6、图像平滑和锐化的关系 。 7、NDVI= 。8、图像融合的层次 , , 。9、HIS中的H指 ,I指 , S指 。 图像融合的常用算法 , , , , 等。选择题:(单项或多项选择)1、 图像增强的目的① 增加信息量②改善目视判读效果。2、 图像增强①只能在空间域中进行②只能在频率域中进行③可在两者中进行。3、 从图面上看直方图均衡后的效果是①增强了占图面面积小的灰度(地物)与周围地物的反差②减弱甚至于淹没了占图面面积小的灰度(地物)与周围地物的反差③增强了占图面面积大的灰度(地物)与周围地物的反差④减弱占图面面积大的灰度(地物)与周围地物的反差。4、 标准假彩色合成(如TM4、3、2合成)的卫星影像上大多数植被的颜色是①绿色②红色③蓝色。5、 图像边缘增强采用①低通滤波②高通滤波。6、 消弱图像噪声采用①低通滤波②高通滤波。7、 图像融合前必须先进行①图像配准②图像增强③图像分类。8、 图像融合①必须在相同分辨率图像间进行②只能在同一传感器的图像间进行③可在不同分辨率图像间进行④可在不同传感器的图像间进行⑤只限于遥感图像间进行⑥可在遥感图像和非遥感图像间进行。 问答题:10、 根据辐射传输方程,指出传感器接收的能量包含哪几方面,辐射误差及辐射误差纠正内容是什么,11、 简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理和步骤。12、 什么是遥感图像大气校正?为什么要进行遥感图像大气校正?请以多光谱扫描仪(MSS)资料为例,说明大气校正的原理和方法。13、 以美国陆地卫星TM图像的波段为例,分别说明遥感图像的真彩色合成与假彩色合成方案。与真彩色合成图像相比,假彩色合成图像在地物识别上有何优越性?14、 叙述美国陆地卫星ETM图像分辨率30米的5、4、3波段影像与分辨率15米的全色影像进行融合的步骤和方法。15、 说明以下直方图的影像特征。第七章 遥感图像判读名词解释:1、遥感图像判读 2、景物特征 3、判读标志 4、几何分辨率 5、辐射分辨率6、光谱分辨率 7、时间分辨率 8、波谱响应曲线 9、热阴影 10、冷阴影11、雷达盲区 12、角隅反射 13、体散射 14、影像几何特性 15、影像辐射特性16、 地物光谱特征 17、地物空间特征 18、地物时间特征填空题:1、遥感图像信息提取中使用的景物特征有 。2、遥感图像空间特征的判读标志主要有 等。3、传感器特性对判读标志影响最大的是 等。4、光谱分辨率根据 三项指标来判定。5、热红外图像上的亮度与地物的 和 有关, 比 影响更大。6、 侧视雷达图像上的亮度变化与 等有关。选择题:(单项或多项选择) 1、 遥感图像的几何分辨率指 ①象元相应地面的宽度 ②传感器瞬时视场内观察到地面的宽度 ③能根据光谱特征判读出地物性质的最小单元的地面宽度。2、 热红外图像是 ①接收地物反射的红外光成的像 ②接收地物发射的红外光成的像。3、 热红外图像上的亮度与地物的 ①反射率大小有关 ②发射率大小有关 ③反射太阳光中的红外光强度有关 ④温度高低有关。4、 侧视雷达图像垂直飞行方向的比例尺 ①离底点近的比例尺大 ②离底点远的比例尺大 ③比例尺不变。问答题:1、 遥感图像判读主要应用景物的哪些特征?2、 何为传感器的空间分辨率、辐射分辨率、光谱分辨率?3、 叙述TM多光谱图像的几何特征和辐射特征。4、 叙述地物光谱特性曲线与波谱响应曲线之间的关系和不同点?(可作图说明)5、 举例说明为什么多光谱图像比单波段图像能判读出更多的信息?6、 叙述热红外图像的几何特征和辐射特征。7、 叙述侧视雷达图像的几何特征和辐射特征。第八章 遥感图像自动识别分类名词解释:1、模式识别 2、遥感图像自动分类了 3、统计模式识别 4、结构模式识别5、光谱特征向量 6、特征空间 7、特征变换 8、特征选择 9、主分量变换10、哈达玛变换 11、穗帽变换 12、生物量指标变换 13、标准化距离14、类间离散度15、类间离散度16、类内离散度17、判别函数18、判别边界19、监督法分类20、非监督法分类21、条件概率22、先验概率23、后验概率24、贝叶斯判别规则25、马氏距离26、欧氏距离27、计程距离28、错分概率29、训练样区 30、最大似然法分类 31、最小距离法分类32、ISODATA法分类33、混淆矩阵填空题:1、遥感图像上的地物在特征空间聚类的一般特点是 等。2、特征变换在遥感图像分类中的作用是 。3、遥感图像特征变换的主要方法有 等。4、特征选择的目的是 。5、标准化距离的公式 。6、马氏距离公式 ,欧氏距离公式 ,计程距离公式 。7、最大似然法分类判别函数 。8、分类后处理主要包括 , 。选择题:(单项或多项选择)1、 同类地物在特征空间聚在①同一点上②同一个区域③不同区域。2、 同类地物在特征空间聚类呈①随机分布②近似正态分布③均匀分布。3、 标准化距离大可以说明①类间离散度大,类内离散度也大②类间离散度小,类内离散度大③类间离散度大,和/或类内离散度小④类间离散度小,类内离散度也小。4、 监督分类方法是①先分类后识别的方法②边学习边分类的方法③人工干预和监督下的分类方法。5、 两类地物的最大似然法分类判别边界在①两类地物分布概率相等处②两类地物均值的中值位置③其中一类地物分布概率的最大处。6、 ISODATA法分类的样区①尽量选在同一类别中②尽量包含所需识别的类别③类别是已知的④类别是未知的。问答题:1、 什么叫特征空间?地物在特征空间聚类有哪些特性?2、 作图并说明遥感影像主分量变换的原理和它在遥感中的主要作用。3、 叙述生物量指标变换的原理及其作用。4、 为什么要进行特征选择?列举几种特征选择的主要方法和原理。5、 叙述监督分类与非监督分类的区别。6、 叙述最大似然法分类原理及存在的缺点。7、 叙述最小距离法分类的原理和步骤。8、 叙述ISODATA法非监督分类的原理和步骤。9、 叙述图像增强中的平滑处理与分类后的平滑处理的异同点。10、述改善仅用光谱特征的统计模式识别自动分类的主要方法和基本原理。11、评价以下的混淆矩阵,并求出平均可信度和加权可信度。类 别 1 2 3 4 5 12345其它类 象元数 135 276 463 178 30512、根据下图中两类地物在一维特征空间中的分布,画出最大似然法、最小距离法的判别边界并分析和比较它们的错分概率。第九章 遥感技术的应用名词解释:1、卫星影像地图 2、DRG 3、DLG 4、GIS 5、同轨立体影像 6、邻轨立体影像 7、沙尘暴 8、海洋赤潮 9、地质构造 10、植被指数 11、森林立地条件12、臭氧空洞 13、土壤侵蚀 14、遥感考古 15、蓝冰填空题:1、 利用遥感图像修测地形图,修测的主要内容有 等。2、遥感图像制作影像图时控制点来源有 等。3、森林立地因子包括 等。4、多时遥感影像监测冰川流速的步骤是 等。选择题:(单项或多项选择) 1、 分辨率30米的TM影像,按规范要求的平面精度(图上),适合制作哪种比例尺的影像图 ①1:10000 ②1:100000 ③1:500000。2、 按规范要求的平面精度制作卫星影像图,选控制点用的地形图比例尺,应比影像图的比例尺 ①大一个等级 ②小一个等级。问答题:1、 举例说明制作不同比例尺卫星影像地图时怎样选择遥感图像?2、 叙述遥感监测南极冰川流速和流量的基本方法。3、 中国南方草场三级分类的内容是什么?TM影像可能提取出哪些信息?4、 叙述遥感调查中国南方草场资源的基本方法。5、 叙
森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要:目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing前言卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。1.SPOT5卫星遥感数据特点SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程SPOT5数据处理工作流程: 遥感数据的订购订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。几何正射校正正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。3. 结果和讨论 几何精度利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。参考文献1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,.赵英时.《遥感应用分析原理与方法》,科学出版社,北京,.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 7921世纪遥感与GIS的发展李德仁(武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。关键词:发展趋势;航空航天遥感;地理信息系统;对地观测中图法分类号:P208;随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用“数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。“数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2]GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全
森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全
刘爱霞1 王静1 刘正军2
(1.国土资源部土地利用重点实验室,中国土地勘测规划院,北京,100035;2.中国测绘科学研究院,北京,100039)
摘要:本文主要讨论基于 MODIS 16 天合成的 NDVI 时间序列数据、8 天合成 LST 数据、1∶5 万DEM数据以及其他辅助数据相结合,进行北京西北部地区土地资源现状调查和土地利用及植被覆盖多年变化的研究。首先选取适合于 MODIS 数据分类的土地覆盖分类系统,用 PCA 方法对NDVI 时间序列数据进行信息增强与压缩处理,结合LST数据、DEM数据及降雨温度数据,利用模糊K-均值非监督分类法,进行研究区的土地覆盖分类,得到土地资源现状情况。然后利用变化矢量(CVA)分析方法对北京西北部地区的土地利用及植被覆盖的多年变化状况进行了分析。结果表明,MODIS 数据能很好地应用于大范围的土地资源监测中,并能得到较好的结果。
关键词:北京西北部;MODIS;土地资源现状;土地利用及植被覆盖变化
随着“人口-资源-环境”之间的矛盾日益尖锐,为了实现可持续发展的战略目标,世界各国政府都在大力加强资源与生态环境监测系统的建设。我国《全国生态环境建设规划》和《全国生态环境保护纲要》也明确提出要完善生态环境监测和信息服务体系。国土资源部《科技发展“十五”计划纲要》强调大力推进国土资源管理工作的信息化,强调努力实现国土资源调查评价工作的现代化。其中,土地资源调查与监测是其主要内容之一。
随着现代遥感技术的迅速发展,适合于不同空间尺度土地资源调查监测的各种遥感数据相继出现。目前,SPOT5、Landsat TM/ETM+遥感数据是土地资源调查的主要数据源,适合于乡级、县级、区域级等不同尺度,但是应用于较大空间尺度的土地资源调查时,耗费大量人力、物力,且不经济。近年出现的中空间分辨率、高时间分辨率的 MODIS 数据为大尺度的土地资源调查提供了更好的数据源。Tucker 等人研究表明[1],归一化植被指数 NDVI 实际反映了植被生物量、覆盖度和叶绿素含量三方面的生物物理化学性质,利用不同时相条件下的 NDVI序列,可以比较准确地反映植被的生长季相变化的规律。这成为利用遥感数据进行大区域范围植被和土地覆盖制图的基本思路[2~4]。
本文尝试以MODIS的NDVI时间序列数据集为主要数据源,结合MODIS LST、DEM、降雨、温度等辅助数据,首先选取适合的土地覆盖分类系统,通过 PCA 等数据处理方法,使用模糊K-均值非监督分类法,进行北京西北部地区的土地覆盖自动分类研究;然后利用变化矢量(CVA)分析方法对该区的土地利用及植被覆盖的多年变化状况进行分析,以便为大尺度土地资源的调查监测提供一种快速便捷的方法。
1 研究区概况
北京西北部地区是我国生态环境建设部门重点关注和投资的地区,本研究区主要包括北京市西北部的风沙源区,涉及河北、山西、内蒙古三省 8个市(地、盟)的 51个县(市、旗),土地总面积为×104 km2。该区范围西起内蒙古的四子王旗,东至内蒙古的敖汉旗,南起山西的代县,北至内蒙古的阿鲁克尔沁旗,地理坐标为东经 110°20′~121°01′,北纬38°51′~45°25′。
研究区地处内蒙古高原中部、黄土高原的北端,位于内蒙古、山西和河北三省交界处,区内地表形态主要由高原、山地、丘陵和盆地几大部分组成,地势呈中间高、南北低趋势。研究区跨中温带和寒温带,属干旱、半干旱大陆性季风性气候,气候变化较为明显。冬春季节受西伯利亚和蒙古冷高压控制,气候干燥少雨,主导风向为西北风,风力强劲,风蚀型外营力地质作用极为强烈,研究区北部的浑善达克沙地和科尔沁沙地,生态环境极为脆弱,是北京西北部地区的主要风沙源区。区域夏秋季节受太平洋副热带高压控制,多东南风,风力较弱,水汽补给较少,气候炎热少雨。区域年均气温 ℃以下,年降雨量为200~750mm,但降雨集中,降雨强度大,外加区域地势比降大,土质疏松,水蚀型外应力地质作用和重力侵蚀作用强烈,水土流失严重,而且容易发生滑坡和泥石流。
2 数据及预处理
遥感数据
本文所用遥感数据是美国EROS数据中心提供的MODIS影像。NDVI数据是2001~2004年16日合成的时间序列数据,共23个时相,空间分辨率为250m。陆面温度(LST)是2002年的8日合成时间序列数据,共46个时相,空间分辨率为1 km。
在 MODIS 数据处理中,用 MRT 几何纠正与镶嵌软件完成了图像的几何纠正和镶嵌。然后用最大合成法(MVC)对同一区域内植被指数、陆面温度等多时相的数据进行合成预处理,即图像中每一像元用j天中的最大像元值来代替,该处理的目的是为了减少大气的云、颗粒、阴影、视角以及太阳高度角的影响(Brent,.,1986)。虽然最大合成过程(MVC)减少了大气的云、颗粒等的影响,但是云污染仍存在,接着采用改进的 BISE (the best index slope extraction)方法进行 NDVI 的多时相去云处理。尽管所用 MODIS 的LST 数据都是8 天合成数据,但 Ts 数据质量非常差,为了解决数据残缺的问题,我们利用线形回归来模拟这些数据。地表温度是高度空间相关的,相邻时相同一区域内的 Ts 在空间上存在某种相同的相关性,用线性关系来拟和这种关系;用相同大小的模板同时在被修复图像和参考图像上滑动,如果处于被修复图像模板中心值是零值或异常值,则用最小二乘法求出两个模板内有效数据间的线性回归系数,然后用该系数和参考图像模板中心值求出新值替代原来的零值或异常值。
其他辅助数据
辅助数据主要有通过 ETM+数据目视解译得到的 2002年北京西北部地区土地利用现状图,北京西北部地区 1∶50000 DEM 数据,北京西北部地区的降水、温度数据。利用北京西北部地区各气象站点资料先计算各站点的年平均积温、年平均降水量,然后利用Kriging 插值方法获得北京西北部地区栅格的年平均气温、年平均降水量分布图。
3 研究方法
土地覆盖分类
(1)选取适合于 MODIS 数据分类的土地覆盖分类系统,本研究采用《基于遥感数据的土地利用/土地覆被分类体系》[5]。该分类体系最重要的特色在于,针对不同空间尺度和所对应的遥感数据源,都具有其相应的分类,而且分类类型逐渐细化。对于一级分类和二级分类,侧重于土地覆被的分类,即对于中、低空间分辨率遥感数据,以土地覆被分类为主。
(2)用 PCA 方法对 NDVI 时间序列数据进行信息增强与压缩处理,以排除各种干扰因素,提高分类精度。采用 PCA变换可以将原有的12个月中有用的NDVI信息中的绝大部分压缩到少量的前几个主分量中,同时排除了部分由于数据质量等原因引起的噪声。因此,利用 PCA变换可以有效保证分类精度不受损失。实际结果的研究也表明,PCA 在对于抑制噪声影响和保证分类精度起到了重要的作用[6]。
(3)结合 LST 数据、DEM 数据及降雨温度数据,利用模糊K-均值非监督分类法,进行研究区的土地覆盖分类[7],经过分类后处理,对分类发生明显错误的图斑进行更正,得到北京西北部地区的土地覆盖分类图。
土地利用及植被覆盖多年变化分析
变化向量(CVA)分析是一种非常有潜力的植被比较分析方法,根据变化矢量的强度和方向判定变化的区域和类型[8]。变化矢量分析技术用指示参数年时序中的每个数据值作为时序空间的一点,时序空间连续几年的点连接成变化矢量。变化矢量的方向确定了变化的推进,矢量的大小表征了变化的强度。
例如,用连续多年12个月的数据来进行变化矢量分析,则变化矢量空间由每年的12个变化监测指示因子图像构成,故全年指示因子对应于一个12 维的时间矢量:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
P (i,x)表示像元i对应于x年的矢量,x (t)为像元i在时间t1到tn的指示因子值,n表示时间维数。矢量的模‖P‖ 代表了全年指示因子累积,矢量的方向为全年指示因子的时间曲线形状的综合反映。
任意两年间指示因子的任何变化都会表现在这12维空间中,这种变化可用变化矢量描述如下式:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
ΔP (i)是像元i从x年到y年的变化矢量。ΔP (i)包含了(y-x)年间,像元i在每一时间维上的变化信息。变化矢量的模‖ΔP (i)‖,由欧氏距离(Enclidean distance)决定,表示了指示因子变化的强度。
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
当‖ΔP (i)‖超过某一阈值时,往往对应着植被覆盖类型从一种类型转变成另一种类型。ΔP (i)的方向由一系列的角度定义,决定了指示因子的变化过程。
对计算出变化矢量强度,依据图像的直方图特征和地面资料可以采用阈值分割的方法划分不同的矢量变化强度等级。
借助于指示因子累计值的变化率来判断矢量变化类型。变化率的定义如下:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
4 结论与讨论
土地资源现状调查
通过对研究区2002年12个月的NDVI时间序列数据进行主成分分析得到的前四个主分量,基于1 km 分辨率的 MODIS 8 天合成 LST 数据得到的研究区年均 LST 数据,1∶5 万DEM数据,然后结合降雨温度数据,采用模糊K-均值非监督分类法,得到北京西北部地区的土地覆盖分类结果。然后,对分类结果进行分类后处理,对分类发生明显错误的图斑进行更正,最后得到2002年北京西北部地区的土地覆盖分类图(图1)。
图1 2002年北京西北部地区土地覆盖分类图
通过图1和图2可以看出,北京西北部地区土地覆盖类型中草地的覆盖面积所占比例最大,约占总面积的53%,内蒙古高原的浑善达克沙地和丘陵区及研究区东部的科尔沁草原南缘地带呈集中连片分布;中西部坝上高原地区的低洼处和河湖滩地的周边、阴山山脉东部及周边地区的丘陵地区也比较集中。牧草地总面积的60%以上分布在沙质甚至沙砾质干旱草原区。农用地占研究区总面积的21%,主要分布在研究区西南部高原和盆地中,多呈条带状沿河谷和河流冲积平原分布。林地占研究区土地总面积的13%,主要分布在大兴安岭、燕山、恒山、阴山山脉地区,在研究区的东部和西南部山区是林地集中分布地区,且大多分布在山体的上部。裸地占研究区总面积的8%,主要分布在北部浑善达克沙地和东部的科尔沁沙地。研究区中,湿地、水域和建设用地所占面积比例最小。
图2 2002年北京西北部地区各土地覆盖类型所占比例
土地利用与植被覆盖多年变化
用变化矢量分析法对北京西北部地区2001~2004年NDVI 的变化进行监测。所用数据是北京西北部地区2001~2004年的每月的最大 NDVI 时间序列值,首先计算 NDVI的变化矢量模,然后采用对变化矢量模进行图像分割的技术来生成 NDVI 的变化强度。图像分割满足:①相似性原则,即同一区域内像元应相似;②非连续原则,即从一个区域向另一个区域搜索,像元一定有某些变量特征(梯度等特征)发生突变,从而确定边界。
变化强度
NDVI 变化强度反映了植被覆盖的变化情况。综合考虑植被覆盖度变化矢量模的直方图、均值和方差来确定每个分割点,对变化矢量模进行分割得到变化强度。
表1 矢量变化强度不同等级阈值
从图3和图4中可以看出,2001~2004年4年间,北京西北部绝大部分地区土地利用/植被覆盖状况没有发生大的变化,生态系统基本维持平衡。无变化和低变化地区占北京西北部地区总面积的。
无变化区面积最大,占总面积的,主要分布于北京西北部地区的赤峰市、敖汉旗、翁牛特旗、巴林右旗和阿鲁科尔沁旗,北部的锡林郭勒盟和四王子旗等地,表明5年间三峡库区的植被覆盖在水平方向上很少变化。
低变化区面积占总面积的 ,主要分布在北京西北部地区的察哈尔右翼中旗、察哈尔右翼前旗、克什克腾旗、正镶白旗、正蓝旗和太仆寺旗的交界处等地区。
中变化区的面积比较小,主要集中在北京西北部地区的凉城地区。
剧烈变化区,主要集中在北京西北部地区的西部地区、浑善达克沙地周围、克什克腾旗北部和四王子旗等地。
图3 北京西北部地区 2001~2004年植被指数 (NDVI) 变化强度
图4 植被覆盖度矢量变化强度面积比例
变化类型
以上计算了北京西北部地区4年间NDVI矢量变化强度。矢量变化强度反映了2001~2004年4年间北京西北部地区NDVI的变化程度,但无法判断这4年间植被覆盖度到底是增加还是减少了。因此可以同时借助 NDVI 变化强度和 NDVI 累计值的变化率来判断ND-VI 矢量变化类型[9]。
取变化强度的无变化和低变化的界值作为阈值 M,变化强度小于 M 的像元,被认为其变化为平稳型,当变化强度大于 M 时,再根据累计变化率来确定其变化类型。具体参数如下:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
根据计算出NDVI的累积变化率,再考虑公式(5)可以得到NDVI矢量变化类型图。
从图5和图6可以看出,2001~2004年北京西北部地区的植被覆盖总体上表现为稳中增加的趋势。归纳起来的变化特征为:
图5 北京西北部地区 2001~2004年植被覆指数 (NDVI)
图6 植被覆盖度矢量变化强度面积比例
(1)植被覆盖变化类型中以平稳型为主,占整体面积的,主要分布于北京西北部地区的东北、西北等地区。
(2)增加型占的比重也比较大,占北京西北部地区面积的,主要分布在北京西北部地区中南部地区。
(3)减少型代表植被覆盖度有一定的减少,所占比重很小,主要分布在北京西北部地区的北部零散地区。
(4)波动型占北京西北部地区面积的,主要分布在北京西北部地区的东北部地区。植被覆盖的波动是正常的自然现象,它是植被正常生长、长期的气候变化等自然作用和各种人类经济活动共同作用的结果。
参考文献
[1]Tucker,.,Townshend, Goff, land cover classification using meteorological satellite data [J].Science,1984 (227):369~375
[2]Cihlar cover mapping of large areas from satellites:status and research priorities [J]. ,21 (6&7):1093~1113
[3]Townshend ,et Land Cover Classification by Remote Sensing:Present Capabilities and Future Possibilities [J].Remote Sensing of Environment,1991 (35):243~255
[4]Lloyd phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery [J]. Sensing,1990,11 (12):2269~2279
[5], a land use/cover classification system based on remote sensing data in of SPIE-Remote sensing for environmental monitoring,GIS applications and Geology IV,2004,(5574):52~60
[6]刘爱霞,刘正军,王静.基于PCA变换和神经元网络分类方法的中国森林制图研究.长江流域资源与环境,2006,15 (1):19~24
[7]刘爱霞,王静等.基于MODIS数据的北京西北部地区土地覆盖分类研究.地理科学进展,2006,25 (2):96~102
[8]陈云浩,李晓兵,陈晋,史培军.1983~1992年中国陆地植被NDVI演变特征的变化矢量分析.遥感学报,2002,6 (1):12~18
[9]中国测绘科学研究院.三峡库区相关生态环境监测技术研究.项目验收总结报告.2005,10
植被覆盖度特征提取可以定量地提取光谱特征、空间(几何)特征和纹理特征等,包括多光谱图像和波段间运算及不同时期观测的图像间的运算,其结果仍可形成图像。
光谱特征提取包括颜色及灰度或波段间的亮度比等目标物的光谱特征,它对应于每一个像元,但与像元的排列等空间结构无关,植被指数分析和主成分分析法就属于此类。
遥感图像上的植被信息,主要通过绿色植物叶子光谱特征的差异及动态变化而反映出来。不同光谱通道的信息可以与植被的不同要素或状态有各种不同的相关性,因而将遥感数据进行处理分析,从而得到植被指数,往往可以得到更好的植被信息。
所谓植被指数就是由多光谱数据,经线性和非线性组合构成的对植被有一定指示意义的各种数值。由于近红外波段是叶子健康状况最灵敏的标志,它对植被差异及植物长势反映敏感,指示着植物光合作用能否正常运行。可见光红波段被植物叶绿素强吸收,进行光合作用制造干物质,它是光合作用的代表波段,因此通常利用植物光谱中的近红外和可见光红波段两个最典型的波段值建立植被指数模型(李建龙等,1997),以便于植物专题研究,绿色植物的遥感监测以及生物量的估算,且在一定程度上有助于减少外界因素(如太阳高度角、大气状态和非像底观测)带来的数据误差。目前常用的植被指数模式有:
1.规一化植被指数(NVI-Normalized Vegetation Index)
又称标准化植被指数,定义为近红外波段与可见光红波段数值之差与这两个波段数值之和的比值,即 NVI=(NIR-R)/(NIR+R)。在TM图像中IR为4波段,R为3波段。
规一化植被指数是植物生长状况及植物空间分布密度的最佳指示因子,与植物分布密度呈线性相关。实验证明:NVI 对土壤背景的变化较为敏感,当植被盖度小于15%时,数值高于裸土的NVI值;而植被盖度由25%增加到80%时,NVI随植被量呈线性增加;当植被覆盖度大于80%时,NVI对植被检测灵敏度下降。因此,NVI很适合于早、中期发展阶段或低覆盖度植被的检测。
2.比值植被指数(RVI-Ratio Vegetation Index)
比值植被指数是指近红外波段与可见光波段数值的比值,即RVI=NIR/R。RVI与叶面积指数、叶干生物量、叶绿素含量相关最好。当植被覆盖度小于50%时,RVI不能很好地识别植物密度差异。但在高覆盖度下,RVI变得对植被十分敏感,与生物量的相关性最好。因而RVI更适合于植被发展高度旺盛、具有高覆盖度的植被检测中(Jackson等,1983)。RVI对大气状况极为敏感,尤其在RVI值高时,其影响相当显著,因此最好运用经大气校正的数据(陈述彭等,1990)。
3.差值植被指数(DVI-Difference Vegetation Index)
又称环境植被指数(EVI-Environmental Vegetation Index),农业植被指数(AVI Agricultural Vegetation Index)、作物植被指数(CVI-Crop Vegetation Index),是指近红外波段与可见光红波段数据的差值,即DVI=NIR-R。
DVI对土壤背景的变化较RVI要敏感。植被覆盖度为15%~25%时,它随植被量的增加而迅速增大。当植被覆盖度达80%时,它对植被的灵敏度有所下降。DVI在植被遥感中应用较为普遍。
4.正交植被指数(PVI-Perpendicular Vegetation Index)
由于土壤光谱线的存在,NVI及DVI均受背景值影响,为了削减和减轻土壤背景值对植物光谱的影响,而 PVI 可以将地形和土壤的影响缩小到最小。其公式(梅安新等,2001)为:
PVI=(NIR)(R)+
总之,对于多波段数据可以进行各种简单的运算,三波段的加法可以进行彩色合成,二波段的减法可以削去背景影响,关键在于这种运算能突出需要的现象。
分别利用上述5种方法对图像进行处理并将它们与原始图像按不同的组合进行彩色显示,经过筛选、比较,优化的彩色显示组合为(PVI,3,7)(各波段相应组合为红、绿、蓝),本书中主要利用这一组合显示的图像。
1、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;2、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;3、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关;
抄袭、或是论文逻辑结构存在严重问题 关于知网相关抽查规定: 有规定的,可以进行第一次修改,修改之后通过就可以答辩,如果第二次不通过就算结业,在之后4个月内还要交论文或者设计的。
本科毕业论文将每年抽检一次,抄袭撤销学位。教育部制定并印发《本科毕业论文抽检办法》.
学位论文抽检的相关要求规定:
1、论文复评期间暂缓申请答辩,认定为“存在问题”的学位论文不能申请答辩,需按专家意见修改论文,修改后的论文重新提交盲审。
2、学校抽检的论文每篇由3名同行专家通讯评议,2名以上(含2名)专家评议意见为“不合格”的,认定为“存在问题”学位论文;1名专家评议意见为“不合格”的,再请2名同行专家复评,前后累计2名以上(含2名)专家评议意见为“不合格”的,认定为“存在问题”学位论文。
3、学校抽检的论文采取双盲评议,专家评议结果和意见是论文作者能否进行学位论文答辩的依据之一。抽检论文为研究生信息系统中通过重复率检测和导师、院系审核的学位论文盲审稿。
以上内容参考:上海交通大学-上海交通大学研究生学术规范
本科教育学毕业论文
教师在教学过程中应该充分发挥学生的自主性,注重学习方法的指导,放手让学生做力所能及的自主学习。以下是我为大家整理好的本科教育学毕业论文,欢迎大家参考学习哦!
摘要: 语文是最具内涵的学科,它不仅赋予了文字的生命,而且让人的自然生命、精神生命和智慧生命得到了充分的体现,让我们的生命有了更多的价值意义。这就是一种语文生命教育,他以学生个体的自然生命为基础,小学语文教育与其他学科教育相比,对教师的教育策略要求更高,因为小学语文是一项综合学科,要求学生掌握的知识点较多,同时教师也要注意学生情感教育、素质教育等多方面的教育内容,另外由于小学生的年龄原因及其心理认知程度有限,他们不可能像中学生一样有一定的学习目的以及学习自制能力,而是需要教师在日常的教学中予以培养、灌输,所以教师的教育策略就显得尤为重要了。本文笔者主要从榜样的树立、教师的激励教育、对于学生习惯的培养入手,谈一下我的一些教学心得。
关键词: 小学语文;教育教学;策略
一、首先要帮助小学树立榜样意识
“榜样的力量是无穷的”,甚至可以影响到孩子的一生。小学时期孩子们的模仿能力是很高的,也容易受周围环境的影响,比如参加某个游戏,如果有两个孩子玩的很起劲,那么其他的孩子就会竞相效仿。同样的,在课堂上,如果大部分孩子都认认真真的听讲、参与教学,那么其他学生也会受到影响,去认真的听讲,反之,如果大部分学生都没有进入状态,上课了依然心不在焉,就会影响到其他的学生也“随大流”了。所以,在课堂组织教学的过程中,如果老师走到教室,说了“请安静,我们上课了”却依然没人听,不妨教师可以这样引导:同学们,你们看今天某某同学坐得多直呀,上课最认真了!”教师这样一说,平时都很调皮的那位同学的腰板却挺得更直了,“我们都来跟他比比吧!”班里马上安静了,大家都争着做得笔直笔直的,也都认真的.开始上课了。同时为了让学生更好的遵守课堂记录,也为了更好的组织教学,我还编了许多的儿歌,如“头要正、胸要挺,手背后、脚放平,眼睛看、耳朵听,回答问题要大声!”这首儿歌简单明了,同学们一边说一边做,在课堂上确实收到了较好的效果。所以在日常的教学中,我就会经常去引导孩子,发现他们中做的好的人或事,让他们向身边的“好人好事”学习,让同学们“择其善者而从之”,这样他们彼此之间就会多一些交流,多一些了解。同时教师在教学的过程中多去引导学生,而不是训斥或者体罚,相信这也会为他们树立一个良好的学习榜样。
以此同时,教师也是学生在学校各项学习、生活的引导者与组织者,所以教师也要时刻注意自身的形象,不要轻易对学生发脾气、不要随便责骂学生,而是要给他们树立一个青春健康、和蔼可亲的教师形象,比如在日常的生活、学习中,帮助有困难的孩子克服困难、帮助孩子们解决一些基本的难题、和孩子们一起玩耍,带动他们学习、生活的积极性等等,这对于他们的为人处事、人际交流都是一个很好的榜样,对于他们的健康成长有着十分重要的积极意义。
二、其次要注意在日常教学的中的激励教育
我们知道:不是所有的孩子生下来就是低人一等的,同样,也不是所有的孩子都是学习的天才。特别是由于家庭因素的影响,比如父母的教育方法以及教育理念的不同,小学时期孩子们的知识基础差距是非常大的,有些孩子见多识广,而有些孩子则孤陋寡闻,所以在教学中,需要教师进行一定的激励教育,帮助孩子树立学习的信心。作为一名教师,我们要对学生公平相待,应既爱“白天鹅”,也应爱“丑小鸭”。比如对于胆小的、比较内向的、不敢说话的学生,教师就应该主动和他亲近,或者组织学生和他交往,让他感受到集体的魅力。同样的,在学习上更要循循善诱,用身边的小榜样鼓励他、激励他,而不要讽刺、挖苦。比如在一次默写课上,有的学生基础好,写的就很快,而有些学生则基础较差,对于刚学习的知识掌握较慢,写得好的学生我就会鼓励他,或者增添一些新的内:“哎呀,你写的全正确,如果把字写得更工整一点就更好了。”于是学生就高高兴兴的回到座位上,重新写了起来;而对于写的较差的,我就引导他们:“学习的知识是不是你们没有认真复习啊?学习要多复习才能掌握知识哦,这次写不好没关系,下次可一定要写好啊!”以此来激励他们,让他们“胜不骄败不馁”,一点一滴的实现学习的进步。在大人眼中,一个鼓励、一个激励可能不算什么,可在孩子心中,那可能就是一把强有力的“援助”,或者一根“救命稻草”,能够带动他们走出困境,实现一个跨越发展。
三、切合学生特性,适度拓展,坚持练笔
我们都知道,“语文,语文,语言文字能力是根本。”小学阶段语文的奠基作用说到底就是在掌握运用祖国的语言文字中完成的。崔峦老师指出:语文课时有限,要把有限的时间用在刀刃上,用在识字、写字、读书、习作、口语交际上,把语文课上得既生动活泼,让每个学生的各种感官特别是头脑真正动起来,又扎实有效,向每个40分钟要效率,要质量。时下的语文课堂教学,学生课堂内的训练量太少,课堂内动笔时间太少。我们要克服课堂上“君子动口不动手”的顽症,每篇课文学完后,要腾出8-10分钟时间让学生进行书面语言练习。教师要从检测三维目标综合达成情况和学生思想、情感、语言生成情况的视角,根据课文内容,设计情境性的语言书面练习题,让学生写一组句群或一个语段。这种练习要具有创造性、开放性和综合性,能激发学生产生情境性和个性化的语言。
四、结语
小学语文的教育不仅仅是一项工具学科的教育,更重要的是一项人文素质的教育,在教学的过程中需要教师多去学习、多去领悟,也要多去调研,给学生以榜样、给学生以激励,同时也要培养学生良好的学习生活习惯、注重日常教学生活中的案例引导,争取让学生在语文学习过程中快乐的学习、不断的进步,实现学生的全面发展、健康发展!
参考文献
[1]陈威.小学教育专业特色及建设策略分析《黑龙江高教研究》,2010,第6期
[2]孙靖,孙丽艳.小学语文教学中实施反思性教学的策略《吉林教育》,2007第1期
如何检测论文重复率 知网论文检测的系统原理是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。如果13个字里有一半相似,会算一半疑似相似,所以一定要变换句式,用专业术语代替,要改的仔细彻底,切记,切记。 知网检测范围: 中国学术期刊网络出版总库 中国博士学位论文全文数据库中国优秀硕士学位论文 全文数据库中国重要会议论文全文数据库 中国重要报纸全文数据库中国专利全文数据库 互联网资源英文数据库(涵盖期刊、博硕、会议的英文数据以及德国Springer、英国Taylor&Francis 期刊数据库等)优先出版文献库港澳台学术文献库互联网文档资源 知网系统计算标准详细说明: 1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗? 学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线? 百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台? 这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么? 我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭? 检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。 6.知网检测系统的权威性? 学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。 关于知网相关抽查规定: 有规定的,可以进行第一次修改,修改之后通过就可以答辩,如果第二次不通过就算结业,在之后4个月内还要交论文或者设计的。这个是在抄袭30%的基础上的。 如果抄袭50%以上的话,直接结业 在之后4个月内还要交论文或者设计的。1.被认定为抄袭的本科毕业设计(论文),包括与他人已有论文、著作重复总字......>> 中国知网在检测论文重复率的时候,怎么算的? 知网查重原理:一句话内,存在8个字或以上重复,或者一个自然段内,存在13个连续字符重复,即判定论文重复。 降低论文重复率方法: (1)基于知网论文检测报告单,黄色文本是“参考”,红纸是“涉嫌抄袭。 (2)基于知网的复核,只检查文本,“图”,“编辑公式是“,”字域代码”没有检查(如果你想知道主要检查这些部件,可以“选择”,“复制”,“选择性粘”“只有文本”)。推荐的公式编辑器MathType,不要用词的公式编辑器。 (3)参考文献参考文献是计算重复率(包括在X %的要求)在学校!所以指家族文学最好用自己的话来重写。 (4)主要检查重量是"章”为基本单位。如“盖”,“摘要”,“介绍”作为一个单独的一章,每章给出试验结果,表明重复率。每一章都有一个单独的重复率总论,全文和一般的重复率。检查是否因体重了一些学校,不仅需要全文重复率不超过多少,也有每章的重复率的要求。 毕业论文重复率检索是用什么软件?怎么自己检索? 减少毕业论文重复率建议用不同的语言表达一句话的意思。如果要检索重复率现在淘宝上很多,价格也不贵,可以试试。 我有一篇论文,想要到中国知网上检索重复率,怎么登陆检索,请说具体的步骤,不要什么乱七八糟的原理。 知网官网有学术不端,点进去是期刊检测、本科、硕博论文等不同的检测系统 但是,个人是无法注册、登陆使用的,必须杂志社或者教育机构、学校以单位的名义去申请购买检测账号,还得看知网那边能否审批下来。 您可以问问师兄师姐怎么检测的,而且学校如果有检测指标的话会有负责的老师倒卖的。再不然就去淘宝 若对您有帮助,望采纳 如何查论文重复率 最便宜,最常用的是用paperpass查重,可以百度一下,有paperpass的官网,它查的挺细的。适合多次查。一般paperpass查重通过了就可以了,如果不放心的话可以首先搞清楚你们学校论文查重用的是哪个软件,花钱用该软件进行最终版的查重。不过一般没啥必要,比如知网太贵了。 毕业论文检测重复率 10分 我是用paperpass检测的比较严格 比较机械,后来用了papertt检测了一下,结果和知网就差2%还是比较不错的 论文检测重复率不能大段的复制粘贴么 第一步:初稿一般重复率会比较高(除非你是自己一字一句写的大神),可以采用万方、papertest去检测,然后逐句修改。这个系统是逐句检测的,也就是说你抄的任何一句话都会被检测出来。这种检测算法比较严格,从程序的角度分析这种算法比较简单。因而网上卖的都很便宜,我测的是3万字,感觉还是物美价廉的。(注意:1 这个库不包含你上一届研究生师兄的大论文,修改一定注意. 2 个人建议如果学校是用知网检测,就不要去检测万方之类的,因为我第一次查万方为,但用papertest查就是30%) 第二步:经过修改后,重复率大幅下降了。这时你可以用知网查了,这个就很贵了,一般都是160大洋以上。为了毕业,这也无可奈何。知网查重系统是逐段检测的,比较智能。检测后再做局部修改就基本上大功告成了,我最后在网上用知网查是4%,简单修改后,在学校查是。 注意:记住,最忌讳的是为了查重,把论文语句改得语句不通、毫无逻辑,这样是逃不过老师的,哈哈,大家加油! 研究生阶段,大部分211工程重点大学,采取抽检的方式对硕士毕业论文进行检测查重。抄袭或引用率过高,一经检测查重查出超过百分之三十,后果相当严重。相似百分之五十以下,延期毕业,超过百分之五十者,取消学位。辛辛苦苦读个大学,花了好几万,加上几年时间,又面临找工作,学位拿不到多伤心。但是,所有检测系统都是机器,都有内在的检测原理,我们只要了解了其中内在的检测原理、系统算法、规律,通过检测报告反复修改,还是能成功通过检测,轻松毕业的。 知网系统计算标准详细说明: 1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗? 学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线? 百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台? 这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么? 我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭? 检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如......>> 如何利用万方数据库检索论文的重复率 土地利用/覆被变化的影响因素主要包括自然因素和人文因素两大类。各种驱动因素是从宏观上来概括的,但在实际中,要通过具体的各项变量来体现.根据现有资料,尽可能地用一个或几个变量全面地反映出一个驱动因素。结合温州市发展实际,将影响其土地利用/覆被变化的驱动因子分为4大类共32个变量指标:自然因子(气候条件处)、人口因素(人口密度、非农业人口比重等)、经济因素(GDP、第一、第二、第三产业产值比重、交通水平等)、农业发展因素(粮食产量等)。 在paperfree上查论文重复率是百分之三十,在知网上查可能是多少 论文在Paperfree上检测了两次,其中有段话,第一次几乎全绿,第二次几乎全红。。 室友同一篇文章在Paperfree上检测两次,重复率不一样。 真实情况。
一 毕业论文分为专题型、论辩型、综述型和综合型四大类 二 毕业论文的规格 :学年论文 毕业论文 硕士论文 博士论文 三 毕业论文:是大学生在大学的最后一个学期,运用所学的基础课和专业课知识,独立地探讨或解决本学科某一问题的论文,它是在撰写学年论文取得初步经验后写作的,它的题目应该比学年论文大一点、深一点。其基本标准应该是:通过毕业论文,可以大致反映作者能否运用大学三四年间所学得的基础知识来分析和解决本学科内某一基本问题的学术水平和能力。当然,它的选题一般也不宜过大,内容不太复杂,要求有一定的创见性,能够较好地分析和解决学科领域中不太复杂的问题。本科毕业论文篇幅一般在六干字以上。大学本科毕业生的毕业论文,如果写得好,可以作为学士学位的论文。 四 选题的重要性 选题能够决定毕业论文的价值和效用 选题可以规划文章的方向、角度和规模,弥补知识储备的不足 合适的选题可以保证写作的顺利进行,提高研究能力 五 选题的原则 理论联系实际,注重现实意义 (实用价值和理论价值) 勤于思索,刻意求新 (从观点、题目到材料直至论证方法全是新的 、以新的材料论证旧的课题,从而提出新的或部分新的观点、新的看法 、对已有的观点、材料、研究方法提出质疑,虽然没有提出自己新的看法,但能够启发人们重新思考问题 ) 知己知彼,难易适中(要充分估计到自已的知识储备情况和分析问题的能力 、要考虑到是否有资料或资料来源、题目的难易要适中 、题目的大小要适度 ) 六 选题的具体方法 浏览捕捉法 (将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题、将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有 或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程, 就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来) 追溯验证法 (先有拟想,然后再通过阅读资料加以验证来确定选题的方法 ) 选好了毕业论文的题目,必须进行理论准备,否则积累资料、形成论点和论据都会迷失方向 毕业论文撰写前的理论准备是积累资料的向导 毕业论文撰写前的理论准备是形成论点和论据的必要条件 以经济学论文来讲,首先要掌握经济学原理 、还要掌握应用经济学知识,包括工业经济学、农业经济学、商业经济学、财政学、外贸经济学、金融学、企业管理学,等等 、 还要掌握研究经济现象必须具备的方法论知识,这主要是指经济数学、统计学、会计学、电子计算机的应用技术等有关数量分析方法的基本知识 、撰写经济学论文而不掌握数 量分析的基本方法是很难取得成功的。 七 积累资料的方法 以下几方面的材料 :统计材料、典型案例、经验总结等等 、国内外对有关该课题学术研究的最新动态 、边缘学科的材料 、名人的有关论述,有关政策文献等 、搜集论文作 者当时所处的社会、政治、经济等背景材料 八 资料的辨析 :适用性 、全面性 、真实性、新颖 、典型性 拟定结构提纲 要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用 从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的 要考虑各部分之间的逻辑关系 九 形成论点和论据 由于人的认识不可能一次性完成,即使一种新观点出现,当时看来是完善的,但随着时间的推移,人们认识水平的提高总会发现原有观点的不足之处,所以,可以说,绝大部 分已有的研究成果都给后世留下了补充性的研究课题。 补充性论点是对前人研究成果的肯定与发展,而匡正性论点则是对已有研究成果的否定与纠正。这种匡正性论点包括两个方面,一方面是对通说(即流行的说法或观点)的纠正, 另一方面是对新出现的某种观点不足之处的纠正 文献综述/开题报告的撰写 关于文献综述 (详见word文挡) 作者不以介绍自己的研究工作(成果)为目的,而是针对有关专题,通过对大量现有文献的调研,对相关专题的研究背景、现状、发展趋势所进行的较为深入系统的述评 (介绍与评价)。 文献综述的撰写基础是文献调研;文献综述的撰写为毕业(设计)论文的撰写奠定了坚实的基础。 关于开题报告 用来介绍和证明将要开展的课题(专题)的研究目的、意义、作用、目标的说明性文件。目的是为了阐述、审核和确定论文题目(选题)。 一般可以包括以下内容: 1)选题的目的和意义 2)国内外的发展现状、趋势 3)选题内容、拟采用的方法和手段 4)预期达到的水平及所需的科研条件 5)工作量、工作进度计划论文的四性 科学性- 内容可靠、数据准确,实验可重复。 创造性-原则上是不能重复别人工作,可以改进,但不能照抄。 逻辑性-思路清晰、结构严谨、推导合理和编排规范。 有效性-公开发表或经同行答辩。 学术性-对事物进行抽象概括和论证,描述事物本质,表现内容的专业性和系统性。不同于科技报道和科普文章,要用书面语言论述精练。 注意文笔文风 避免口语化,注意避免平时用惯了的简化词,要用规范书面语; 慎用第一人称; 仔细检查,使每一句话简洁、准确; 注意拼写、打印错误; 不要忽略字体、格式、插图排版等小节; 标题、序号一定要清晰,层次安排也要避免太繁。 文章结构 学术论文的一般结构(GB7713-87) 题目 作者及单位 文摘 关键词 引言(前言) 正文 结论 参考文献 附录性材料 论文的篇名 用简洁恰当的词组反映文章的特定内容,明确无误 篇名简短,不超过20个字 少用研究和空洞应用之类字 避免用不熟悉的简称、缩写和公式等 关于摘要 文章内容不加注释和评论的简短陈述,具有独立性和完整性用于检索; 一般包括:研究的目的与重要性、内容、解决的问题、获得的主要成果及其意义; 小摘要(200-300字) 麻雀虽小,五脏俱全 大摘要(600字左右) 突出研究成果和创新点的描述 关键词 4-6个反映文章特征内容,通用性比较强的词组 第一个为本文主要工作或内容,或二级学科 第二个为本文主要成果名称或若干成果类别名称 第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论" 第四个为本文采用的研究对象的事或物质名称 避免使用分析、特性等普通词组 关键词例举 例1 氖原子束计算全息编码成像模拟研究 关键词 纳米技术 计算全息 原子光学 激光冷却 例2 激光瞄准大轴半径测量方法研究 关键词 大轴径 CCD 激光光斑 直径测量 引 言 主要回答为什么研究(why) 介绍论文背景、相关领域研究历史与现状,本文目的 一般不要出现图表 正 文 论文核心,主要回答怎么研究(how), 一般正文应有下述几个部分组成 本文观点,理论或原理分析 实现方法或方案(根据内容而定) 数值计算、仿真分析或实验结果(根据内容而定) 讨论,主要根据理论分析、仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等 结 论 文章的总结,要回答研究出什么(what) 以正文为依据,简洁指出 由研究结果所揭示的原理及其普遍性 研究中有无例外或本论文尚难以解决的问题 与以前已经发表的论文异同 在理论与实际上的意义 对近一步研究的建议 参考文献及其著录 文章中引用他人成果或文章内容应注明参考文献 1)著录参考文献的作用 作者的文献保障程度 作者的学术道德品行 提供文献线索\核对文献质量 2)著录参考文献的条件 必须是自己亲自阅读过的。 必须是论文作者开展研究及撰写论文过程中对其产生了明显影响的内容。 决不做有违知识产权的事 抵制社会上不良风气的影响,决不做抄袭、剽窃、侵权的事; 加强法制意识,仔细、慎重防止无意识侵权事情的发生; 重视参考文献的引录和标识,要一一对应,不要遗漏,格式要规范;请采纳答案,支持我一下。