首页 > 论文发表知识库 > 蔡氏电路毕业论文

蔡氏电路毕业论文

发布时间:

蔡氏电路毕业论文

线性电路是指完全由线性元件、独立源或线性受控源构成的电路。线性就是指输入和输出之间关系可以用线性函数表示。非线性电路,含有非线性元件的电路。这里的非线性元件不包括独立电源。非线性元器件在电工中得到广泛应用。非线性电路的研究和其他学科的非线性问题的研究相互促。判断线性和非线性:非线性电路是含有除独立电源之外的非线性元件的电路。电工中常利用某些元器件的非线性。例如,避雷器的非线性特性表现为高电压下电阻值变小,这可用于保护雷电下的电工设备。非线性电路有6个特点:①稳态不唯一。用刀开关断开直流电路时,由于电弧的非线性使这时的电路出现由不同起始条件决定的两个稳态——一个有电弧,因而电路中有电流;另一个电弧熄灭,因而电路中无电流。②自激振荡。在有些非线性电路里,独立电源虽然是直流电源,电路的稳态电压(或电流)却可以有周期变化的分量,电路里出现了自激振荡。音频信号发生器的自激振荡电路中因有放大器这一非线性元件,可产生其波形接近正弦的周期振荡。③谐波。正弦激励作用于非线性电路且电路有周期响应时,响应的波形一般为非正弦的,含有高次谐波分量或次谐波分量。例如,整流电路中的电流常会有高次谐波分量。④跳跃现象。非线性电路中,参数(电阻、电感、振幅、频率等)改变到分岔值时响应会突变,出现跳跃现象。铁磁谐振电路中就会发生电流跳跃现象。⑤频率捕捉。正弦激励作用于自激振荡电路时,若激励频率与自激振荡频率二者相差很小,响应会与激励同步。⑥混沌。

指电路中的电压和电流在向量图上同相,互相之间即不超前,也不滞后。 纯电阻电路就是线性电路。 非线性电路为: 1 容性电路,电流超前电压。比如补偿电容; 2 感性电路,电流滞后电压。比如变压器; 3 混合型的,比如各种晶体管电路。

线性电路是指完全由线性元件构成的电路 如纯粹由电阻电源等线性元件构成的电路就是线性元件(电路)比如纯电阻 它通过电流后 只会发热 而电能不做其他功这样输入和输出的关系是呈线性话 通俗点说 就是 通过它的电流 电压是呈正比例的关系 用坐标表示 就是一条直线而 非线性电路 的构成元件 比如 线圈 电容加在这些元件 上的电压 电流 就并不是正比关系了在坐标表示的时候可能是曲线等 但不再是直线

艾氏剂狄氏剂毕业论文

微生物在污水处理中的应用摘要:本文主要阐述了各种微生物在不同种类污水中的应用,以及它们不同的应用机理。关键词:微生物 生活污水 工业污水 农业污水 重金属 农药1.世界水资源现状环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。全球水资源状况迅速恶化,“水危机”日趋严重。据水文地理学家的估算,地球上的水资源总量约为13.8亿立方公里,其中97.5%是海水(13.45亿立方公里)。淡水只占2.5%,其中绝大部分为极地冰雪冰川和地下水,适宜人类享用的仅为0.01%. 20世纪50年代以后,全球人口急剧增长,工业发展迅速。一方面,人类对水资源的需求以惊人的速度扩大;另一方面,日益严重的水污染蚕食大量可供消费的水资源。本届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有200吨垃圾倒进河流、湖泊和小溪,每升废水会污染8升淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质差强人意。 20世纪,世界人口增加了两倍,而人类用水增加了5倍。世界上许多国家正面临水资源危机:12亿人用水短缺,30亿人缺乏用水卫生设施,每年有300万到400万人死于和水有关的疾病。到2025年,水危机将蔓延到48个国家,35亿人为水所困。水资源危机带来的生态系统恶化和生物多样性破坏,也将严重威胁人类生存。 水资源危机既阻碍世界可持续发展,也威胁着世界和平。过去50年中,由水引发的冲突共507起,其中37起有暴力性质,21起演变为军事冲突。专家警告说,随着水资源日益紧缺,水的争夺战将愈演愈烈。2.污水处理方法分类物理法利用物理作用分离废水中呈悬浮状态的污染物质。主要有沉淀法,过滤法,离心分离法,吸附法等。化学法利用化学反应原理及方法来分离,回收废水中的污染物,或改变污染物的性质,使它从有害变为无害的处理法。主要有化学凝聚法,中和法,氧化还原法,离子交换法。生物法主要利用微生物的生命活动过程,对废水中的污染物质进行转移和转化的作用,从而是污水得到净化的方法。.微生物简介微生物是肉眼看不见或看不清的生物的总称。包括原核生物(细菌,放线菌和蓝细菌),真核生物(真菌和微型藻类),非细胞生物(病毒类)。微生物具有体积小、表面积大、繁殖力惊人等特点,能不断与周围环境快速进行物质交换。污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。3.原理 利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化..好氧净化 氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。 厌氧净化微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。 微生物净化过程: Ⅰ.有机污染物的浓度由高变低 Ⅱ.异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。 Ⅲ.溶解氧浓度随着有机物被微生物氧化分解而大量消耗,很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。 这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。 微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。 4.污水处理中重要的微生物种群4.1 丝状细菌丝状细菌(Filamentous bacteria)能显著影响絮状活性污泥的沉降性(污泥膨胀)或引起生物量变化和泡沫形成(污泥发泡),从而严重影响活性污泥的处理效率.传统上,丝状细菌是通过光学显微镜学进行分析鉴定的,如革兰氏和Neisser染色反应、典型的形态学特征等.但应用full—cycle rRNA技术发现,传统形态学鉴定方法不能发现污水厂活性污泥中的许多丝状细菌 。系统发生树部分提供了丝状菌的系统发生亲缘关系,但有些丝状类型如Eikelboom 1863或Nostocoidalimicola等则是放置在完全无关的类群中.现在利用rRNA目标寡聚核苷酸探针能迅速地鉴定大多数丝状菌,证明在活性污泥中有些丝状菌呈现多态性现象.Kanagawa等(2000)从活性污泥中分离出15种丝状菌,根据形态被分类为Eikelboom 21 N,利用16S rDNA序列分析表明都同变形杆菌亚纲的Thiothrix丝状菌形成单系群(monophyletic group).Thiothrix丝状菌在污水中通常表现出生理多能性,在异养、兼性营养和化能自养情况下,它们都能同标记的乙酸盐或碳酸氢盐结合。在厌氧状况下(无论有无硝酸盐),Thiothrix丝状菌都很活跃,它通过吸收硫代硫酸盐和乙酸盐来形成胞内硫粒。利用丝状菌的FISH探针,Mircothrix parvicella被发现有特殊的脂消费,在厌氧情况下专门吸收长链脂肪酸(而不是短链脂肪酸和葡萄糖),随后当硝酸盐或氧可用作电子受体时它们则使用贮存完成生长.不过,在厌氧情况下,不能吸收磷,不适合那些有除磷要求的生物反应器.利用FISH技术对丝状菌进行系统分类发现,大多数未描述的丝状菌属于绿色非硫细菌(Chloroflexi),也可能是污水生物处理系统中丰度最高的丝状菌。Liao等(2004)发展一种定量FISH,对实验室和污水厂反应器中的丝状菌进行了研究,以增加Sphaerotilus natans的方式来刺激污泥膨胀,结果发现是Eikelboom 1851菌丛(而不是试验的S.natans菌)同活性污泥容积指数(volume index)极度相关,其可延伸的菌丝长度约为6×10。la,m/mL。4.2 生物除磷的重要细菌生物除磷可以在EBPR的微生物途径中由完成,该过程通过循环活性污泥进行交替的厌氧、需氧为特征。基于微生物的纯培养技术,变形杆菌纲г亚纲的不动杆菌属(Acinetobacter)长期被认为是唯一的PAO(Polyphosphate—accumulating organism).但实际上,虽然不动杆菌能积累多聚磷酸盐,却没有PAO的典型代谢方式.Wanger等(1994)用rRNA目的探针测试后认为,主要的PAO应该为口亚纲中的Rhoclocyclus群,其次为 亚纲中的Planctomycete群及屈挠杆菌属(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用萤光抗体染色、呼吸醌检测和属特异探针的FISH等非培养方法,证明在EBPR系统中,由于培养偏差显然高估了不动杆菌的相对丰度,表明其对EBPR系统实际上不是最重要的,而另外一些分离出的细菌才是PAO的候选者。不过,有7个Acinembacter新种从活性污泥中分离到,可望进一步阐释该属在脱磷中扮演的角色和意义。积磷小月菌(Microlunatus phosphovorus)是一个高G+C含量的革兰氏阳性菌,被认为是专性好氧菌,可以通过EMP途径发酵葡萄糖为乙酸,而不能够在厌氧情况下生长.有明显吸收葡萄糖、分泌乙酸的转化,导致胞内乙酸积累;产生的乙酸在随后的好氧阶段消耗掉.phosphovorus表现出卓越的吸收和释放磷的能力,磷释放率和吸收率可分别高达3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1个数量级,特异探针证明其在EB—PR工厂里可占总细菌的2.7%。俊片菌属(Lampropedia)也拥有聚磷菌的基本代谢特征,但比EBPR模型预言的吸收乙酸盐释放磷酸盐的比率要低很多.那些被建议名为“Candidatus Ac—cumulibacter phosphates”已被证实显著存在于EBPR系统中.Saunders等(2003) 在对6个运行污水厂进行了检测后认为,很可能“无关紧要”的“CandidatusAccumulibacter phosphates”正是重要的PAO.另外还有显微镜原位观察显示,酵母菌很可能涉及在生物除磷中,许多“聚磷菌”很可能是酵母菌的孢子,但其作用机理显然还需要进一步探讨.4.3 硝化细菌氮循环是高度依赖微生物活性和转化的一个过程.这类微生物在污水处理、农业等领域具有极其重要的作用,因此成为近年来世界研究的热点,变形杆菌的β亚纲几乎已经成为微生物生态学的模式系统 .Kindaichi等(2004)对自养硝化生物膜进行了FISH分析表明,膜上有50%属于硝化细菌,其余50%为异养细菌,分布为变形杆菌α亚纲23% ,г亚纲13% ,绿色非硫细菌9% ,CFB群2%,未定类群3%.该结果表明,硝化细菌通过可溶性产物的产生支持了异养菌,异养菌也从代谢多样性等方面确保了生物膜的生态稳定性 .从培养角度来说,硝化细菌生长极慢;由于硝化细菌的分布同pH、温度等敏感,所以污水厂的硝化作用常有崩溃的情况发生.4.3.1 氨氧化茵基于16S rDNA序列分析,已经分离和描述过的氨氧化细菌都分属于变形杆菌纲的2个单系群中.Ni-trosococcusoceanus和N.halophilus属于Proteobacteria的β亚纲,包括亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化弧菌属(Nitrosovibrio)和亚硝化叶菌属(Nitrosolobus),后3个属关系密切;而Nitrosococcus mobilis(实际是Nitrosomonas的一个成员)则在β亚纲组成紧密相关的集合.4.3.2 亚硝酸氧化茵基于超微特性,已培养出的亚硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分为4个已知属,硝化杆菌属(Nitrobacter),硝化刺菌属(Nitrospina),硝化球菌属(Nitrococcus)和硝化螺菌属(Nhrospira).16S rDNA序列比较分析表明,硝化杆菌属及其3个种都属于变形杆菌的α一亚纲;Nitrospina和Nitrococcus各有一个种,分属于变形杆菌的δ和г一亚纲;Nitrospira属包含有moscoviensis和Ⅳ.rrtarin.在传统上,Nitrobacter一直被认为是最重要的亚硝酸盐氧化菌.然而,在硝化污水厂内用目的探针的FISH法和定量斑点杂交(Quantitative dot blot)等发现,检测不到Nitrobacter或者数目很低,因此凸现了非Nitrobacter的NOB在硝化过程中的重要性.Egli等(2003)用不同污泥接种反应器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法对稳定的硝化作用反应器进行检测,发现有活性的都属于Nitrospira属 J.以Nitrospira序列发展的特定16S rRNA探针,对活性污泥进行FISH查后表明,未培养的类硝化螺菌(Nitrospira—like)以显著性数目(总菌数的9%)存在,其对亚硝酸盐氧化的重要性已由反应器富集研究所证实.Nhrospira能固定CO:,也能利用丙酮酸混合营养生长,而不利用乙酸盐、丁酸盐和丙酸盐。4.4 反硝化细菌反硝化细菌(Denitrifying bacteria)的大多数鉴定和计数都是依赖培养法.很多属的成员,如产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)、甲基杆菌属(Methylobacteriurn),副球菌属(Paracoccus)和生丝微菌属(Hyphornicrobiurrt)等,都从污水厂中作为脱氮微生物群分离出来过,但这些细菌属在污水厂中是否具有原位脱氮的活性却很少被知道.在一个补充以甲醇作为还原碳化物的脱氮沙滤中,使用特异FISH探针监测到有大量数目的P.spp和H.spp;而在没有附加甲醇的非脱氮沙滤中,两属存在的数目都低于总细胞0.1% ,这间接证明了在脱氮过程中有两属的活性参与。5.水污染物的类型及处理生活污水生活污水是一大污染源。生活污水中含有大量的无机物,有机物。无机物如氯化物,硫酸盐,磷酸盐和钠,钾,钙,铁等碳酸盐,有机物有纤维素,淀粉,脂肪,蛋白质和尿素等。排放入环境中促使浮游植物生长和大量繁殖,形成赤潮和水华。 生活污水的处理主要是其中有机物的分解,其主要方法有活性污泥法、生物膜法、AB法。活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。生物膜法生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。法AB法工艺由德国B0HUKE教授首先开发。该工艺将曝气池分为高低负荷两段,各有独立的沉淀和污泥回流系统。高负荷段A段停留时间约20-40分钟,以生物絮凝吸附作用为主,同时发生不完会氧化反应,生物主要为短世代的细菌群落,去除BOD达50%以上。B段与常规活性污泥相似,负荷较低,泥龄较长。工业废水 工业废水是水体污染的主要污染源。包括钢铁工业废水,食品工业废水,印刷废水,化工废水等。随着工业化的发展,含有重金属离子的废水产生量越来越多。重金属离子已成为最重要、最常见的污染物之一。由于重金属在生物体内的富集、吸收与转化,从而通过食物链危害人体健康。如致癌、致畸等,故而处理重金属污染刻不容缓。 微生物处理技术在生活污水处理中的应用已经非常成熟并且全面普及,但是在工业污水的处理中还存在着一定的技术问题。相对于生活污水来说,工业污水的成份要复杂的多,大多数工业污水的COD值都相当高,可生化性差,这就给微生物处理带来了相当大的难度,有些工业污水甚至还有很高的氨氮指标,增加了微生物处理的难度。但是微生物技术的许多优势注定了它将是工业污水治理的一个方面,而且目前已经有很多行业的工业污水开始采用微生物处理技术并且得到了稳定的运行数据。这里主要讲述关于污水中重金属的处理。目前可用的微生物法有生物吸附法、硫酸盐还原菌净化法和利用微生物的转化作用去除重金属。 生物吸附法 生物吸附是利用生物量(如发酵工业的剩余菌体)通过物理化学机制,将金属吸附或通过细胞吸收并浓缩环境中的重金属离子,由于重金属具有毒性,如果浓度太高,活的微生物细胞就会被杀死。所以,必须控制控制被处理水的重金属浓度。 例如陈小霞等人用小球藻富集铬离子,研究表明小球藻富集铬离子的机制主要表现是表面吸附和主动运输。在生长期和稳定期小球藻富集的铬以有机铬存在,而在衰亡期,小球藻富集的铬以无机铬存在。 利用工业发酵后剩余的芽孢杆菌菌体或酵母菌吸附重金属,具体做法是首先用碱处理菌体,以便增加其吸附重金属的能力。然后通过化学交联法固定这些细胞,固定化的芽孢杆菌对重金属的吸附没有选择性(微生物在结合无机污染物上表现出选择性,多于大多数合成的化学吸附剂,微生物对金属的吸附和累积主要取决于不同配位体结合部位对对金属的选择性)。可以去除废水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可达99%。吸附在细胞上的重金属可以用硫酸洗脱,然后用化学方法回收重金属,经过碱处理后的固定化细胞还可以重新用于吸附重金属。 硫酸盐还原菌净化法 脱硫弧菌属硫酸盐还原菌是厌氧化能细菌,它最大的特征就是在无自由氧的条件下,在有机质存在时通过还原硫酸根变成硫化氢,从中获得生长能量而大量繁殖;它繁殖的结果是使溶解度很大的硫酸盐变成了极难溶解的硫化物或硫化氢。这类细菌分布广泛,海洋、湖泊、河流及陆地上都能存在。在没有自由氧而有硫酸盐及有机物存在的地方它就能生长繁殖,其生长温度为25~35摄氏度,PH值为.该细菌的作用可将废水中的硫酸根变成硫化氢,使废水中浓度较高的重金属Cu、Pb、Zn等转变为硫化物而沉淀,从而使废水中的重金属离子得以去除。 利用微生物的转化作用去除重金属 微生物可以通过氧化作用、还原作用、甲基化作用和去烷基化作用对重金属和重金属类化合物进行转化。 细菌胞外的荚膜或粘膜层可产生多种胞外多聚体,胞外多聚体能够吸附自然条件下或废水处理设施中的重金属。其主要成分是多糖、蛋白质和核酸。 真菌的细胞壁内含几丁质,这和N----乙酰葡糖胺多聚体是一种有效的金属于放射性核素结合的生物吸附剂。经过氢氧化物处理的各类真菌暴露出来的几丁质、脱乙酰壳多糖和其他金属结合的配位体,形成菌丝层,可以有效的去除废水中的重金属。 六价铬具有强烈的毒性,其毒性是三价铬的100倍,而且能在人体内沉淀。由于六价铬很容易通过胞膜进入细胞,然后在细胞质、线粒体和细胞核中被还原为三价铬,三价格在细胞内与蛋白质结合为稳定的物质并且和核酸相作用,而细胞外的三价铬是不能参透细胞的,细菌利用细胞中的NADH作为还原剂,在厌氧或好氧的状态下,将六价铬还原为三价铬。如阴沟肠杆菌能抗10000µmol/l铬酸盐,在厌氧的条件下能使六价铬还原为三价铬,三价铬可以通过沉淀反应与水分离而被去除。农业废水它面广而量大且分散。农田使用农药,化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 农业生产上主要使用的农药类型 当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表 类 型 农 药 品 种 有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等 杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等有机氯:六六六、滴滴涕、毒杀芬等 杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等 除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等 杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。 降解农药的微生物类群 土壤中的微生物,包括细菌、真菌、放线菌和藻类等,它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。 微生物降解农药的机理 目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。 表2 常见农药的降解微生物农 药 降 解 微 生 物甲胺磷 芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母阿特拉津(AT) 烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌幼脲3号 真菌敌杀死 产碱杆菌2,4-D 假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、DDT 无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等丙体六六六 白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等对硫磷 大肠杆菌、芽孢杆菌七 氯 芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌敌百虫 曲霉菌、镰孢霉菌敌敌畏 假单胞菌狄氏剂 芽孢杆菌、假单胞菌艾氏剂 镰孢霉菌、青霉菌乐 果 假单胞菌2,4,5-T 无色杆菌、枝动杆菌 细菌降解农药的本质是酶促反应,即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分;有的是诱导酶系,如王永杰等得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差,这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。

海洋生物与海洋污染王明俊(国家海洋局第三海洋研究所,厦门)摘要本文对海洋生物与海洋污染之间的相互作用与影响作了较详尽的论述,其中包括污染物的海洋生物学过程、海洋生物对污染物分布和归宿的作用以及污染物对海洋生物的影响等。此外,作者还就知何保护海洋环境阐明了自己的观点。海洋对人类现代经济的发展和满足人们的福利需要方面正在起着越来越大的作用,近年来在世界范围内兴起的海洋开发热潮也日益高涨。与此同时也带来了海洋环境的污染问题,因此,开发海洋就必须保护海洋,开展海洋生物与海洋污染物之间相互作用和影响的调查与研究成为一项重要的基础工作,其成果不仅能为海洋开发和海洋环境保护提供科学依据,而且可为其未来作出有效的预报服务。本文就海洋生物和污染物之间的相互作用与影响作一概述,为海洋环境质量评价提供参考。一、污染物的海洋生物学过程海洋生物对污染物的首要作用是摄取,包括吸附和吸收两种情况。吸附是物质结合于体表细胞壁的过程,既有可逆的物理吸附,也有可逆性较小的化学吸附。吸收则是污染物穿过体表(通过鳃、消化道的壁)进入体内,主动或被动地转移(经血液、血淋巴的循环)到其它组织和器官的作用。生物通过被动机制吸附并结合于细胞表面的金属量,比通过代谢或依靠能量作用所吸收的金属量少得多。吸附污染物的多少,与生物体的体积和表面积的比例有关,个体小的生物如浮游植物比表面较大、代谢率高、吸附量也多,而且在较短时间内(从几分钟到几小时)即可达到平衡,浮游动物的平衡时间也较短(从几分钟到几小时)。一般每单位时间内污染物的穿透量是表面吸附量的函数。生物的生理状况、生活周期、摄饵习性和种群密度等对吸附作用会产生显著影响。如活的比死的刚毛藻能更有效地吸附甲基汞、生物种群密度大吸附量就相对的少。水的pH值、硬度、温度、盐度、水中通气情况、生长调节物质、有机物、本文于1987年10月30日收到,修改稿于1988年2月11日收到。3期王明俊:海洋生物与海洋环境质量I乌悬浮颗粒和腐植质等环境因素对摄取亦有很大影响。例如,河口区的pH值从增至时,几种大型藻对二Zn的摄取率增高。因为在酸性条件下,金属以自由离子形态存在,对藻类的毒性较大;在碱性pH值时,某些金属倾向于形成不溶性的盐类或氧化物、氢氧化物等沉淀下来,对藻类的毒性降低。而且在通常条件下被鳌合、络合的重金属,其离子的活度降低因而比其游离离子的毒性小得多。在一定范围内,海洋生物对金属和放射性核素的摄取与温度呈正相关而与盐度呈负相关。如鲍氏织线藻对‘,c。和“‘Mn的吸收,分别在25和36℃时达最大值,温度再升高时则吸收减少。这可能是由于增加温度时呼吸作用增强相对减轻了重金属毒性的原因。增加盐度会导致吸附的重金属和溶解阳离子之间的竞争作用,后者可部分地取代重金属因而呈现负的相关性。另外,水中各种污染物的浓度、化学形态和化学价、污染物之间的协同或拮抗作用以及污染物在环境中停留的时间等,也会影响生物对污染物的摄取。例如,环境中有高浓度的铜时,栅列藻能增加对镍的吸收,有DDT时,硬石药对.“zn的吸收减少。通常,这种吸收率是接触速率的函数。在污染物的浓度恒定时,一定时期内,生物吸收污染物的量随时间延长而增多,一般遵循弗罗因德利希等温吸附线的关系。污染物在海洋中的第二种重要的生物学过程是积累,它取决于生物对污染物的同化效率、浓缩程度、急性或慢性污染作用等因素。例如,短期严重污染时,污染物的浓度较大,从水中浓缩是积累的主要途径,这在低营养阶层的生物特别明显,如聚球藻对金属的积累24小时就可达到平衡,并且其积累程度与溶解的金属浓度成比例。如果是长期轻度污染,则摄饵是污染物进入生物体内的基本途径,特别是处于营养级顶端的海洋生物,污染物沿食物链转移占绝对优势,如海鸟对DDT的积累等。不同生物对污染物的浓缩程度不同,如贻贝和多毛类浓缩多氯联苯的系数分别为390和3830。浓缩系数受脂肪含量的影响,而且一年中不同时期的浓缩系数也有很大差别。有的生物浓缩污染物的系数很高,如挠足类、鱼类和裸鳃类软体动物浓缩磷的系数分别为、和6x10吕。同是软体动物,扇贝、牡蚜和贻贝浓缩镐的系数各为火10。、。‘和。因此测定生物的污染物含量,可作为评价海洋环境质量和海产品卫生质量的重要依据。污染物在体内的平衡因生物而异,受多种因素影响,是个不断变化的动态过程。至于生物放大(如甲基汞)一般存在于有食物链关系的生物中,但也有污染物在食物链中逐级减少的情况,例如砷在藻类、螺和绘鱼中的含量分别为、和群2,/9。污染物在海洋中第三种重要的生物学过程是向体内各器官的转移分布。由子生物内环境的特点及代谢的变化,各种污染物在体内的分布并不一样。例如,对脂类有较强亲和力的有机氯,主要贮存于脂肪组织中,铜和汞主要与蛋白质的琉基结合,锌和锡主要与亚胺哇结合,钻的结合则与氨基酸有关,这些物质在软组织中较多,钙和铭主要积累在海洋动物的骨骼或介壳中。污染物在体内的分布变化,反映了生物对污染物的代谢和转移情况,可用作评价环境污染变化的依据。例如,当汞主要分布在鱼的肝和肾中时,表明水体正在受到汞的污染,若发现肌肉中汞的含量较高时,表示水体中汞的污染已减轻,鱼在不断地把汞排出体外。污染物在体内各器官的分布,还因生物种类不同而异。例如,铅在加州海狮、紫贻贝、巨鳌虾和沙蚕中分别分布于骨骼、肾、鳃和表皮中,这种情况对水产品的加工利用具有参考价值。止竺一一一一竺一生竺堕一生兰‘一一一一一一)卷污染物在海洋中第四种重要的生物学过程是排解。海洋生物以颗粒态或可溶态形式排解污染物的作用受污染物的性质及其在体内的结合形式、排解途径、生活周期和生物种类与环境因素等影响。例如,吸附于浮游植物细胞壁外的金属几乎是瞬时解吸的,金属排解就很慢。虹娃鱼排泄汞的速度受温度影响,15℃时为4℃时的2倍结合在细胞内的。排解的主要方、海洋哺乳动物的乳汁分泌、鱼类等的粘液分泌、甲壳动物的蜕皮和生物体内各种酶系对污染物的解毒和微生物对污染物的降解等。例如,螃蟹每次脱壳可平均带走原有总锌量的61解。除此之外,生物在生长繁殖时,因细胞分裂身体增二、海洋生物对污染物分布和归宿的作用海洋生物对污染物分布和归宿的反馈作用,包括生物之间、生物和水与碎屑(含溶解性有机物)之间的物质交换及一定水平或垂直距离上的载带。生物对污染物转移与解毒的机理本质上决定于能量,但有时这种过程可因纯粹物理的或化学的过程而促进或加强,如股流扩散、潮汐交换、海流运动或溶解、络合、沉降等,从而使生物学过程转移和搬运污染物的速度与物理的或化学的作用速度不相上下,构成了海洋中的一个快速运转系统。(一)生物运动对污染物的转移生物主动或被动地水平运动,可把污染物载带到很远的地方,有的长达数千公里,如鱼类的徊游、海鸟的迁徙或人类对海洋生物的捕捞等。这种搬运对半衰期长的污染物很重要,估计以这种方式搬运的生物量每年可达。被污染的浮游生物在海区可漂移一定的距离,马尾藻和水母还能远距离地载带污染物。海洋生物的垂直游动,可从每天的数米(浮游植物的沉降速度)到达千米的深度(深海鱼类的徊游)运4000一5000m,底栖动物的幼体也能垂直弥散污染物。,通过不同的食物链甚至可向下搬游泳力强的生物如乌贼,既能远距离游动,又能垂直下游到很深的水域,这类生物转移污染物的潜力也不能忽视。(二)食物链传递对污染物的转移食物链传递是污染物转移的一种重要方式,海洋生物经滤食或捕食摄饵的逐级作用,可将污染物高度地浓缩于最高食性层次的生物中。如大家熟知的例子,美国长岛河口区水中DDT的浓度为。.Oo005mg/L,浮游生物的含量为,经食物链了个营养级的递增,到最高食性层次鸥鸟时的含量达,相当于水中浓度的151万倍。一些食腐的和深海悬浮索饵的动物、深海底栖鱼类和底栖动物的幼体,都能把污染物载带到上层水域或转移到较高层次的食物链,因此对污染物的再分布起了重要作用。(三)生物沉积对污染物的转移生物沉积作用对污染物的转移也有很大的影响。摄食粪粒和沉积碎屑的底栖动物,可将浓缩了的各种污染物经排粪、蜕皮、产卵、分泌粘液和足丝分泌等排出体外。另外,生源性颗粒、细胞或碎屑的溶解渗出和尸体的自溶作用等释放的污染物,通过沉积作用也能转移到很深的水域,从而促进了污染物在底栖边界层的生物地球化学循环。沉降中的生源性颗粒和碎屑,还能把多种污染物不断地释放到各水层中,进一步扩大污染的范围。上述诸因素的重要性决定于生源性颗粒和碎屑的产生率、沉降率和污染物的浓度等。3期王明俊:海洋生物与海洋环境质量I(四)微生物降解对污染物的转移海洋生物转移污染物的又一重要方式,是通过水域中特别是沉积物中微生物的降解使污染物的毒性降低、污染程度减弱变成无毒或消失的自净作用,加速了这些物质在环境中的再循环和再矿化,这是因为微生物具有高效的分解有机物或转化重金属化合物的酶系。例如,沉积物中的微生物是促使汞甲基化的主要原因;氧化菌能造成硫化氢的还原环境,从而影响了沉积物缔合元素的迁移和分布。微生物在需氧条件下可降解氯化烃类如艾氏剂、狄氏剂和异狄氏剂。许多细菌、酵母和霉菌能降解石油烃类。另外,沉积颗粒上的微生物群体,有可能充当污染物的载体而进入以颗粒物为饵料的生物(滤食性动物)及摄食它们的动物所组成的食物链中,因此起了参与食物链传递转移污染物的作用。而在这些动物的粪便中同样含有载带污染物的大量微生物,通过动物的排粪,可以又进一步稀释和转移污染物。三、污染物对海洋生物的影响、海洋中的污染物,主要分为悬浮固态的营养物和天然有机物,包括氨和其它的天然需氧物质及热排放物,它们大量地通过生态系天然循环,容易降解;其次是生物性污染物(包括细菌和病毒),它们在环境中具有中等的稳定性,第三类是重金属,它们以比天然系统高得多的浓度出现,对降解非常稳定;第四类是毒性化学物质,包括许多合成有机物和放射性物质,它们能损害遗传功能,使生物致病、致癌、致畸,具有潜在的危险。污染物对海洋生物的影响多种多样,其致毒的机制也比较复杂,这里仅从几个主要方面加以简介。(一)污染对海洋生物生化代谢的影响重金属能阻碍生物合成途径中的氧化过程,干扰或改变酶和DNA的结构与功能,或与蛋白质的琉基、生物膜结合,阻碍或破坏物质交换过程,不仅影响生物对营养物质的吸收和利用,也会影响对有毒物质的分解、转化和排出。例如,20mg/L的锡能完全抑制崎岖鱼腥藻的固氮酶活性。1拼mol的钻可抑制佛氏绿枝藻的蛋白质和RNA的合成。油膜不仅阻碍海水表面的气体交换和减弱阳光的射入,影响海洋生物需要的氧和浮游植物的光合作用,而且其中的芳烃还会破坏藻类的叶绿素。海水中含“g/L有机汞和低至。.。王拼g/L的狄氏剂,它们都能抑制浮游植物的光合作用。值得指出的是某些海洋生物的肝微粒体氧化酶系对污染会产生双重反应:一方面这个酶系的芳烃羚化酶被石油烃诱导后,酶活性显著增加,使鱼类代谢苯并(。)龙等芳烃化合物的反应速度加快,排解污染物的能力增强,减轻了对生物的毒害;另一方面,它又能活化某些化合物成为强毒性的致癌物或诱变剂,如贻贝肝胰腺的混合功能氧化酶把环磷酞胺抗癌物转变为海洋生物的致癌物。(二)污染对海洋生物生理行为的影响,粘附在鱼鳃粘膜上的油可使鱼呼吸困难,失去生理平衡,甚至窒息而死。海洋生物可通过吞水(如鱼类)或摄饵把石油留存在肠道内,从而使动物麻醉或使其细胞坏死。低沸点的石油饱和烃,能干扰、麻痹和损害动物的运动与定位神经,于枢及化学感受器,破坏生物的趋化性与化学通讯机能,改变水生生物的徊游路线,严重影响生物的索饵、聚群、求偶、产卵、避敌等行为。如海水中原油浓度为时,24h即能毒害黄道蟹触角的化学感受作用,一影响其摄饵。.污染可增加动物的能量消耗,使耗氧量、摄饵量和排泄作用发生屏常,例52海洋环境科学7卷如,一50mg/L的狄氏剂就使招潮蟹难以适应环境。(三)污染对海洋生物生长繁殖的影响超过闭值的重金属使浮游植物的细胞分裂速率降低或膨胀破裂,改变色素体颜色。据调查,海洋微表层中重金属的浓度比下层水要高1D一100倍,由于抑制了细菌的繁殖和浮游植物的光合作用,降低了海洋基础生产力,进而减少了动物的饵料来源。雌/L的甲基汞能抑制小球藻的生长,60mg/L的无机铝能造成亚心形扁藻死亡。污染使藻类种的多样性大为减少,阻止了优势种的形成。油浓度为10mg/L时,就会使幼鱼、幼虾的血液循环受阻,发育异常。此外,由于资源开发和海洋工程建设不当,导致海流、盐度、底质和饵料浮游生物等改变,破坏了海洋生物的养殖场、产卵场,对海洋水产业影响极大。如美国的墨西哥湾就因此造成高盐度的海水入侵牡砺养殖场,破坏了半咸水的产卵场。又因牡砺幼虫被掠食和发生病害,产量逐年下降,1972年的平均亩产仅为1945年的10形。因此,海洋污染给海洋生物资源带来了无法估量的潜在危害。(四)污染对海产品食用价值的影响水中含油浓度为时,海洋生物在24h即可沾上油味,通过鳃粘膜侵入体内,再经血液循环迅速扩散到全身。海水中含油浓度为。.lmg/L时,鱼、贝类在2一3h内就发臭,因此降低了食用价值,减少了海产品的销售量。1983年福建泪州湾建立拆船厂后,排出的大量油污使周围海水的含油量远远超过国家标准,甚至达百倍以上,养殖的海带、紫菜因有强烈异味难以出售,使惠安县的水产养殖业受到很大的经济损失。目前我国沿海已建有近300个拆船厂(点),如不注意保护海洋环境和生物资源,将使沿海养殖业遭到更加严重的破坏。海洋生物积累酚类也会产生不良气味。此外,牡砺因铜和锌的污染而呈绿色并有铜绿味,食后引起腹泻,因而降低了商品价值。海水中铜和锌的浓度分别为一和一时,就足以使牡砺着绿色,这种牡砺肉铜和锌的含量比正常牡蝠高10到20倍,而且铜和锌共同作用时有毒性增强的效应。工业污水可使海带腐烂,动物的味蕾糜烂。高温及铜和锌污染的协同作用能造成蛙鱼致死性的溃疡流行病。由于污染为细菌提供了丰富的养料或细菌增强了对海洋环境的适应,使致病微生物大量繁殖;同时由于环境污染的应激作用,又使海洋生物降低了对病菌的抵抗力,导致海洋生物感染细菌或病毒而患病。例如,1984年在北海南部和1985年在荷兰沿海捕获的比目鱼分别有半数患病或40厂有肝癌。最近美国发现患癌的鱼类已近300种,赫德森河中两龄的结鱼几乎100拓患肝癌,布莱克河的蛤鱼肝癌达80炙,迫使当局下令不准在河中垂钓或游泳,禁止出售这些河所产的鱼类和饮用河水。(五)污染造成大批海洋生物逃离或死亡海洋污染不仅使海洋生物资源遭受各种危害或潜在的影响,而且给海洋水产业造成灾难性的巨大损失。1962年夏,日本有明海因暴雨将施用于农田的五氯苯酚冲入海域,毒死贝类几万吨,造成26亿日元的损失。1967年“托雷·卡尼翁”号油船事件,使英吉利海峡西岸4一10万只海鸟死亡;同时海域中的鲜鱼鱼卵有50一90万被杀死,幼鱼也近于绝迹。1972年日本漱户内海因霍氏眼虫(Hornell:’sSp)形成的大规模赤潮,死亡鲡鱼140。万尾,损失71亿日元。19了3年8月,美国新英格兰沿岸暴发赤潮,一周内养殖场仅贝类就损失3400万美元。1987年4月5日,广东茂名市发生一次氰化物泄漏事故,使梅江中下游水中氰化物合量3期王明俊:海洋生物与海洋环境质量I达一,超过渔业用水标准的6一22倍,死亡淡水鱼26种50余吨,致使梅江及其入海口附近海域严重污染,海水鱼、虾、贝、蟹类也大批死亡,损失难以估计。应当指出,由于污染物的毒性不同和各种生物对毒物敏感性的差别,生物对污染的耐性和受害程度也各异。例如雄壶对低pH的污水抵抗力很强,但对石油的抵抗力却很差。海洋藻类对重金属的耐药性有很高的种类特异性,对一种金属的耐受力并不能自动地使其具有对另一种金属的耐受力。当然也有多重耐受性和复合耐受性的例子。另外,受影响的生物也会因适应而逐渐增强抗污染的能力,例如在有高铜浓度的河口区的墨角藻,比低铜浓度河口区的墨角藻更能耐受铜的毒性。一般,游泳力强、年龄大的生物受害较轻,底栖动物如贝类、蟹类和生物幼体受害较重。综上所述,海洋生物和海洋污染物之间存在着错综复杂的关系,人类对其认识的深化和掌握它们相互作用与影响的规律,是个不断地从必然王国到自由王国的探索过程。保护海洋的核心问题是维持海洋生态系的平衡,目的是为了保护海洋生产力、保证海洋生物资源的永续利用和保障人类的健康与福利。海洋污染生物学的理论和大最的污染实例,都充分说明了把环境保护作为我国一项基本国策的科学性、必要性和和必然性及其深远的战略意义。

根本就是无解的项目,实验室里搞搞就算了,放在大田里搞,变化因因素太多了,除非农药百分百降解矿化了,这可能吗?否则代谢不完全的中间体是否有志毒还说不定,还要做急性和遗传的毒理试验,总之,不好搞,说能搞,都是怱悠

有国标的方法:测定方法方法提要用丙酮-石油醚溶液提取试样中农药残留物,经弗罗里硅土和中性氧化铝柱层析净化后,用气相色谱法测定。试剂和材料 石油醚:重蒸馏, 收集沸程65~75℃馏份。取300mL在旋转蒸发器中浓缩至5mL, 在与测定方法相同的色谱条件下,取5μL进行测定,除石油醚峰外无干扰被测物的杂质。蒸馏水:取蒸馏水100mL,用石油醚10mL提取,在与测定方法相同的色谱条件下,取5μL提取液进行测定,应无石油醚以外的峰。丙酮: 分析纯,重蒸馏。苯:分析纯,重蒸馏。 乙醚:分析纯。无水硫酸钠:分析纯,650℃灼烧4h,贮于密封瓶中备用。中性氧化铝(层析用):500℃灼烧4h,使用前夕在130℃干燥2h,置于干燥器冷却,每100g加10mL水,摇至均匀待用。弗罗里硅土(60~100目) 650℃灼烧4h,使用前夕在130℃干燥2h,置于干燥器内冷却。每100g加5mL水, 摇至均匀待用。作为内标物的环氧七氯及标准农药的纯度均应大于99%。 内标物标准溶液及农药标准溶液的配制:准确称取适量的环氧七氯、艾氏剂、狄氏剂、异狄氏剂,用少量苯溶解,然后用石油醚分别配成浓度为的标准储备溶液。根据需要再配制成适用浓度的含内标物的混合标准工作溶液和内标物标准工作溶液。注:如果试样中存在环氧七氯,可选择其他适当内标物。仪器和设备气相色谱仪,备有电子俘获检测器。脂肪抽提器:150mL。层析柱:20cm×(内径)。旋转蒸发器。气流吹蒸浓缩装置。容量瓶:50mL。微量注射器:10μL。 脱脂棉和滤纸筒:用丙酮-石油醚(2+8)混合液回流2h后,取出挥发至干,保存在清洁容器中备用。测定步骤提取称取制备好的样品(用氧化铝净化时称)于滤纸筒内,样品表面覆盖少许脱脂棉,装入抽提器中。加丙酮-石油醚(2+8)混合液100mL于抽取瓶中,在水浴上浸抽4h(从第一次回流开始计时,回流速度8~10次/h),取出滤纸筒,将提取液浓缩至5mL左右待用。 净化 A法: 于层析柱内,依次装入2cm高无水硫酸钠,10g中性氧化铝及2cm高无水硫酸钠。用乙醚-石油醚(3+17)作淋洗剂预淋洗层析柱。收集20mL弃去,然后将浓缩后的提取液倒入柱内,流出液收集于50mL容量瓶内(流速为30滴/min,约) 供气相色谱测定。B法: 于层析柱内,依次装入2cm高无水硫酸钠,10g弗罗里硅土和2cm高无水硫酸钠。用乙醚-石油醚(3+17)作淋洗剂预淋洗层析柱。收集20mL弃去,然后将浓缩的提取液倒入柱内,流出液收集于50mL容量瓶内(流速为30滴/min, 约) 供气相色谱测定。测定色谱条件色谱柱Ⅰa. 玻璃柱,2m×3mm(内径),填充物为:%OV-17+%OV-210混合液涂于Gas Chrom Q (80~100筛目)。b.载气:高纯氮,纯度>%,30mL/min。c. 柱温:200℃。d.进样口温度:230℃。e. 检测器温度:250℃。 色谱柱Ⅱa.玻璃柱,2m×3mm(内径),填充物为:3%(m/m) DEGS涂于Chromosorb W HP(80~100筛目)。b.载气:高纯氮,纯度>%,30mL/min。c. 柱温:190℃。d. 进样口温度:230℃。e. 检测器温度:250℃。色谱测定准确地移取适量上述净化液进行浓缩或稀释,定量加入内标物标准溶液作为色谱测定的样液。另选择与样液中农药相近的标准工作溶液与样液同时进行色谱测定。注:①在上述色谱情况下,各农药组分出峰顺序:柱Ⅰ:艾氏剂约为; 环氧七氯约为; 狄氏剂约为; 异狄氏剂约为。柱Ⅱ:艾氏剂约为;环氧七氯约为;狄氏剂约为;异狄氏剂约为。②实际使用的农药标准工作溶液及样液中各浓药组分的响应值均应在仪器检测的线性范围之内,样液测定过程中要参插注入标准工作溶液以检查检测器的灵敏度。空白试验按测定步骤进行试剂空白试验。结果计算用色谱数据处理机按适当程序计算各种农药残留量。也可按下式分别计算:h c' hi' ci农药残留量(mg/kg) = ──×──×──×──h' c hi ci'式中:h——样液中农药峰高,mm; h'——标准工作溶液中农药峰高,mm; hi——样液中内标物峰高,mm,hi'——标准工作溶液中内标物峰高,mm; c——样液浓度,g/μL; c'——标准工作溶液中农药浓度μg/μL; ci——样液中内标物浓度,μg/μL;ci'——标准工作溶液中内标物浓度,μg/μL。注:①计算结果需扣除空白值。②本法可同时测定六六六和滴滴涕残留量。

艾氏剂狄氏剂本科毕业论文

微生物在污水处理中的应用摘要:本文主要阐述了各种微生物在不同种类污水中的应用,以及它们不同的应用机理。关键词:微生物 生活污水 工业污水 农业污水 重金属 农药1.世界水资源现状环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。全球水资源状况迅速恶化,“水危机”日趋严重。据水文地理学家的估算,地球上的水资源总量约为13.8亿立方公里,其中97.5%是海水(13.45亿立方公里)。淡水只占2.5%,其中绝大部分为极地冰雪冰川和地下水,适宜人类享用的仅为0.01%. 20世纪50年代以后,全球人口急剧增长,工业发展迅速。一方面,人类对水资源的需求以惊人的速度扩大;另一方面,日益严重的水污染蚕食大量可供消费的水资源。本届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有200吨垃圾倒进河流、湖泊和小溪,每升废水会污染8升淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质差强人意。 20世纪,世界人口增加了两倍,而人类用水增加了5倍。世界上许多国家正面临水资源危机:12亿人用水短缺,30亿人缺乏用水卫生设施,每年有300万到400万人死于和水有关的疾病。到2025年,水危机将蔓延到48个国家,35亿人为水所困。水资源危机带来的生态系统恶化和生物多样性破坏,也将严重威胁人类生存。 水资源危机既阻碍世界可持续发展,也威胁着世界和平。过去50年中,由水引发的冲突共507起,其中37起有暴力性质,21起演变为军事冲突。专家警告说,随着水资源日益紧缺,水的争夺战将愈演愈烈。2.污水处理方法分类物理法利用物理作用分离废水中呈悬浮状态的污染物质。主要有沉淀法,过滤法,离心分离法,吸附法等。化学法利用化学反应原理及方法来分离,回收废水中的污染物,或改变污染物的性质,使它从有害变为无害的处理法。主要有化学凝聚法,中和法,氧化还原法,离子交换法。生物法主要利用微生物的生命活动过程,对废水中的污染物质进行转移和转化的作用,从而是污水得到净化的方法。.微生物简介微生物是肉眼看不见或看不清的生物的总称。包括原核生物(细菌,放线菌和蓝细菌),真核生物(真菌和微型藻类),非细胞生物(病毒类)。微生物具有体积小、表面积大、繁殖力惊人等特点,能不断与周围环境快速进行物质交换。污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。3.原理 利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化..好氧净化 氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。 厌氧净化微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。 微生物净化过程: Ⅰ.有机污染物的浓度由高变低 Ⅱ.异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。 Ⅲ.溶解氧浓度随着有机物被微生物氧化分解而大量消耗,很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。 这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。 微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。 4.污水处理中重要的微生物种群4.1 丝状细菌丝状细菌(Filamentous bacteria)能显著影响絮状活性污泥的沉降性(污泥膨胀)或引起生物量变化和泡沫形成(污泥发泡),从而严重影响活性污泥的处理效率.传统上,丝状细菌是通过光学显微镜学进行分析鉴定的,如革兰氏和Neisser染色反应、典型的形态学特征等.但应用full—cycle rRNA技术发现,传统形态学鉴定方法不能发现污水厂活性污泥中的许多丝状细菌 。系统发生树部分提供了丝状菌的系统发生亲缘关系,但有些丝状类型如Eikelboom 1863或Nostocoidalimicola等则是放置在完全无关的类群中.现在利用rRNA目标寡聚核苷酸探针能迅速地鉴定大多数丝状菌,证明在活性污泥中有些丝状菌呈现多态性现象.Kanagawa等(2000)从活性污泥中分离出15种丝状菌,根据形态被分类为Eikelboom 21 N,利用16S rDNA序列分析表明都同变形杆菌亚纲的Thiothrix丝状菌形成单系群(monophyletic group).Thiothrix丝状菌在污水中通常表现出生理多能性,在异养、兼性营养和化能自养情况下,它们都能同标记的乙酸盐或碳酸氢盐结合。在厌氧状况下(无论有无硝酸盐),Thiothrix丝状菌都很活跃,它通过吸收硫代硫酸盐和乙酸盐来形成胞内硫粒。利用丝状菌的FISH探针,Mircothrix parvicella被发现有特殊的脂消费,在厌氧情况下专门吸收长链脂肪酸(而不是短链脂肪酸和葡萄糖),随后当硝酸盐或氧可用作电子受体时它们则使用贮存完成生长.不过,在厌氧情况下,不能吸收磷,不适合那些有除磷要求的生物反应器.利用FISH技术对丝状菌进行系统分类发现,大多数未描述的丝状菌属于绿色非硫细菌(Chloroflexi),也可能是污水生物处理系统中丰度最高的丝状菌。Liao等(2004)发展一种定量FISH,对实验室和污水厂反应器中的丝状菌进行了研究,以增加Sphaerotilus natans的方式来刺激污泥膨胀,结果发现是Eikelboom 1851菌丛(而不是试验的S.natans菌)同活性污泥容积指数(volume index)极度相关,其可延伸的菌丝长度约为6×10。la,m/mL。4.2 生物除磷的重要细菌生物除磷可以在EBPR的微生物途径中由完成,该过程通过循环活性污泥进行交替的厌氧、需氧为特征。基于微生物的纯培养技术,变形杆菌纲г亚纲的不动杆菌属(Acinetobacter)长期被认为是唯一的PAO(Polyphosphate—accumulating organism).但实际上,虽然不动杆菌能积累多聚磷酸盐,却没有PAO的典型代谢方式.Wanger等(1994)用rRNA目的探针测试后认为,主要的PAO应该为口亚纲中的Rhoclocyclus群,其次为 亚纲中的Planctomycete群及屈挠杆菌属(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用萤光抗体染色、呼吸醌检测和属特异探针的FISH等非培养方法,证明在EBPR系统中,由于培养偏差显然高估了不动杆菌的相对丰度,表明其对EBPR系统实际上不是最重要的,而另外一些分离出的细菌才是PAO的候选者。不过,有7个Acinembacter新种从活性污泥中分离到,可望进一步阐释该属在脱磷中扮演的角色和意义。积磷小月菌(Microlunatus phosphovorus)是一个高G+C含量的革兰氏阳性菌,被认为是专性好氧菌,可以通过EMP途径发酵葡萄糖为乙酸,而不能够在厌氧情况下生长.有明显吸收葡萄糖、分泌乙酸的转化,导致胞内乙酸积累;产生的乙酸在随后的好氧阶段消耗掉.phosphovorus表现出卓越的吸收和释放磷的能力,磷释放率和吸收率可分别高达3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1个数量级,特异探针证明其在EB—PR工厂里可占总细菌的2.7%。俊片菌属(Lampropedia)也拥有聚磷菌的基本代谢特征,但比EBPR模型预言的吸收乙酸盐释放磷酸盐的比率要低很多.那些被建议名为“Candidatus Ac—cumulibacter phosphates”已被证实显著存在于EBPR系统中.Saunders等(2003) 在对6个运行污水厂进行了检测后认为,很可能“无关紧要”的“CandidatusAccumulibacter phosphates”正是重要的PAO.另外还有显微镜原位观察显示,酵母菌很可能涉及在生物除磷中,许多“聚磷菌”很可能是酵母菌的孢子,但其作用机理显然还需要进一步探讨.4.3 硝化细菌氮循环是高度依赖微生物活性和转化的一个过程.这类微生物在污水处理、农业等领域具有极其重要的作用,因此成为近年来世界研究的热点,变形杆菌的β亚纲几乎已经成为微生物生态学的模式系统 .Kindaichi等(2004)对自养硝化生物膜进行了FISH分析表明,膜上有50%属于硝化细菌,其余50%为异养细菌,分布为变形杆菌α亚纲23% ,г亚纲13% ,绿色非硫细菌9% ,CFB群2%,未定类群3%.该结果表明,硝化细菌通过可溶性产物的产生支持了异养菌,异养菌也从代谢多样性等方面确保了生物膜的生态稳定性 .从培养角度来说,硝化细菌生长极慢;由于硝化细菌的分布同pH、温度等敏感,所以污水厂的硝化作用常有崩溃的情况发生.4.3.1 氨氧化茵基于16S rDNA序列分析,已经分离和描述过的氨氧化细菌都分属于变形杆菌纲的2个单系群中.Ni-trosococcusoceanus和N.halophilus属于Proteobacteria的β亚纲,包括亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化弧菌属(Nitrosovibrio)和亚硝化叶菌属(Nitrosolobus),后3个属关系密切;而Nitrosococcus mobilis(实际是Nitrosomonas的一个成员)则在β亚纲组成紧密相关的集合.4.3.2 亚硝酸氧化茵基于超微特性,已培养出的亚硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分为4个已知属,硝化杆菌属(Nitrobacter),硝化刺菌属(Nitrospina),硝化球菌属(Nitrococcus)和硝化螺菌属(Nhrospira).16S rDNA序列比较分析表明,硝化杆菌属及其3个种都属于变形杆菌的α一亚纲;Nitrospina和Nitrococcus各有一个种,分属于变形杆菌的δ和г一亚纲;Nitrospira属包含有moscoviensis和Ⅳ.rrtarin.在传统上,Nitrobacter一直被认为是最重要的亚硝酸盐氧化菌.然而,在硝化污水厂内用目的探针的FISH法和定量斑点杂交(Quantitative dot blot)等发现,检测不到Nitrobacter或者数目很低,因此凸现了非Nitrobacter的NOB在硝化过程中的重要性.Egli等(2003)用不同污泥接种反应器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法对稳定的硝化作用反应器进行检测,发现有活性的都属于Nitrospira属 J.以Nitrospira序列发展的特定16S rRNA探针,对活性污泥进行FISH查后表明,未培养的类硝化螺菌(Nitrospira—like)以显著性数目(总菌数的9%)存在,其对亚硝酸盐氧化的重要性已由反应器富集研究所证实.Nhrospira能固定CO:,也能利用丙酮酸混合营养生长,而不利用乙酸盐、丁酸盐和丙酸盐。4.4 反硝化细菌反硝化细菌(Denitrifying bacteria)的大多数鉴定和计数都是依赖培养法.很多属的成员,如产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)、甲基杆菌属(Methylobacteriurn),副球菌属(Paracoccus)和生丝微菌属(Hyphornicrobiurrt)等,都从污水厂中作为脱氮微生物群分离出来过,但这些细菌属在污水厂中是否具有原位脱氮的活性却很少被知道.在一个补充以甲醇作为还原碳化物的脱氮沙滤中,使用特异FISH探针监测到有大量数目的P.spp和H.spp;而在没有附加甲醇的非脱氮沙滤中,两属存在的数目都低于总细胞0.1% ,这间接证明了在脱氮过程中有两属的活性参与。5.水污染物的类型及处理生活污水生活污水是一大污染源。生活污水中含有大量的无机物,有机物。无机物如氯化物,硫酸盐,磷酸盐和钠,钾,钙,铁等碳酸盐,有机物有纤维素,淀粉,脂肪,蛋白质和尿素等。排放入环境中促使浮游植物生长和大量繁殖,形成赤潮和水华。 生活污水的处理主要是其中有机物的分解,其主要方法有活性污泥法、生物膜法、AB法。活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。生物膜法生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。法AB法工艺由德国B0HUKE教授首先开发。该工艺将曝气池分为高低负荷两段,各有独立的沉淀和污泥回流系统。高负荷段A段停留时间约20-40分钟,以生物絮凝吸附作用为主,同时发生不完会氧化反应,生物主要为短世代的细菌群落,去除BOD达50%以上。B段与常规活性污泥相似,负荷较低,泥龄较长。工业废水 工业废水是水体污染的主要污染源。包括钢铁工业废水,食品工业废水,印刷废水,化工废水等。随着工业化的发展,含有重金属离子的废水产生量越来越多。重金属离子已成为最重要、最常见的污染物之一。由于重金属在生物体内的富集、吸收与转化,从而通过食物链危害人体健康。如致癌、致畸等,故而处理重金属污染刻不容缓。 微生物处理技术在生活污水处理中的应用已经非常成熟并且全面普及,但是在工业污水的处理中还存在着一定的技术问题。相对于生活污水来说,工业污水的成份要复杂的多,大多数工业污水的COD值都相当高,可生化性差,这就给微生物处理带来了相当大的难度,有些工业污水甚至还有很高的氨氮指标,增加了微生物处理的难度。但是微生物技术的许多优势注定了它将是工业污水治理的一个方面,而且目前已经有很多行业的工业污水开始采用微生物处理技术并且得到了稳定的运行数据。这里主要讲述关于污水中重金属的处理。目前可用的微生物法有生物吸附法、硫酸盐还原菌净化法和利用微生物的转化作用去除重金属。 生物吸附法 生物吸附是利用生物量(如发酵工业的剩余菌体)通过物理化学机制,将金属吸附或通过细胞吸收并浓缩环境中的重金属离子,由于重金属具有毒性,如果浓度太高,活的微生物细胞就会被杀死。所以,必须控制控制被处理水的重金属浓度。 例如陈小霞等人用小球藻富集铬离子,研究表明小球藻富集铬离子的机制主要表现是表面吸附和主动运输。在生长期和稳定期小球藻富集的铬以有机铬存在,而在衰亡期,小球藻富集的铬以无机铬存在。 利用工业发酵后剩余的芽孢杆菌菌体或酵母菌吸附重金属,具体做法是首先用碱处理菌体,以便增加其吸附重金属的能力。然后通过化学交联法固定这些细胞,固定化的芽孢杆菌对重金属的吸附没有选择性(微生物在结合无机污染物上表现出选择性,多于大多数合成的化学吸附剂,微生物对金属的吸附和累积主要取决于不同配位体结合部位对对金属的选择性)。可以去除废水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可达99%。吸附在细胞上的重金属可以用硫酸洗脱,然后用化学方法回收重金属,经过碱处理后的固定化细胞还可以重新用于吸附重金属。 硫酸盐还原菌净化法 脱硫弧菌属硫酸盐还原菌是厌氧化能细菌,它最大的特征就是在无自由氧的条件下,在有机质存在时通过还原硫酸根变成硫化氢,从中获得生长能量而大量繁殖;它繁殖的结果是使溶解度很大的硫酸盐变成了极难溶解的硫化物或硫化氢。这类细菌分布广泛,海洋、湖泊、河流及陆地上都能存在。在没有自由氧而有硫酸盐及有机物存在的地方它就能生长繁殖,其生长温度为25~35摄氏度,PH值为.该细菌的作用可将废水中的硫酸根变成硫化氢,使废水中浓度较高的重金属Cu、Pb、Zn等转变为硫化物而沉淀,从而使废水中的重金属离子得以去除。 利用微生物的转化作用去除重金属 微生物可以通过氧化作用、还原作用、甲基化作用和去烷基化作用对重金属和重金属类化合物进行转化。 细菌胞外的荚膜或粘膜层可产生多种胞外多聚体,胞外多聚体能够吸附自然条件下或废水处理设施中的重金属。其主要成分是多糖、蛋白质和核酸。 真菌的细胞壁内含几丁质,这和N----乙酰葡糖胺多聚体是一种有效的金属于放射性核素结合的生物吸附剂。经过氢氧化物处理的各类真菌暴露出来的几丁质、脱乙酰壳多糖和其他金属结合的配位体,形成菌丝层,可以有效的去除废水中的重金属。 六价铬具有强烈的毒性,其毒性是三价铬的100倍,而且能在人体内沉淀。由于六价铬很容易通过胞膜进入细胞,然后在细胞质、线粒体和细胞核中被还原为三价铬,三价格在细胞内与蛋白质结合为稳定的物质并且和核酸相作用,而细胞外的三价铬是不能参透细胞的,细菌利用细胞中的NADH作为还原剂,在厌氧或好氧的状态下,将六价铬还原为三价铬。如阴沟肠杆菌能抗10000µmol/l铬酸盐,在厌氧的条件下能使六价铬还原为三价铬,三价铬可以通过沉淀反应与水分离而被去除。农业废水它面广而量大且分散。农田使用农药,化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 农业生产上主要使用的农药类型 当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表 类 型 农 药 品 种 有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等 杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等有机氯:六六六、滴滴涕、毒杀芬等 杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等 除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等 杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。 降解农药的微生物类群 土壤中的微生物,包括细菌、真菌、放线菌和藻类等,它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。 微生物降解农药的机理 目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。 表2 常见农药的降解微生物农 药 降 解 微 生 物甲胺磷 芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母阿特拉津(AT) 烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌幼脲3号 真菌敌杀死 产碱杆菌2,4-D 假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、DDT 无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等丙体六六六 白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等对硫磷 大肠杆菌、芽孢杆菌七 氯 芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌敌百虫 曲霉菌、镰孢霉菌敌敌畏 假单胞菌狄氏剂 芽孢杆菌、假单胞菌艾氏剂 镰孢霉菌、青霉菌乐 果 假单胞菌2,4,5-T 无色杆菌、枝动杆菌 细菌降解农药的本质是酶促反应,即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分;有的是诱导酶系,如王永杰等得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差,这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。

侵入途径:吸入、食入、经皮吸收。健康危害:对神经系统、肝脏、肾脏有明显的毒性作用。急性中毒:可迅速经皮吸收而中毒,症状类似艾氏剂和滴滴涕,蓄积于脂肪中。吸入可引起呼吸道刺激症状;误服中毒可出现头昏恶心、呕吐、全身无力、共济失调、肌肉抽动、震颤、四肢无力、食欲不振、情绪激动等。部分患者可有肝、肾损伤及周围神经炎。 毒性:该品属高毒性。急性毒性:LD5046mg/kg(大鼠经口);60mg/kg(大鼠经皮);LC5043mg/m3,4小时(大鼠吸入);人经口5mg/kg,最小致死剂量。致癌性:小鼠经口最小中毒剂量730mg/kg(52周,连续)致癌阳性;大鼠经口最小中毒剂量(2年,连续)致肿瘤阳性。致畸性:小鼠经口最小中毒剂量15mg/kg(妊娠期9天)致畸胎阳性。用作土壤杀虫剂的艾氏剂是环境中狄氏剂(高达97%)的主要来源。艾氏剂和反应产生狄氏剂很快被土壤吸收,特别当土壤含有丰富有机质时,因而几乎不渗透土壤而且通常不发生地下水的沾污。两种化合物的迁移主要经由土壤侵蚀(像随风漂移)和沉积迁移(地表泾流),而不是通过溶渗。艾氏剂和狄氏剂在农业上使用,产生了土壤中残留物(主要是狄氏剂),持续期以年计。估计半衰期在4~7年。这些化合物在热带条件下比温带条件下存留期要短。由于处理庄稼和土地,或直接由于杀虫剂的施用,艾氏剂和狄氏剂通过挥发而进入空气。狄氏剂又随水洗刷和干尘降返回到土壤和水表面。因而这些化合物可在气相中测得(很低水平,通常在1~2ng/m3),或吸附在尘颗粒或降水中(大约10~20ng/l)。水中生物体对狄氏剂有很高的富集能力,水中很低的含量水平可导致生物体达到有毒的水平。通过水中食物链富集的重要性不及从水中直接的生物吸收。在地球系统中,艾氏剂和狄氏剂以各种形态积累在生物体内,但主要以狄氏剂形式存在。狄氏剂很可能要对田野哺乳动物的死亡和某些物种数量下降(如水獭)负责。降解:狄氏剂属高毒有机氯杀虫剂,在光照下光解,成光化狄氏剂,毒性更高。危险特性:遇明火、高热可燃。燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢。

有国标的方法:测定方法方法提要用丙酮-石油醚溶液提取试样中农药残留物,经弗罗里硅土和中性氧化铝柱层析净化后,用气相色谱法测定。试剂和材料 石油醚:重蒸馏, 收集沸程65~75℃馏份。取300mL在旋转蒸发器中浓缩至5mL, 在与测定方法相同的色谱条件下,取5μL进行测定,除石油醚峰外无干扰被测物的杂质。蒸馏水:取蒸馏水100mL,用石油醚10mL提取,在与测定方法相同的色谱条件下,取5μL提取液进行测定,应无石油醚以外的峰。丙酮: 分析纯,重蒸馏。苯:分析纯,重蒸馏。 乙醚:分析纯。无水硫酸钠:分析纯,650℃灼烧4h,贮于密封瓶中备用。中性氧化铝(层析用):500℃灼烧4h,使用前夕在130℃干燥2h,置于干燥器冷却,每100g加10mL水,摇至均匀待用。弗罗里硅土(60~100目) 650℃灼烧4h,使用前夕在130℃干燥2h,置于干燥器内冷却。每100g加5mL水, 摇至均匀待用。作为内标物的环氧七氯及标准农药的纯度均应大于99%。 内标物标准溶液及农药标准溶液的配制:准确称取适量的环氧七氯、艾氏剂、狄氏剂、异狄氏剂,用少量苯溶解,然后用石油醚分别配成浓度为的标准储备溶液。根据需要再配制成适用浓度的含内标物的混合标准工作溶液和内标物标准工作溶液。注:如果试样中存在环氧七氯,可选择其他适当内标物。仪器和设备气相色谱仪,备有电子俘获检测器。脂肪抽提器:150mL。层析柱:20cm×(内径)。旋转蒸发器。气流吹蒸浓缩装置。容量瓶:50mL。微量注射器:10μL。 脱脂棉和滤纸筒:用丙酮-石油醚(2+8)混合液回流2h后,取出挥发至干,保存在清洁容器中备用。测定步骤提取称取制备好的样品(用氧化铝净化时称)于滤纸筒内,样品表面覆盖少许脱脂棉,装入抽提器中。加丙酮-石油醚(2+8)混合液100mL于抽取瓶中,在水浴上浸抽4h(从第一次回流开始计时,回流速度8~10次/h),取出滤纸筒,将提取液浓缩至5mL左右待用。 净化 A法: 于层析柱内,依次装入2cm高无水硫酸钠,10g中性氧化铝及2cm高无水硫酸钠。用乙醚-石油醚(3+17)作淋洗剂预淋洗层析柱。收集20mL弃去,然后将浓缩后的提取液倒入柱内,流出液收集于50mL容量瓶内(流速为30滴/min,约) 供气相色谱测定。B法: 于层析柱内,依次装入2cm高无水硫酸钠,10g弗罗里硅土和2cm高无水硫酸钠。用乙醚-石油醚(3+17)作淋洗剂预淋洗层析柱。收集20mL弃去,然后将浓缩的提取液倒入柱内,流出液收集于50mL容量瓶内(流速为30滴/min, 约) 供气相色谱测定。测定色谱条件色谱柱Ⅰa. 玻璃柱,2m×3mm(内径),填充物为:%OV-17+%OV-210混合液涂于Gas Chrom Q (80~100筛目)。b.载气:高纯氮,纯度>%,30mL/min。c. 柱温:200℃。d.进样口温度:230℃。e. 检测器温度:250℃。 色谱柱Ⅱa.玻璃柱,2m×3mm(内径),填充物为:3%(m/m) DEGS涂于Chromosorb W HP(80~100筛目)。b.载气:高纯氮,纯度>%,30mL/min。c. 柱温:190℃。d. 进样口温度:230℃。e. 检测器温度:250℃。色谱测定准确地移取适量上述净化液进行浓缩或稀释,定量加入内标物标准溶液作为色谱测定的样液。另选择与样液中农药相近的标准工作溶液与样液同时进行色谱测定。注:①在上述色谱情况下,各农药组分出峰顺序:柱Ⅰ:艾氏剂约为; 环氧七氯约为; 狄氏剂约为; 异狄氏剂约为。柱Ⅱ:艾氏剂约为;环氧七氯约为;狄氏剂约为;异狄氏剂约为。②实际使用的农药标准工作溶液及样液中各浓药组分的响应值均应在仪器检测的线性范围之内,样液测定过程中要参插注入标准工作溶液以检查检测器的灵敏度。空白试验按测定步骤进行试剂空白试验。结果计算用色谱数据处理机按适当程序计算各种农药残留量。也可按下式分别计算:h c' hi' ci农药残留量(mg/kg) = ──×──×──×──h' c hi ci'式中:h——样液中农药峰高,mm; h'——标准工作溶液中农药峰高,mm; hi——样液中内标物峰高,mm,hi'——标准工作溶液中内标物峰高,mm; c——样液浓度,g/μL; c'——标准工作溶液中农药浓度μg/μL; ci——样液中内标物浓度,μg/μL;ci'——标准工作溶液中内标物浓度,μg/μL。注:①计算结果需扣除空白值。②本法可同时测定六六六和滴滴涕残留量。

海洋环境对生物的影响多是收费的期刊论文,以下免费的,只有你自己整理一下了。海洋与海洋生物间的相互关系

蔡文娜的毕业论文

在当今社会,只要两个人相爱,他们就可以在一起,但在封建社会,两个相爱的人不一定在一起,父母的命令,媒人的话是封建社会的婚姻,这种婚姻也造成了许多悲剧。她嫁给了比她大30岁的杨森,在14岁的时候,通过包办婚姻,长大后明白了什么是爱,并且有过两次不忠。最终她因为追求爱情而失去了年轻的生命,她的爱情也变成了一场悲剧。

蔡文娜出生于四川省莱克县一个普通的家庭。她的家庭条件,虽然不是特别好,但几乎是一样的。她的父母都是知识分子,没有那么多的封建思想。此外,在民国时期,她的思想比较开放,当蔡文娜到了上学的年龄,她的父母送她去上学。蔡文娜长相漂亮,气质高雅,像一只高贵的白天鹅,但她的成绩也很好,学校里的女生都羡慕她,男生们都暗恋她,都是赞扬。每天都有很多男同学站在教室门口,希望能看到蔡文娜。蔡文娜是学校里最受欢迎的学生,她也是学校里真正的花朵,尽管她那时只有14岁,她还是个小女孩,已经是当地的一个天才了。

杨森出生在四川一个普通的农民家庭,家境贫寒,所以杨森没有受过教育。他从小就热爱武术,经常在家锻炼自己,因此进入军校,毕业后参军,由于能力强,他很快成为了里面的军阀领袖。杨森的地位使他在四川成为了一个造雨人,他的好色本能也暴露了出来。他出名了,娶了很多老婆,但很多老婆都不能满足他,他要娶她。杨森是一个粗野的男人,只有一个强壮的身体,但没有文化,所以他喜欢那种安静的优雅和气质的女孩,这样的女孩也可以帮助他沟通。当杨森听到她的名字,他认为这个女孩是他的口味,所以他问关于她的学校,并去看她。她年轻,漂亮,优雅,有教养,杨森很喜欢她。

杨森,一向果断,立刻派人到她家,向她求婚。蔡文娜的父母听说有个高官喜欢他们的女儿,非常高兴。首先,他们的女儿可以在她的余生中享受繁荣和财富,其次,她的家庭也可以从中受益,他们赶紧点头同意这门亲事。这时,他们完全没有意识到,他们把女儿扔进了火里。就这样,只有14岁的蔡文娜,显然是被父母安排的,嫁给了比她大30多岁的杨森,成为了他的第九任妻子。过渡期之后,她受到杨森的崇拜,她符合杨森对她的所有幻想,杨森让她继续学业,在重要场合带她一起去。看着别人羡慕的眼神,杨森很满意,他更喜欢蔡文娜,给了她无尽的爱。

民国时期,教育水平相对较低,没有专业英语教师,英语水平不高。因为她有时不得不会见外国客人,杨森请了一位家庭教师来教她英语。那个家庭教师是个英俊的年轻人,当时世界上很有名的人。他是个绅士,他们谈了很多。导师的风度与杨森的粗鲁形成了鲜明的对比。小女孩喜欢温柔的人,蔡文娜也不例外,初恋的蔡文娜渐渐爱上了导师,导师也感动了年轻漂亮的蔡文娜。她和家庭教师在谈恋爱,他们不敢让杨森知道,所以上课的时候偷偷出去。杨森很粗鲁,但他也是个男人,他见过各种各样的人。他很快就发现了,蔡文娜和女家庭教师之间的问题。他逮捕了女家庭教师,殴打她,然后开枪打死了她。

被枪杀的女家庭教师蔡文娜很害怕,但她什么也不敢说。她知道杨森有个阿姨被杨森枪杀了,因为她有外遇,她准备好了被枪杀。但是毕竟,蔡文娜和女家庭教师没有做任何出格的事情。另外,他太喜欢蔡文娜了,所以没有杀她。他让蔡文娜跪下,叫全家的阿姨一起来,当着大家的面鞭打蔡文娜。看着蔡文娜,他被打得很惨,他的几个妻子都求饶,杨森停止了鞭打她,在接下来的日子里,他也开始冷落她,试图给她留下好印象。杨森冷静下来后,开始抚摸蔡文娜,蔡文娜也学会了,在他身边很聪明,哄得他很开心,杨森也开始顺从蔡文娜起来,只要她的要求,基本上都要想办法满足。

高中毕业后,她想上大学。她不知道杨森会不会答应她的要求。令她惊讶的是,当她向杨森求婚时,杨森答应了。这使蔡非常高兴,她申请了成都华修大学,被录取并不意外,她准备了自己的行李,准备开始他们的大学生涯。大学和蔡文娜想象的不一样。在大学里,她的同龄男女同学都坠入爱河,追求美好的爱情。那时,她只是个18或19岁的小女孩。看着别人甜蜜的爱情,她非常嫉妒,她想要同样自由,美丽的爱情。然后蔡文娜忘记了第一次出轨的教训,同一所学校的一个叫吕兴申的医科学生谈到了爱情。蔡文娜和吕兴申的感情很好,两个人在校园里公开谈论甜蜜的校园恋情,对于这一切,杨森并不知道,所以没有人能阻止他们的爱情。

当吕兴知道了蔡文娜和杨森的事,他并不讨厌她。恰恰相反,他更加坚定地想和她在一起。但他只是个学生。和杨森打架简直是不可能的事,所以他想和蔡文娜偷偷出国住,再也不回来了。私奔的想法被蔡文娜拒绝了,她知道如果她和别人私奔,她的父母会很痛苦。她想回去告诉杨森发生了什么,离婚就这么定了。她认为杨森宠爱她是可以理解的,但此时她已经忘记了杨森到底是谁。回家后,蔡文娜告诉了杨森她的风流韵事。看着这个她爱了这么久的女人,她提议离开,和她的爱人共度良宵。杨森觉得蔡文娜根本不知道什么对她好,但是他是一个见多识广的人,他没有看到任何东西。他假装同意蔡文娜的条件,却要求蔡文娜昨晚陪他,这也是两人最后的温暖,蔡文娜也没想到会同意。

第二天她醒来的时候,杨森已经起身离开了。等待她的是一只黑色的口套。杨森的人开枪打死了她,她年轻的生命结束了,她被杨森扔进一口枯井里埋了,匆匆结束了自己的生命。蔡文娜的一生是个悲剧,她想要追求爱情,却因为爱情而失去了生命,对于蔡文娜的遭遇,我们表示同情,但不予支持。如果你已经结婚了,你应该对你的婚姻忠诚,而不是多次出轨,这对你自己是不负责任的,对别人也是不负责任的。蔡文娜案是一个明显的教训,对于婚姻,应该小心,不是父母的命令,爱情是婚姻的基础,开始婚姻,必须了解对方,有感情后再结婚,不要再制造像蔡文娜那样的悲剧。

后来结局是跟杨森离婚,跟其他的男人在一起,离婚之后,她的生活却没有以前好,也没有跟新任男友走到最后。

后来她被杨森的人开枪打死了,最终结束了年轻的生命,为了追求自己所谓的爱情,她陪上了自己的性命。

模拟电路与数字电路毕业论文

具体什么内容的

1) 30kHz高频开关电源变压器的设计 2) 48V50A开关电源整流模块主电路设计 3) 12232液晶显示程序 4) A题直流稳定电源 5) ISD2560芯片在汽车报站器的应用 6) ISD2560语音芯片在排队机系统中的应用 7) LC振荡器制作方案 8) MCS51单片机应用系统设计 9) RCC电路间歇振荡的研究 10) RCC电路间歇振荡现象的研究 11) UC3842应用于电压反馈电路中的探讨 12) UC3843 是高性能固定频率电流模式控制器专为离线和直流变换器应用而设计 13) UC3843A的内部等效电路框图 14) VHDL基本语法单元 15) 八路抢答器 16) 别墅区可视对讲系统 17) 波形发生器(A题) 18) 采用CoolSET-ICE2B265的30瓦开关电源设计 19) 出租车多功能计费器的设计 20) 出租车计费器设计与实现 21) 单端反激开关电源变压器设计 22) 单片机应用系统设计技术教学大纲 23) 单片机游戏设计 24) 单片机在家用电器中的应用 25) 低成本DC-DC转换器34063的应用 26) 电压 控 制 LC 振 荡 器 27) 电源输入端口的电磁兼容设计 28) 调频收音机设计 29) 调频无线话筒接收机电路 30) 对“C51语言应用编程的若干问题” 31) 发射三极管 32) 高频高效DC-DC模块电源 33) 高频开关电源 34) 高压开关电源的应用电路设计 35) 红外电路 36) 基于AT89C51SND1C单片机的MP3硬件播放器的实现 37) 基于AT89C205 1和ISD2560的录放音系统设计 38) 基于CPLD/FPGA的出租车计费 39) 基于CPLD/FPGA的出租车计费器 40) 基于CPLD和接触式图像传感器的图像采集系统 41) 基于CPLD控制的DDS数字频率合成器设计 42) 基于D类功放的宽范围可调开关电源的设计 43) 基于GPS的高精度无误差倒计时牌的设计 44) 基于μPD78F0034单片机的出租车计费器的设计与实现 45) 基于大容量IC卡AT45D041的出租车数据采集系统 46) 计算机控制灯阵列 47) 开关电源EMC设计 48) 开关电源保护电路的研究 49) 开关电源测试参考 50) 开关电源冲击电流控制

电气工程及其自动化本科毕业论文有关数字电子技术的好写。1、电气工程是目前科技领域中的一个核心学科,也是现代高新技术领域中不可或缺的关键学科,包括了几乎所有与电子、光子有关的工程行为,例如计算机网络学习电气工程专业的学生学习的课程主要有电路原理、模拟电子技术、数字电子技术、微机原理等等,学生在毕业之后可以选择从事电气工程及其自动化方面的教学、科研、工程设计、科技开发、管理和经贸等工作。2、标题:根据选题确定标题内容,字数不宜超过20字,电气工程毕业论文的选题可以是电气自动化、电气设备等等,不过有时候导师会给一个大致方向或题目供学生选择。3、摘要,关键字:摘要是对论文内容的简短陈述,是独立与论文的完整短文,字数在200字左右关键字是从论文中摘取的可以显示论文主题的单词,数量在3-5个。4、引言:简单阐述论文的目的和意义。5、正文:对研究内容、研究方法、研究成果等核心内容进行详细介绍。6、结论:对研究进行总结,并简单说明论文的主要内容和尚未解决的问题。

字数多少?大概提纲。

  • 索引序列
  • 蔡氏电路毕业论文
  • 艾氏剂狄氏剂毕业论文
  • 艾氏剂狄氏剂本科毕业论文
  • 蔡文娜的毕业论文
  • 模拟电路与数字电路毕业论文
  • 返回顶部